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 In this study, two approaches having different characteristics, one being Transfer 
Matrix Method (TMM) that reduces computational effort and time by reducing 
the dimension of the considered matrix to four for all problems and the other 
being The Adaptive Network based Fuzzy Inference System (ANFIS) used in The 
Fuzzy Logic Toolbox of Matlab software that again needs less computational 
effort and time are compared in the free vibration analysis of Timoshenko 
columns with attached masses having rotary inertia. The governing equation of 
the column elements is solved by applying the separation of variables method in 
the TMM algorithm. The same problems are solved, also, by fuzzy-neural 
approach in which ANFIS model is used by establishing Neuro Fuzzy Frequency 
Estimation (NFFE) models. Natural frequencies for the first three modes of an 
elastically supported Timoshenko column with 1, 5 and 10 attached masses are 
computed using NFFE models, and the results are compared with the ones of 
TMM. The comparison graphs are presented in numerical analysis to show the 
effectiveness of the considered methods, and it is resulted that neuro-fuzzy 
approach may give encouraging results for these kinds of models having great 
number of attached masses.  

© 2015 MIM Research Group. All rights reserved. 
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1. Introduction 

Many researchers investigate the vibration of beam-columns with attached masses using 
conventional methods, most of them requiring much computing effort and time. For 
instance, Bapat and Bapat [1] investigated the natural frequencies of an Euler beam with 
attached masses using TMM, and modeled all supports by elastic springs against rotation 
and translation. Karami et all. [2] proposed a differential quadrature element method for 
free vibration analysis of nonuniform Timoshenko beams with elastic support and 
attachments. Lin and Chang [3] studied fee vibration analysis of multi-span Timoshenko 
beam with an arbitrary number of flexible constraints by TMM. Posiadala [4] considered 
the transverse free vibration of Timoshenko beams having rotation and translation 
springs, attached mass with moment of inertia, linear undamped oscillators and additional 
supports, and obtained the frequency equation by Lagrange multiplier formalism. TMM is 
used with Holzer method for torsional vibration of systems with attached masses [5], and 
with Myklestad-Thomson method for flexural vibrations of discrete systems with attached 
masses [6]. Esmailzadeh and Ohadi [7] made vibration and stability analysis of non-
uniform Timoshenko beams under axial and distributed tangential loads. Gokdag and 
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Kopmaz [8] studied the coupled flexural-torsional free and forced vibrations of a 
Timoshenko beam with tip and/or in-span attachments. Ozkaya [9] obtained the non-
linear equations of motion for transverse vibrations of a simply supported beam carrying 
attached masses. Demirdag [10] compared the transfer matrix and finite element methods 
in obtaining frequencies of elastically supported columns with attached masses. Demirdag 
and Catal [11] obtained the response spectra of semi-rigid supported single-storey frames 
modeled as a Timoshenko column with a tip mass.   

In this study, two approaches having different characteristics, one being TMM that reduces 
computational effort and time by reducing the dimension of the considered matrix to four 
for all problems and the other being neuro-fuzzy approach that again needs less 
computational effort and time; however, since neuro-fuzzy approach is an estimation 
method it cannot be used to obtain exact results in any discipline and this is the main 
disadvantage of the estimation methods. 

2. Problem Definition  

 

Fig. 1 Mathematical model of n uniform Timoshenko columns with n attached masses 

The mathematical model of n uniform Timoshenko columns with n attached masses given 
in Fig. 1 is used in this study for multistory frames. Elastic support is modeled by rotation 
spring. In order to reflect the relative stiffness of the column and the rotational spring an 
end fixity factor is defined. Thus, the fixity factor is defined in Eq (1) from the rotational 
stiffness so that it takes as limits: null (0) value for a theoretically pinned joint and unity 
(1) for a theoretically rigid one [12]. 







1
f

3EI
1

K L

  (0  f  1)                 (1) 
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where EI and L are flexural rigidity and length of the Timoshenko column, K is the 
rotational spring constant. The governing equation of the free vibration is derived by 
including bending and shear deformation with rotary inertia of the columns. The rotary 
inertia of the attached masses is also included in the analysis. In order to study with 
nondimensionalized values the multiplication factors are defined for attached mass and its 
rotary inertia, respectively, as in the following 

i
i

i i

M
M

m L
  i

i 3
i i

J
J

m L
                   (2) 

where Mi and Ji are ith attached mass and its rotary inertia, Li is the length of ith column. In 
this study, the natural frequencies of the model having different number of attached 
masses are obtained by three algorithms considering the variation of fixity factor, 
nondimensionalized attached mass and its rotary inertia values. Firstly, a TMM approach 
considering the continuity relations of displacement, slope, moment and shear at the 
interface of adjacent columns is performed to determine eigenfrequencies of the model. 
Considering the compatibility conditions at the interface of adjacent columns the relations 
between two adjacent spans is obtained; thus, exact values of eigenfrequencies of the 
entire system are determined for different number of masses by using TMM algorithm. 
Neuro-fuzzy algorithm is the second method used to obtain the frequencies of the model 
for the same conditions by establishing Neuro Fuzzy Frequency Estimation (NFFE) models. 
Nondimensionalized attached mass and its rotary inertia values, and fixity factors are the 
three inputs and the natural frequencies are the outputs necessary for the neuro-fuzzy 
algorithm. 

3. Analysis by TMM 

3.1. Determination of Eigenfunction 

Differential equation of motion for the ith Timoshenko column is 

4 2 4 2 2 4 2
i i i i i i i i i i i i

4 2 2 4 2
i i i i ii i

u m k m r u m r k u m u
0

AG EI EI AG EIx x t t t

    
     
      

              (3) 

where ui(xi,t), mi, ri, ki, EIi and AGi, are displacement at xi (0  xi  Li), distributed mass, 
radius of gyration, effective shear area factor due to cross-section geometry, flexural and 
shear rigidities, respectively, of the ith column [10]. Applying the separation of variables 
method to Eq (3) in the form of Eq (4) for T(t)0 and rearranging with the dimensionless 
parameters gives the eigenfunction X(xi) of the ith storey column as in Eq (5). 

i i i i i i
u (x ,t) X (x )T(t) X (x ) Asin( t) Bcos( t)                      (4) 

 

i i 1i 1i i 2i 1i i 3i 2i i 4i 2i i
X (x ) C sinh( x ) C cosh( x ) C sin( x ) C cos( x )                     (5) 

 
where  

2
1i i i i

m k / AG    

 
2

2i i i
m /EI    

2
3i 1i 2i i

r     
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 
2

2
i 1i 2i i 2i

 r 4       

  1i 3i i
n /2     

  2i 3i i
n /2     

 
1i 1i

n  ; 
2i 2i

n   

 C1i...C4i are integration constants. Moment, shear, slope functions of the ith Timoshenko 
column are [13] 
 

i i i i i i 1 i i
M (x ,t) EI u (x ,t) EI u (x ,t)                  (6.1) 

 

 2
i i i 1i i i i 3i i i

V (x , t) EI / 1 r u (x , t) u (x , t)         
            (6.2) 

 

i i i i i i i i
(x ,t) u (x ,t) V (x ,t)k / AG                 (6.3) 

3.2. Boundary Conditions 

Boundary conditions at the interface of the adjacent (i-1)th and ith columns (Fig. 2) are 
written as in Eq (7) using the continuity of displacement and slope and the equilibrium of 
moment and shear [14]. 

 

Fig. 2 Free body diagram for the interface of (i-1)th and ith columns 

i 1 i 1 i 1 i i
u (x L ,t) u (x 0,t)

  
                  (7.1) 

 

i 1 i 1 i 1 i i
(x L ,t) (x 0,t)

  
                   (7.2) 

 

i 1 i 1 i 1 i 1 i 1 i 1 i 1 i i
M (x L ,t) J (x L ,t) M (x 0,t)

      
                  (7.3) 

i 1 i 1 i 1 i 1 i 1 i 1 i 1 i i
V (x L ,t) M u (x L ,t) V (x 0,t)

      
                 (7.4) 

 

Mi-1(xi-1= Li,t) 

Mi(xi=0,t) 

Vi-1(xi-1=Li,t) 

Vi(xi=0,t
)  

(i-1)th column 

ith column 



Demirdag and Yildirim / Research on Engineering Structures & Materials 2 (2016) 1-18 
 

5 

 

Since continuity of displacement and slope is not valid for the support and the nth attached 
mass, one gets 4(n-1) relations from Eq (7). However, four more relations are needed for 
the entire system, two given in Eq (8) from the elastic support in Fig. 3 and two given in Eq 
(9) from the nth attached mass in Fig. 4 where K is rotational spring constant [14]. 


1 1

1 1 1 1

u (x 0,t) 0

M (x 0,t) K (x 0,t)


 

    
                 (8) 

             (9) 

 

 

Fig. 3 Free body diagram of elastic support 

 

 

Fig. 4 Free body diagram of nth mass 

3.2. Obtaining Transfer Matrix 

The relation between C1i…C4i and C1i-1…C4i-1 is written from Eq (7) in matrix form as 

 

i11 i12 i13 i141i 1i-1 1i-1

i21 i22 i23 i242i 2i-1 2i-1

i

i31 i32 i33 i343i 3i-1 3i-1

i41 i42 i43 i444i 4i-1 4i-1

T T T TC C C

T T T TC C C
T

T T T TC C C

T T T TC C C

      
      

            
      
            

 (i=2,3,…,n)           (10) 

where  

i11 26i 9i 1 i 1 27i 14i 1
T ch

  
     

i12 26i 9i 1 i 1 27i 15i 1
T sh

  
     

n n n n n n n

n n n n n n n

M (x L , t) J (x L , t)

V (x L , t) M u (x L , t)

    


    

Kθ 

V1(x=0,t) 

K1(x=0,t) 

M1(x=0,t) 

Mn(x= Ln,t) 

Vn(x=Ln,t) 

 

 

Mn,Jn 
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i13 26i 10i 1 i 1 27i 16i 1
T c

  
     

i14 26i 10i 1 i 1 27i 17i 1
T s

  
      

i21 31i i 1 30i 21i 1
T sh

 
    

i22 31i i 1 30i 22i 1
T ch

 
    

i23 31i i 1 30i 23i 1
T s

 
    

i24 31i i 1 30i 24i 1
T c

 
    

i31 28i 9i 1 i 1 29i 14i 1
T ch

  
     

i32 28i 9i 1 i 1 29i 15i 1
T sh

  
     

i33 28i 10i 1 i 1 29i 16i 1
T c

  
     

i34 28i 10i 1 i 1 29i 17i 1
T s

  
      

i41 32i i 1 30i 21i 1
T sh

 
    

i43 32i i 1 30i 23i 1
T s

 
    

i42 32i i 1 30i 22i 1
T ch

 
    

i44 32i i 1 30i 24i 1
T c

 
    

32i 4i 30i
    

31i 5i 30i
    

 30i 4i 5i
1/     29i 9i 25i

/    

28i 12i 25i
/    

27i 10i 25i
/    

26i 13i 25i
/    

25i 9i 13i 12i 10i
      

24i 5i i 20i i
c s    

23i 5i i 20i i
s c    

22i 19i i 4i i
sh ch    

21i 19i i 4i i
ch sh    

20i 18i 10i
    

19i 18i 9i
    

2
18i i

J    17i 13i i 11i i
s c    

16i 13i i 11i i
c s    

15i 12i i 11i i
sh ch    

14i 12i i 11i i
ch sh    

13i 6i 8i
    

12i 6i 8i
    2

11i i
M    

10i 2i 6i 8i i i
k / AG     

9i 1i 6i 7i i i
k / AG     

 2
8i 2i 2i 3i

      2
7i 1i 1i 3i

     

 2
6i i 1i i

EI / 1 r      2
5i i 2i 1i

EI     
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 2
4i i 1i 1i

EI      i 1i i
sh sinh L   

 i 1i i
ch cosh L    i 2i i

s sin L   

 i 2i i
c cos L   

Applying Eq (10) consecutively for n storey gives 

       

1n 11 11

2n 21 21

t n n 1 3 2

3n 31 31

4n 41 41

C C C

C C C
T T T ..... T T

C C C

C C C



     
     
     

      
     
          

             (11) 

where [Tt] is the transfer matrix of the entire system. Substituting Eq (11) into Eq (9) gives 
two more equation related to C11…C41, therefore, there exists 4 homogeneous equations 
together with Eq (8) that characterize free vibration of the entire system as 

 

11

21

31

41

C 0

C 0
F

C 0

C 0

   
   
   

   
   
     

                 (12) 

where [F] is coefficient matrix. Equating the determinant of [F] to zero gives frequency 
equation of the entire system, and every root of this frequency equation is the 
eigenfrequency of the model. These frequencies are computed by a program written by the 
authors considering the secant method [15]. 

4. Neuro-Fuzzy Modeling 

In fuzzy modeling, the membership functions and rule base are generally determined by 
trial-and-error approaches. Although this approach is straightforward, the determination 
of best fitting boundaries of membership functions and number of rules are very difficult. 
In order to calibrate the membership functions and rule base in fuzzy modeling, the neural 
networks have been employed by researchers [16-21]. This system has been called fuzzy 
neural, neuro-fuzzy or adaptive network based system. The key properties of neuro-fuzzy 
systems are the accurate learning and adaptive capabilities of the neural networks, 
together with the generalization and fast-learning capabilities of fuzzy logic systems. The 
Adaptive Network based Fuzzy Inference System (ANFIS) was developed by Jang [16] and 
is used in The Fuzzy Logic Toolbox of Matlab software. 

To explain the ANFIS architecture, the first order Sugeno model with the following rules is 
taken into account: 

Rule 1: If (x is A1) and (y is B1) then (f 1= p1 x+q1 y +r1) 

Rule 2: If (x is A2) and (y is B2) then (f 2= p2 x+q2 y +r2) 

where x and y are the inputs, Ai and Bi are the fuzzy sets, fi are the outputs within the fuzzy 
region specified by the fuzzy rule, pi; qi and ri are the design variables that are ascertained 
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during training process. The ANFIS architecture to implement these two rules is shown in 
Fig. 5, in which a circle indicates a fixed node, whereas a square indicates an adaptive node. 

 

Fig. 5 ANFIS architecture 

In the first layer, all the nodes are adaptive nodes. The outputs of Layer 1 are the fuzzy 
membership grade of the inputs, which are given by: 

i

1
i A

O (x)   i=1,2                (13) 

i 2

1
i B

O (y)


   i=3,4                (14) 

where 
iA
(x) , 

i 2B
(y)



 can adopt any fuzzy membership function. For instance, if the 

Gaussian function is employed, 
iA
(x)  is given by: 

i

2

i
A

i

x c
(x) exp

a

  
        

                (15) 

where ai and ci are the variables of the membership function. As the values of these 
variables change, the Gaussian function varies accordingly, thus exhibiting various forms 
of membership functions on linguistic label Ai. Variables in this layer are referred to as 
premise variables. 

In the second layer, the nodes are fixed nodes. They are labeled with Z which multiplies the 
incoming signals and sends the product out. The outputs of this layer can be represented 
as: 

i i

2
i i A B

O w (x) (y)     i=1,2               (16) 

which are the firing strengths of a rule. 

In the third layer, the nodes are also fixed nodes. They are labeled with N; indicating that 
they play a normalization role to the firing strengths from the previous layer. The outputs 
of this layer can be represented as: 



Demirdag and Yildirim / Research on Engineering Structures & Materials 2 (2016) 1-18 
 

9 

 

_
3 i
i i

1 2

w
O w

w w
 


  i=1,2               (17) 

which are the so-called normalized firing strengths. 

In the fourth layer, the nodes are adaptive nodes. The output of each node in this layer is 
simply the product of the normalized firing strength and a first order polynomial (for a 
first order Sugeno model). Thus, the outputs of this layer are given by: 

_ _
4

ii i i i i i
O w f w (p x q y r )                    (18) 

In the fifth layer, there is only one single fixed node labeled with Σ. This node performs the 
summation of all incoming signals. Hence, the overall output of the model is given by: 

_ i i
5 i
i i i

i i
i

w f

O w f
w

 





                 (19) 

In order to tune premise (ai, ci) and design variables (pi, qi, ri) the hybrid learning algorithm 
was proposed by Jang et al. [22]. The hybrid learning algorithm combines gradient descent 
and least square methods and it is faster than a back propagation algorithm. The least 
squares method (forward pass) is used to optimize the consequent variables with the 
premise variables fixed. Once the optimal consequent variables are found, the backward 
pass starts immediately. The gradient descent method (backward pass) is used to adjust 
optimally the premise variables corresponding to the fuzzy sets in the input domain. By 
this passing process, optimum variables are determined. The details of this algorithm can 
be obtained from Jang et al. [22]. This approach is also used in different engineering 
disciplines by many researchers [23-24]. 

5. Numerical Analysis 

Natural frequencies for the first three modes of an elastically supported Timoshenko 
column with 1, 5 and 10 attached masses are computed by both TMM and Neuro-Fuzzy 

approaches for parameters of f=0.1, 0.25, 0.5, 0.75, 0.99, 0.999; 
i

M =0.1, 0.5, 1, 2.5, 5, 7.5, 

10; 
i
J =0.1, 0.5, 1, 5, 10. mi=0.32 kNs2/m2, Li=1 m, EI=1353870 kNm2, AG=3240000 kN, 

k=2.426, Sx=0.00743 m3, A=0.04 m2, I=0.006447 m4 are the characteristics of the IPB 
profile column used for the numerical analysis. 

According to Eq (1), the relationship between the connection stiffness (KL/EI) and the 
fixity factor (f) is approximately linear when the fixity factor values are between 0.0 and 
0.5 and nonlinear from 0.5 to unity as shown in Fig. 6. It can be seen from the graph that as 
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the fixity factor approaches unity the curve increases asymptotically to infinity since the 
fixity factor of unity is used for theoretically ideal fixed support. 

 

Fig. 6 Relationship between the connection stiffness (KL/EI) and the fixity factor (f) 

5.1. The NFFE Models 

The NFFE models were developed for estimating vibration frequencies of an elastically 
supported Timoshenko column with attached masses for different conditions. NFFE1, 
NFFE2, NFFE3; NFFE4, NFFE5, NFEE6 and NFFE7, NFFE8, NFEE9 are the models for the 
first, second, third modes of one, five and ten attached masses system, respectively. The 
effective variables of the vibration phenomenon are determined considering previous 
studies and models. The Attached Mass (AM), Rotary Inertia (RI) and Fixity Factor (FF) are 
ascertained as the fuzzy logic vibration estimation model variables. 

The natural frequencies are affected by support condition. Rotational spring is used for the 
elastic support to model the general support conditions. Increases in spring coefficient 
values cause increases in frequencies. Fixity factor concept is used in the study to formulate 
elastic support behavior. Theoretically, zero for fixity factor value denotes a pinned 
support whereas infinity denotes a fixed support. Therefore, variation of fixity factor is 
considered one of the effective variables on frequency values. 

The attached mass on the column is determined as the second variable. The number and 
the value of the attached masses are directly related to frequency values of the column. 
Increasing the number and the value of the attached masses decreases the frequency 
values. The third variable determined for the input parameter is the rotary inertia of the 
attached mass. An increase in the value of rotary inertia of the attached mass causes, also, 
a decrease in the frequency values. Generally in vibration problems, however, the models 
like in this study are the mathematical models that are formed to model more complex real 
systems. Therefore, determination of the value of the attached mass and of its rotary inertia 
is very hard and includes uncertainties. As a result, the nondimensional parameters for the 
attached mass and its rotary inertia are selected as the effective variables on vibration 
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frequency. Membership functions of the variable are determined using the data obtained 
by ANFIS approach. 

 

Fig. 7 NFFE model structure 

The NFFE model is developed using Fuzzy Logic Toolbox of the software Matlab 7.0. The 
NFFE model structure is indicated in Fig. 7. The membership functions are determined by 
using ANFIS approach. The Adaptive Neuro Fuzzy Inference System (ANFIS) has three 
input variables and one output variable. As a process used by ANFIS systems, the initial 
values of the antecedents’ variables can be defined in a way that the centers of the 
membership functions are equally spaced along the range of each input variable. Then, the 
variables of the fuzzy rules are optimized to get the final membership range. The Gaussian 
membership functions are used in definition of NFFE model variables. The tuned 
membership functions of the input variables are shown in Fig. 8. The Sugeno fuzzy 
inference system is used in the NFFE model. In Sugeno fuzzy inference models, the crisp 
output function (or value) is described using the input fuzzy variables. General form of the 
output function (linear) used in NFFE model is given in Eq (20). The coefficients and 
intercepts (design variables for Layer 4) of output membership functions are determined 
after training process in NFFE model. These values are given in Table 1. 

i i i i i
f p AM q RI s FF r                    (20) 

The hybrid learning rule was applied for identifying the output variables in the neuro-fuzzy 
optimization process. The learning hybrid rule combines steepest descent and least 
squares estimator for identifying the variables of the consequent part of the inferential 
rules [19-22]. 
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Fig. 8 Membership functions of the NFFE1 and NFFE4 models 
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Table 1 Output membership functions coefficients and intercepts of NFFE4 model 

Output Membership Function pi qi si ri 

f1 -39.83 -5.97 114.00 113.30 
f2 -9.27 0.07 191.10 45.27 
f3 -6.07 -0.75 46.87 81.04 
f4 -6.43 4.62 98.64 2.60 
f5 -2.28 0.15 67.62 37.14 

The variables of the antecedent part of the fuzzy inference rules are set up based on 
evaluation of characteristics of the input data set. The rule base of the model is formed 
considering membership functions of the variables. In NFFE models, the rule base is 
ascertained by ANFIS approach. Sample rule bases for NFFE4 model are given in Table 2. 

The weighted average method is used for defuzzification in the NFFE models. The mean 
absolute error (MAE), mean squared error (MSE) and average relative error (ARE) rates 
of the nine neuro-fuzzy models are presented in Table 3. 

Table 2 NFFE4 model rule bases 

1. IF AM is AM1 and RI is RI1 and FF is FF1 THEN O is f1 

2. IF AM is AM2 and RI is RI2 and FF is FF2 THEN O is f2 

3. IF AM is AM3 and RI is RI3 and FF is FF3 THEN O is f3 

4. IF AM is AM4 and RI is RI4 and FF is FF4 THEN O is f4 

5. IF AM is AM5 and RI is RI5 and FF is FF5 THEN O is f5 

Table 3 Error rates 

 
Models 

Errors 
Train Errors Test Errors 

     MAE      MSE ARE (%)      MAE        MSE ARE (%) 
NFFE1 35.73 3610.57 4.22 99.64 16335.40 12.55 
NFFE2 238.57 115495.92 11.07 300.85 171364.31 12.39 
NFFE3 256.26 101422.78 3.57 351.45 180805.52 5.00 
NFFE4 5.61 62.34 6.54 6.18 79.66 6.65 
NFFE5 9.08 181.48 1.70 18.50 1032.96 3.54 
NFFE6 34.71 3283.39 2.95 43.68 5891.18 3.58 
NFFE7 0.73 0.99 3.44 1.18 3.59 4.29 
NFFE8 3.53 24.49 2.09 6.00 92.24 3.58 
NFFE9 7.82 128.37 1.81 17.27 539.95 4.25 

The frequency values of the elastically supported Timoshenko column with 1, 5 and 10 
attached masses are computed by TMM and estimated by Neuro-Fuzzy. The comparison 
graphs of the frequency values obtained for the models with 1, 5 and 10 attached masses 
are presented, respectively, in Figs. 9-11 for the first, second and third modes. The data in 
the x axis of the graphs is the number of natural frequency values used for the testing phase 
of neuro-fuzzy models. 
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a) First  mode 

 

b) Second mode 

 

c) Third mode 

Fig. 9 Comparing frequency values of the model with 1 attached mass obtained from 
TMM and fuzzy 
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a) First  mode 

 

b) Second mode 

 

c) Third  mode 

Fig. 10 Comparing frequency values of the model with 5 attached mass obtained from 
TMM and fuzzy. 
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a) First mode 

 

b) Second mode 

 

c) Third mode 

Fig. 11 Comparing frequency values of the model with 10 attached mass obtained from 
TMM and fuzzy. 
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6. Conclusions 

In this study, elastically supported Timoshenko column with attached masses is under 
consideration to obtain its free vibration natural frequencies using two different 
algorithm; transfer matrix method and fuzzy neural approach. 
 
For one or two span models it is easy to obtain the frequency equation in explicit form by 
equating the determinant of coefficient matrix written according to boundary conditions 
of the entire system to zero, however, for large number of spans frequency equation will 
be extremely complex, therefore, the transfer matrix method will be more computationally 
efficient for these kind of models. In addition, another effective method -neuro-fuzzy 
approach- that reduces the computational effort and time is also used to obtain the free 
vibration frequencies of the model in the study. 

The results of TMM and the ANFIS models are compared in training and test sets; the 
comparison of the test sets with TMM is given in graphs, and errors of the training and test 
sets are given in tables. From the comparing graphs in Figs 9-11, it can be concluded that 
neuro-fuzzy approach give values generally close to the values obtained from TMM, thus, 
ANFIS can be applied for vibration frequency estimation. It is seen from Table 3 that MAE 
value is decreasing as the number of attached mass is increasing, it means that neuro-fuzzy 
approach give better results for the model with five attached masses than with one and for 
the model with ten attached masses than with five. Thus, neuro-fuzzy approach may give 
encouraging results for these kinds of models having great number of attached masses. 
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