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 The plane state of stress in an elastic-plastic rotating solid disk of exponentially 
varying density is studied. Elastic-plastic stresses and displacement have been 
derived using Tresca’s yield condition, its associated flow rule and linear strain 
hardening. Results obtained have been discussed numerically and depicted 
graphically for different geometric parameters. The results for uniform density 
are verified with those available in literature. It is observed that with the 
variation in density exponentially (decreases radially), high angular speed is 
required for a material to become fully plastic which in turns give more 
significant and economic design by an appropriate choice of density parameters. 

© 2016 MIM Research Group. All rights reserved. 
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1. Introduction 

The use of rotating disks in machinery and structural applications has generated 
considerable interest in many problems in the domain of solid mechanics. There are many 
applications of such type of rotating disks, such as, high speed gears, turbines rotors, 
flywheels, disk drives. Naturally with all these applications and interest, there has been 
much research in this field and included in many textbooks such as [1] and [2]. The stress 
distribution in an elastic-plastic rotating solid disk was first studied in 1925 [3]. The usual 
approach for the determination of the elastic-plastic stress distribution is to apply the 
principle of momentum, Hooke’s law, Tresca’s yield condition and the condition of 
vanishing of radial stress at the outer surface of the disk. The first modern treatment for 
the elastic-plastic annular and solid disk with linear strain hardening has been introduced 
in 1983 [4]. It was shown in 1983 that the analysis based on Tresca’s yield condition for 
the elastic-perfectly plastic rotating solid disk is not meaningful. Accordingly, it was shown 
in 1984 that a meaningful solution for linear strain hardening can be obtained. In the 
analysis of 1983 and 1984, the plastic region of the disk in the elastic-plastic state consists 
of two plastic regimes with different forms of the yield condition, the inner being a corner 
regime and the outer a side regime of Tresca’s hexagon. However, it is well known that 
disks with variable thickness and variable density, and other cases, are frequently found in 
mechanical engineering. Over the last thirty years more and more effort has been devoted 
to the analysis of elastic-plastic strain-hardening rotating disks with constant or variable 
density and thickness. Following the approach introduced in 1984 by Gamer, the work 
extended in 1993 and 1995 [5-6], to solid and annular disks with variable thickness and 
variable density subjected to different conditions. It is shown in 1999 [7] that Tresca 
criterion supplies a more conservative solution and the use of elliptical parameters with 
von-Mises criterion is convenient for a Runge-Kutta numerical solution. Further a unified 
numerical method [8] is employed for the elastic-plastic nonlinearly strain hardening 
rotating solid disks of constant thickness and for annular disks of variable thickness and 
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variable density. In 2002 [9] a problem on elastic-plastic rotating solid disk taking the 
variation of thickness in an exponential form is solved. A new approach was developed 
using asymptotic phenomena by Seth in 1960’s and is used for problems related to disc, 
cylinders and shells, etc. The theory was well applied by different researchers [10-15].  

The motivation behind carrying out this work is to increase or decrease the hardness and 
strength of the disk from inner to outer radii with the change in density parameter. Most 
of the work done on variation in density is related to linear or parabolic profile. The work 
reported in this paper consider disk with exponential variable density and constant 
thickness. The materials usually have different densities, and density may be relevant to 
buoyancy and purity. 

In this paper, the behavior of linear strain hardening isotropic material of rotating solid 
disk with variable density in an exponential form is studied under Tresca’s yield condition 
and its associated flow rule.  

2. Basic Equations and Solution of Problem 

We consider a state of plane stress and assume infinitesimal deformation. Cylindrical polar 
coordinates r,   and z are employed. The thickness of the disk is assumed to be constant 

and its density profile vary radially in an exponential form given by   

 

k

b

r
n

e










 0
                   (1) 

 where 
0   is the density at the axis, k and n are geometric parameters and b is the radius 

of the disk. The elastic-plastic solid disk is divided into three regions, where the plastic 

core consists of two parts with different forms of the yield condition. Here 
1r   and  2r are 

the interface radii separating the two plastic regions and the outer elastic region, 
respectively. 

 

Fig. 1. Solid disk showing the interface radii 1r  and 2r  

 

 

 

2.1. Inner Plastic Region  10 rr   
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In this inner plastic region the stress state lies in a corner regime of Tresca’s hexagon and 
hence the radial stress is equal to the circumferential stress. According to Tresca’s yield 
condition, these stresses are equal to the yield stress     

 
yr                        (2) 

The governing differential equation of motion is 

 
  2 2( ) 0r

d
r r r

dr
     

                  (3) 

where ( )r   is the density of the material occupying the annular region and    is constant 

angular velocity of rotation. 

Using equations (1) and (2) in (3), and integrated once to yield 

 )(1

2

01 rICr                                      (4) 

where   

   











r

b
n

derI

k

0

1 



                   (5) 

For a linearly strain hardening material behavior the yield stress is  

  
EQy   10

                   (6) 

where  
0  is the initial tensile yield stress,   is the work-hardening parameter and EQ   

is the equivalent plastic strain. Consideration of the equivalence of increment of plastic 
work, 

 
EQy

p

rr

p ddd                      (7) 

together with the yield condition, leads to  

 










 1

1

0




 

yp

r

p

EQ
                 (8) 

For axisymmetric problems with small strains, the geometric relations between strain and 

radial displacement are  
dr

du
r   and 

r

u
   which holds in the entire solid disk 

irrespective of material behavior. The total strain can be decomposed into their elastic and 
plastic components 

p

r

e

rr    and pe

    in which the superscript ‘e’ and ‘p’ denotes elastic and 

plastic components, respectively. 
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Decomposing the total strain into their elastic and plastic parts and using strain 
displacement relations one obtains,  

  







1121
)(

1
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


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
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E
ru
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d
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                 (9) 

and therefore the displacement 
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It should be noted that  
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where 
y  is finite at the axis. The displacement at r = 0 must vanish and hence the 

integration constant 02 C . Substituting    rr ry    into equation (10), the 

displacement becomes   
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where  
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               (13) 

The plastic strain components are obtained by subtracting their elastic parts from their 
total strains as    
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2.2. Outer plastic region  21 rrr   

In this region, stresses lie in a side regime of Tresca’s hexagon with 0 r
. According 

to Tresca criterion, the largest stress is equal to the yield stress  
y     
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  y                   (17)  

Considering the increment of plastic work gives p

EQ    ; and according to the flow rule 

associated with the yield condition, equation (17),  p

z

p    and 0p

r  . Since the radial 

strain is purely elastic and 

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p   , the strain displacement relations lead to 
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   r
Edr

du 1                               (18b) 

where 
E

H 0
   is the normalized hardening parameter and 

H

H
W




1

2  . Solutions of 

equations (18a) and (18b) simultaneously for  
r  and    yields 
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in which a prime denotes differentiation with respect to the radial coordinate ‘r’. 
Substituting equation (19) and (20) in the equation of motion, i.e. equation (3), the 
following differential equation for u(r) is obtained: 
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The above equation is Cauchy Euler’s ordinary differential equation  

Let zer   , z = Log(r) we get,       
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Substituting (22) in equations (19) and (20), we get the radial and circumferential stresses. 

Finally, the plastic strain components for this region are given by  
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2.3 Elastic Region  brr 2  

For elastic behavior, the stress-displacement relations becomes   
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Substitution of these in the equation of motion leads to 
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The above equation is a non-homogeneous Cauchy Euler’s ordinary differential equation, 
whose solution is given as 
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The radial and circumferential stresses can be obtained from equations (24a) and (24b), 
respectively. 

3. Determination of Integration Constants 

The expressions for stresses and displacement for different regions of deformation contain 

the unknown integration constants 65431 ,,,, CCCCC
and the interface radii 1r   and 2r . For 

the determination of these seven unknowns there are seven nonredundant conditions 

available: r ,
and u are individually continuous at 1r  and 2r , and r   vanishes at the 

outer boundary of the disk, i.e. at r = b. Using the superscripts ‘ip’, ‘op’ and ‘el’ for inner 

plastic region  10 rr  , outer plastic region  21 rrr  and elastic region    brr 2

respectively, these conditions are written explicitly as 

   11 ruru opip  ,    11 rr op

r
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r   , 
   11 rr opip

  
,    22 ruru elop 

    22 rr el

r

op

r    , 
   22 rr elop

  
,   0bel

r                                             (27) 

4. Numerical Illustration and Discussion 

The results have been calculated by using MATHEMATICA. Curves are drawn for radial and 
circumferential stresses, displacements, plastic strains (radial and circumferential) with 
respect to radii ratio. Calculations are performed for two cases: 

1) Disk with uniform density, 2) Disk with variable (exponentially) density. For the 
uniform density disk equations are same as that of Gamer of 1983 (Gamer 1983).  
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Fig. 2. Angular speed against radii ratio 

From Fig. 2 we can see that for the disk with uniform density i.e. n = 0 with hardening 

parameter as H = 1/3, angular speed required for initial yielding is 1  = 1.48735 and 

angular speed required for fully plastic case is 2  = 2.01571. The results obtained by 

Gamer are 1  = 1.54919 and 2  = 2.08043 for n = 0, H = 0.5 and 2  = 1.73195 for                   

H = 
610 

. The variation compared to our results is because of the reason that angular speed 
for hardening material must be greater than that of non-hardening material i.e. 2.08043 (H 

= 1/2) > 2.01571 (H = 1/3) > 1.7195 (H = 
610 

). For an exponentially variable density disk 

(n = 0.5, k = 2), the angular speed required for initial yielding is 1 =1.8153 and angular 

speed required for fully plastic state is 2  = 2.44011 which is very high as compared to 
the disk with uniform density. 

   

(a)                                                                             (b) 

Fig. 3. Normalized stresses and displacement for partially plastic case with (a) uniform 

density disk (n = 0, H = 0.5) and (b) variable density disk (H = 1/3, n = 0.5, k = 2). 
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For the partially plastic case with uniform density (H = 1/3, n = 0 and 
2r  = 0.5), the 

integration constants in non-dimensional form are 12341.1
0

1
1 
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C
C , 

0.0619449
1

3
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Wb

C
C  , 0.00662599
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C
C , 0.61071755  CC , 0.0279746

2

6
6 

b

C
C    

with interface radii 
1r  = 0.22921 and corresponding angular velocity is    = 1.65464 while 

for the disk with variable density (H = 1/3, n = 0.5, 
2r = 0.5 , k = 2), the integration constants 

in non -dimensional form are 16683.11 C , 0.08283 C , 0.008702424 C , 0.5935035 C ,

0.03658166 C with interface radii 1r  = 0.225227 and corresponding angular velocity is       

 = 1.96853. Stresses, displacements and plastic strains are drawn in Fig. 3(a) with 
uniform density disk and Fig. 3(b) with variable density for the partially plastic case. It can 
be seen from Fig. 3 that radial and circumferential stresses are maximum at the internal 
surface and have been observed that up to the inner plastic region, stresses are same and 
thereafter radial stress decreases rapidly than that of circumferential stress. It has also 
been observed that a plastic strains vanishes at the interface radii. 

  

(a)                                                                                    (b)  

Fig. 4. Normalized stresses and displacement for fully plastic case with (a) uniform 
density disk (n = 0, H = 0.5) and (b) variable density disk (H = 1/3, n = 0.5, k = 2). 

The results for the fully plastic case are obtained using the non-redundant continuity and 

boundary conditions    11 ruru opip  ,    11 rr op

r

ip

r   ,    11 rr opip

     and   0bop

r , 

where as before, the superscripts ‘ip’ and ‘op’ stands for inner plastic and outer plastic 

regions, respectively. For the fully plastic case with uniform density (H = 1/3, n = 0,        2r

=1.0), the integration constants in non-dimensional form are 1.735271 C , 0.5219213 C   

and  0.1116554 C  with interface radii 1r  = 0.458425 and corresponding angular velocity 

is 
2   = 2.01571 while for the disk with variable density (H = 1/3,            n = 0.5, 2r = 1.0, 

k = 2), the integration constants in non-dimensional form are 1.866261 C , 0.5845313 C

, 0.115084 C with interface radii 1r  = 0.421878 and corresponding angular velocity is         

2 = 2.44011. Stresses, displacements and strains are depicted in Fig. 4 for the fully plastic 

case.  
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Finally, the case beyond the fully plastic limit is studied using

5.0,2,2/1,3/1  nkH  . At the angular speed 
2 , disk becomes fully plastic as the 

elastic-plastic interface radii   reaches the outer boundary. However this is not the collapse 

speed and the disk can maintain angular velocities greater than
2 . The stresses and 

deformations occurring for two angular velocities greater than the fully plastic limit,   

5.22  and 32  , are given in Fig. 5. 

  

(a)                                                                                  (b)  

Fig. 5 Normalized stresses and displacement beyond fully plastic state,  2  for 

 H = 1/3, n = 0.5, k = 2 for (a) 5.2  and (b) 3  . 

With the increase in angular speed beyond the fully plastic limit, all the parameters show 
a significant change. As can be seen from the figure the circumferential plastic strain 
becomes zero at the outer boundary for 5.2   but show a significant value for 3 . 

Both the stresses increase with the increase in angular velocity. Initially the plastic strains 
increase and thereafter decrease. From Fig. 5, it has been observed that the magnitudes of 
the plastic strains are sufficiently small which justify the assumption of small deformation 
theory. 

5. Conclusion 

The results for non-hardening material is compared with those of hardening material. An 
analytic solution is obtained for elastic-plastic deformation of linear hardening solid disk 
of exponentially variable density. The results for uniform density are verified with those 
available in literature. It is observed that with the variation in density exponentially 
(decreases radially), high angular speed is required for a material to become fully plastic 
which in turn give more significant and economic design by an appropriate choice of 
density parameters. 
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Nomenclature: 

zr ,,     :  radial, circumferential and axial directions, respectively  

u    :  radial displacement   

b    :  outer radii of the disk 

21 ,rr
    

:  interface radii   

EQ
   

:  equivalent plastic strain 

 d     :  strain increment    

      
:  work-hardening parameter 

 ,E     
: Young’s modulus and Poisson’s ratio, respectively 

 kn,     :  geometric parameters  

k

b

r
n

e










 0  

       :  constant angular velocity of rotation 

 pe,     :  superscript denoting elastic and plastic component 

 
 ,r

     :  radial and tangential strains, respectively 

 
ee

r  ,
    

:  elastic part of the strain vector 

p

z

pp

r   ,,  :  plastic part of the strain vector 

 
0,
        

:  local density and density at the axis, respectively 

0, y
        :  initial and subsequent yield stress, respectively   

 
 ,r       

:  radial and circumferential stresses, respectively 

 
65431 ,,,, CCCCC   :  constants of integration 

 elopip ,,     
:  superscripts denoting inner plastic, outer plastic and elastic region 

Dimensionless quantities: 

Angular velocity: 

0

22

0



 b
  , Stresses:  

0




ij

ij  , Displacement:

 0b

Eu
u     

Normalized hardening parameter:  
E

H 0
  ,

 1

2




H

H
W    

Radial co-ordinate: 
b

r
r   , 

b

r
r 1

1   ,

 b

r
r 2

2
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