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 The present study investigates buckling in functionally graded material (FGM) 
beams when exposed to a temperature rise. The proposed FGM beams have 
arbitrary edge supports that are modeled by rotational and translational springs. 
The mechanical properties are assumed to vary continuously across the 
thickness direction according to a simple four-parameter power law. To obtain 
the critical value of temperature, the governing equilibrium equations are 
extracted based on Timoshenko beam theory, using the assumption of Von-
Karman nonlinearity for the physical neutral surface concept. The equations are 
further solved by Fourier series expansion via Stokes’ transformation technique. 
Numerical examples are provided to demonstrate the accuracy and reliability of 
the proposed method. The influence of two models of metal-ceramic distribution 
across the thickness (symmetrical and unsymmetrical ones) on the response of 
the beam in thermal buckling of FG beam is investigated. It is observed that, the 
critical buckling temperature rises more for symmetrical model of FGM beam 
with respected to unsymmetrical one. Also, increasing the translational and 
rotational spring coefficient makes the beam stiffer; consequently, the critical 
buckling temperature is increased. 

© 2017 MIM Research Group. All rights reserved. 
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1. Introduction 

In recent years, several research activities have been motivated by considerable attention to 
functionally graded materials (FGMs). FGMs are a branch of new composite materials which 
are employed to design structures when exposed to high temperatures. A review of the 
available literature reveals the importance of investigations on the thermal buckling 
phenomenon of functionally graded beams. For example, Li et al. [1] presented the analysis of 
thermal post-buckling of FGM Timoshenko beams subjected to transversely non-uniform 
temperature rise by applying the shooting method. Song and Li [2] inspected the thermal 
buckling and post-buckling of pinned-fixed Euler-Bernoulli beams resting on an elastic 
foundation based on the accurate geometrical nonlinear theory by considering the effects of 
both linear and nonlinear elastic foundations. Aydogdu [3] studied the thermal buckling of 
cross-ply laminated composite beams under different sets of boundary conditions based on 
TSDT (Third order of Shear Deformation Theory) via Ritz method. Shahsiah et al. [4] proposed 
the thermal buckling of FG beams based on the one-dimensional theory of elasticity by 
employing Tanigawa’s model for the variation of Poisson’s ratio, the modulus of shear stress, 
and the coefficient of thermal expansion. Furthermore, Kiani and Eslami [5] analyzed the 
thermal buckling of FG beams based on Euler-Bernoulli theory in three types of thermal 
loading across the thickness for different boundary conditions. Miraliari [6] examined the 
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effects of various edge conditions on the thermal buckling of FG beams based on TSDT with 
and without piezoelectric layers. Wattanasakulpong et al. [7] investigated the thermal 
buckling and elastic vibration of FG beams based on HSDT (Higher order of Shear Deformation 
Theory). They examined Ritz method to study the influence of boundary conditions on critical 
buckling temperature. Zhang [8] proposed the numerical solution by applying Ritz method to 
the nonlinear bending of FGM beams. He derived the governing equations based on the 
physical neutral surface concept, HSDT, and nonlinear Von-Kármán strain-displacement 
relationships. In the other work, based on the previous article, Zhang [9] proposed the thermal 
post-buckling and nonlinear vibration behaviors of FGM beams by using the concept of 
physical neutral surface. He employed Ritz method to solve the governing equations to 
investigate the influence of various boundary conditions on critical temperature and 
frequency. Kiani and Eslami [10] proposed the thermomechanical buckling behavior of 
temperature-dependent FGM beams based on FSDT (First order of Shear Deformation 
Theory) for Timoshenko beams under different boundary conditions for different 
temperature distributions. Sun et al. [11] discussed the buckling and post-buckling 
thermomechanical deformations of FGM Timoshenko beams resting on a two-parameter, 
nonlinear, elastic foundation by applying the shooting method.  

Calim [12] carried out the transient analysis of axially functionally-graded (AFG) Timoshenko 
beams with variable cross-sections. By deploying the complementary functions method 
(CFM) and the modified Durbin's algorithm, he concluded that the material inhomogeneity, 
taper parameter, and the assumed boundary conditions have significant effects on the 
dynamic response of AFG-tapered Timoshenko beams. Simsek [13] investigated the buckling 
of Timoshenko beams composed of the two-dimensional functionally-graded material with 
different boundary conditions. In an excellent monograph by Wang et al. [14], a wide range of 
solutions is presented for the buckling problems of beams, plates, and shells. Aydogdu [15] 
used the Ritz method to examine the buckling behavior of the laminated composite beams 
based on various beam theories. In another research, Aydogdu [16] studied the thermal 
buckling analysis of the cross-ply laminated beams under different sets of boundary 
conditions by using a three-degree freedom shear deformable beam theory on the basis of 
Ritz method. Deng et al. [17] presented the exact solutions of double-functionally-graded 
Timoshenko beam system on Winkler-Pasternak elastic foundation, which are benchmarks of 
double-beam systems in the field of engineering. In addition, they derived the motion 
differential equations of the double-beam system by employing Hamilton principle. Nami et 
al. [18] investigated the thermal buckling analysis of functionally-graded rectangular 
nanoplates. By assuming the nonlocal elasticity theory and using the third-order shear 
deformation theory, they indicated that the critical temperatures rise by increasing the power 
law indices. Fallah and Aghdam [19] proposed the thermal buckling analysis for the uniform 
temperature rise of FGM beams on the elastic foundation by employing Euler–Bernoulli beam 
theory and considering temperature-independent (TID) material properties. Esfahani et al. 
[20] studied the thermal buckling and post-buckling behavior of FGM Timoshenko beams 
resting on the nonlinear hardening elastic foundation. Ghiasian et al. [21] investigated the 
static and dynamic buckling behaviors of FGM Euler–Bernoulli beams subjected to the 
uniform temperature rise and resting on the nonlinear elastic foundation. The nonlinear 
thermal post-buckling behavior of shear deformable stainless steel-silicon nitride beam 
resting on elastic foundation was studied by Shen and Wang [22] under uniform and non-
uniform temperature rise. Ghiasian et al. [23] investigated the nonlinear thermal dynamic 
buckling behavior of FGM Timoshenko beams subjected to the sudden uniform temperature 
rise. Amlan and Debabrata [24] studied the nonlinear post-buckling load–deflection behavior 
of functionally-graded material (FGM) Timoshenko beam under in-plane thermal loading. 
They applied the thermal loading by providing non-uniform temperature rise across the beam 
thickness at the steady-state conditions. By employing Euler–Bernoulli beam theory, Fu et al. 
[25] studied the thermo-piezoelectric buckling and dynamic stability for the piezoelectric 
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functionally-graded beams subjected to one-dimensional steady heat conduction in the 
thickness direction. Zhao et al. [26] examined the thermal post-buckling behavior of simply-
supported thin FGM beams with temperature independent (TID) material properties under 
uniform and some special cases of non-uniform temperature rise. Heydari [27-28] presented 
a new analytical method for the buckling analysis of circular plates with constant thickness 
and Poisson’s ratio, which were made of functionally-graded materials subjected to radial 
loading. He investigated the increase in the buckling capacity and the improvement in the 
behavior of functionally-graded plates in comparison with the homogeneous plates. 
Additionally, Heydari et al. [29] presented a numerical method for the buckling analysis of 
functionally-graded circular plates (FGCP) subjected to the uniform radial compression 
including shear deformation resting on Pasternak elastic foundation. They also studied the 
effects of both linear and quadratic thickness variations and Poisson’s ratio on FGCP. 

Although Fourier series expansion is utilized for the solution of a differential equation or 
partial differential equation, the term-by-term differentiation is not permissible; Stokes’ 
transformation is a legal method confronting it. Stokes’ transformation technique was first 
proposed by Stokes [30]. Although a few works have been published concerning this 
technique, the literature review reveals more acceptable correctness and convergence of the 
solution method compared to those of the other common approaches. In what follows, a 
number of studies is discussed on the application of Stokes’ transformation technique. Chung 
[31] exploited Fourier series expansion in governing differential equation and via Stokes’ 
transformation technique in order to evaluate the free vibration characteristics of a circular, 
cylindrical shell. Chuang and Wang [32] analyzed the effect of the vibration of axially loaded 
damped beams on the viscoelastic foundation by using the trigonometric series solution in 
conjunction with Stokes’ transformation method. Yokoyama [33] analyzed the vibration of 
Timoshenko beam columns on the two-parameter elastic foundations. Chen et al. [34] 
considered the transient and random responses of structures subject to the motion support 
by Stokes’ transformation technique. Kim and Kim [35] calculated the vibration 
characteristics of PWR fuel assembly with reactor end boundary conditions via Stokes’ 
transformation method. In another research, Kim and Kim [36] calculated the vibration 
frequencies of beams with classical and non-classical boundary conditions by using Stokes’ 
transformation method. Khalili et al. [37] evaluated the responses of laminated composite 
plates subjected to static and dynamic loadings with different boundary conditions by 
employing Stokes’ transformation method. Shao and Ma [38] carried out the analysis of the 
free vibration of laminated cylindrical shells with arbitrary classical boundary conditions by 
means of Fourier series expansion. Ansari and Darvizeh [39] predicted the dynamic behavior 
of FGM shells under arbitrary boundary conditions through Stokes’ transformation method. 
Latifi et al. [40] studied the buckling analysis of rectangular FG plates under various edge 
conditions by applying Fourier series expansion and Stokes’ transformation technique.  

This study is focused on determination of critical temperature at the onset of buckling in 
Timoshenko FG beams, which have two elastic constraints at their two ends while subjected 
to temperature gradient. By applying Stokes’ transformation technique to the governing 
equations, the critical buckling temperature of the beam is obtained. Comparison of the 
numerical results with those reported in the previous studies is also presented. To the best 
knowledge of the authors, this work is the first attempt to investigate the thermal buckling 
behavior of FG beams via Fourier series expansion and Stokes’ transformation technique for 
different boundary conditions. To this end, the rest of the paper is organized as follows: In 
section 2, the material properties of FGs are introduced based on two simple, four-parameter 
and power-law, distributions. In section 3, the governing equilibrium in thermal buckling is 
obtained through assuming Von-Karman nonlinear strain-displacement relations. In section 
4, by expressing the trigonometric form of Fourier series expansion as the displacement field 
of the FG beam, Stokes’ transformation technique is applied to the governing equations as well 



Hosseini et al. / Research on Engineering Structures & Materials 4(2) (2018) 103-125 

 

106 

 

as the imposed boundary conditions so as to determine the critical value of temperature. In 
section 5, some numerical results are provided to investigate the efficiency and accuracy of 
the proposed method in dealing with the thermal buckling phenomenon.   

2. FG Material Constitutive Relations 

Herein, a functionally-graded beam with the length of L and the thickness of h is considered, 
as shown in Fig. 1. The beam cross-section is rectangular; moreover, the beam is put on the xz 
plane, where the x-axis is parallel to the length of the beam, and the y-direction represents the 
width. The origin of the coordinate system is at the mid-surface. In addition, the top and 
bottom surfaces are at z=-h/2 and z=h/2, respectively.  

 

Fig. 1. The FG beam geometry 

In the current research, it is assumed that the FGM is made up of a mixture of ceramic and 
metal constituents. The mechanical and thermal properties of the FGM beam can be expressed 
by the following linear combination [41]: 

                                                       

(2.1) 
𝑃(𝑧) = (𝑃𝑐 − 𝑃𝑚)𝑉𝑐 + 𝑃𝑚  

where P and V denote the properties of FG material and volume fraction, respectively. The 
subscripts of m and c stand for the metallic and ceramic constituents, respectively. Poisson’s 
ratio is considered to be constant across the thickness. It is worth noting that the volume 
fractions of the two constituent materials should add up to unity. The ceramic volume fraction 
Vc follows two simple, four-parameter, power-law distributions presented in [42]: 

   (2.2) 

𝐹𝐺𝑀1(𝑎/𝑏/𝑐/𝑝): 𝑉𝑐 = [1 − 𝑎 (
1

2
+

𝑧

ℎ
) + 𝑏 (

1

2
+

𝑧

ℎ
)
𝑐

]
𝑝

                                                           

𝐹𝐺𝑀2(𝑎/𝑏/𝑐/𝑝): 𝑉𝑐 = [1 − 𝑎 (
1

2
−
𝑧

ℎ
) + 𝑏 (

1

2
−
𝑧

ℎ
)
𝑐

]

𝑝

 

The volume fraction index p (0≤p≤∞) and the parameters of a, b, and c dictate the material 
variation profile through the FG beam thickness. It is assumed that the material properties do 
not depend on temperature variation. 

3.  Governing Equations 

In order to study the thermal buckling behavior of FG beam in any combination of the 
boundary conditions, the beam is assumed to be elastically restrained by setting the rotational 
(K2 and K4) and translational (K1 and K3) springs at the two ends, as shown in Fig. 2. 



 Hosseini et al. / Research on Engineering Structures & Materials 4(2) (2018) 103-125 

 

107 

 

According to the physical neutral surface, there is no stretching–bending coupling effect for 
the stress and stress-coupling resultants; therefore, the governing equations have the simple 
forms similar to those of the classical thin structure theory applied to homogeneous isotropic 
materials. We employed this approach in the present work. Based on the physical neutral 
surface concept, the distance between the middle surface and the physical neutral surface 
(z=z0) is introduced in [9].  

 

Fig. 2. Timoshenko beam with the elastically restrained ends 

 

   𝑧0 =
∫ 𝑧𝐸(𝑧)𝑑𝑧

ℎ
2

−
ℎ
2

∫ 𝐸(𝑧)𝑑𝑧

ℎ
2

−
ℎ
2

                                                                                                  (3.1) 
 

(3.1) 

The concept of neutral surface is defined as the surface in which the normal stresses and 
consequently in-plane or axial strain equal zero. This concept can be followed in relatively 
thick plate too, regardless of what kind of the shear deformation theory is used. In the 
homogenous structure, this kind of surface coincide with middle surface, whereas in 
nonhomogeneous one such as FG and laminar composite plate that does not coincide with 
middle surface; therefore, it can be determined by formula (3-1) as mentioned in manuscript. 
The interested reader can find more details about this approach in [43] and [44]. By using 
Equation (3.1) and based on the assumption of Timoshenko beam, the displacement equations 
take the following form [45]: 

(3.2) 
𝑈(𝑥, 𝑧) = 𝑢(𝑥) + (𝑧 − 𝑧0)𝜑(𝑥) 

𝑊(𝑥, 𝑧) = 𝑤(𝑥) 

where u and w represent the displacement in the physical neutral surface along the 
coordinates of x and z, respectively. In addition, φ denotes the rotation around the y-axis 
(normal to xz plane) at z=z0 of the deformed line. The strain components are as follows: 

                                 (3.3) {𝜀𝑥, 𝛾𝑥𝑧} = {𝜀𝑥
0, 𝛾𝑥𝑧

0 } + (𝑧 − 𝑧0){𝜀𝑥
1, 𝛾𝑥𝑧

1 } 

where  εx, γxz are normal and shear components of strain, respectively. The superscripts of 0 
and 1 signify the strain and curvature in the physical neutral surface, respectively. By 
considering the nonlinear Von-Karman strain–displacement relationships, we can express the 
strains as follows [8]: 



Hosseini et al. / Research on Engineering Structures & Materials 4(2) (2018) 103-125 

 

108 

 

                                       (3.4) {𝜀𝑥
0, 𝛾𝑥𝑧

0 } = (
𝑑𝑢

𝑑𝑥
+
1

2
(
𝑑𝑤

𝑑𝑥
)
2

, 𝜑 +
𝑑𝑤

𝑑𝑥
) 

                                       (3.5) {𝜀𝑥
1, 𝛾𝑥𝑧

1 } = (
𝑑𝜑

𝑑𝑥
, 0) 

As the modulus of elasticity varies across the thickness of the beam, we can express the stress-
strain relations as follows by considering the linear thermo-elasticity [46]: 

                                         (3.6) {
𝜎𝑥
𝜏𝑥𝑧
} = [�̅�𝑖𝑗] {

𝜀𝑥 − 𝜀𝑥
𝑇

𝛾𝑥𝑧
}      ;      𝑖, 𝑗 = 1,5 

where [Q̅ij] is the reduced stiffness matrix and is defined as follows [46]: 

                                                  

(3.7) 

[�̅�𝑖𝑗] =
𝐸(𝑧)

1 − 𝜈2
[
1 0

0
1 − 𝜐

2

] 

As seen in Eq. (3.7), we used the constitutive relations for FGM beams according to [46]; 
however, it is analytically showed in [47] that employing the reduced stiffness matrix which 
commonly is used for plate, yields identical results as those obtained when the beam analysis 
is carried out.  

The forces and the moment per-unit-length are expressed in terms of the stresses by 
integrating Eq. (3.6) through the beam thickness; according to Timoshenko beam theory [48], 
they are expressed as follows: 

(3.8) 

𝑁𝑥 = 𝐴𝑥 {
𝑑𝑢

𝑑𝑥
+

1

2
(
𝑑𝑤

𝑑𝑥
)
2

} − 𝑁𝑥
𝑇                                                                           

𝑀𝑥 = 𝐷𝑥
𝑑𝜑

𝑑𝑥
−𝑀𝑥

𝑇                                                                                                 

𝑄𝑥𝑧 =
𝐴𝑥𝐾𝑠

2(1+𝜐)
(𝜑 +

𝑑𝑤

𝑑𝑥
)                                                                                       

(3.9)                                                                                                (𝑁𝑥
𝑇, 𝑀𝑥

𝑇) = ∫ 𝐸(𝑧)𝛼(𝑧)𝛥𝑇{1, (𝑧 − 𝑧0)}𝑑𝑧
ℎ

2

−
ℎ

2

                                      

where Ks denotes the shear correction factor, and Nx
T, Mx

T are the thermal force and the 
moment, respectively. In addition, 𝑁𝑥 , 𝑄𝑥𝑧  and 𝑀𝑥 are the axial, shear forces, and moment-per-
unit length of the beam, respectively. 𝐴𝑥 , 𝐷𝑥 and G* are determined as follows:  

                (3.10) (𝐴𝑥, 𝐷𝑥) = ∫
𝐸(𝑧)

1 − 𝜐2
(1, (𝑧 − 𝑧0)

2)𝑑𝑧

ℎ

2

−
ℎ

2

    ;     𝐺∗ =
𝐴𝑥𝐾𝑠

2(1 + 𝜐)
 

To establish the equilibrium equations, the static version of the principle of virtual 
displacements is applied. According to this approach and in the absence of mechanical 
loading, a state of equilibrium occurs when the first variation of strain energy function 
vanishes. Hence, we can write: 
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𝛿𝑈 = ∫ ∫ (𝜎𝑥𝑥𝛿𝜀𝑥𝑥 + 𝐾𝑠𝜏𝑥𝑧𝛿𝛾𝑥𝑧)𝑑𝑥𝑑𝑧 = 0
ℎ

2

−
ℎ

2

𝐿

0
                                                 (3.11) (3.11) 

By substituting Eq. (3.4) and Eq. (3.6) into Eq. (3.11), and then, integrating it through the 
thickness with regard to Eq. (3.8), and setting the coefficients of δu, δw, and δφ to zero 
separately, the equilibrium equations are obtained as follows: 

                                                                     𝛿𝑢: 
𝑑𝑁𝑥

𝑑𝑥
= 0 

                                                                    (3.12) 𝛿𝑤:
𝑑𝑀𝑥

𝑑𝑥
− 𝑄𝑥𝑧 = 0 

                                                                     𝛿𝜑:
𝑑𝑄𝑥𝑧

𝑑𝑥
+ 𝑁𝑥

𝑑2𝑤

𝑑𝑥2
= 0 

 

By substituting Eq. (3.8) into Eq. (3.12), the governing equilibrium equations in the buckling 
are derived as follows:  

                                    (3.13) 
𝑑4𝑤

𝑑𝑥4
− 𝜆2

𝑑2𝑤

𝑑𝑥2
= 0     ;      𝜆2 =

𝑁𝑥𝐺
∗

𝐷𝑥(𝐺
∗ + 𝑁𝑥)

 

                                    (3.14) 
𝜑 + 𝛽

𝑑3𝑤

𝑑𝑥3
+

𝑑𝑤

𝑑𝑥
= 0,     

* *
1x xD N

G G


 
  

 
 

4.  Application of Stokes’ Transformation Technique 

The beam lateral displacement w(x) and rotation φ(x) are assumed to have the trigonometric 
form of Fourier series. The lateral displacement function is defined in two separate regions: 
the boundary points and the intermediate regions between the boundary points. Moreover, 
the rotation function is defined for all points and expressed as follows: 

                                       

(4.1) 

𝑤(𝑥) =

{
 
 

 
 ∑ 𝑤𝑚 𝑠𝑖𝑛 (

𝑚𝜋𝑥

𝐿
)

∞

𝑚=1

    ,     0 < 𝑥 < 𝐿

            𝑤0                    ,            𝑥 = 0
            𝑤𝐿                    ,            𝑥 = 𝐿

 

(4.2) 

𝜑(𝑥) = �̅�0 + ∑ 𝜑𝑚 𝑐𝑜𝑠 (
𝑚𝜋𝑥

𝐿
)      ,      0 ≤ 𝑥 ≤ 𝐿 

∞

𝑚=1

 

𝜑(0) = �̅�0 + ∑ 𝜑𝑚

∞

𝑚=1

 

𝜑(𝐿) = �̅�0 + ∑ 𝜑𝑚(−1)
𝑚

∞

𝑚=1

 

where wm and 𝜑m are unknown coefficients of Fourier series for w and φ functions, 
respectively. The unknown coefficient �̅�0 is assumed to be zero for some boundary conditions 



Hosseini et al. / Research on Engineering Structures & Materials 4(2) (2018) 103-125 

 

110 

 

such as the simply-supported edge. It is obviously clear from Eq. (4.1) that Fourier sine series 
has an appropriate form to satisfy the geometric and natural boundary conditions of a beam 
when both ends are simply supported. However, it is not necessary that the series satisfy all 
other boundary conditions since Stokes’ transformation technique can be exploited for 
arbitrary boundary conditions with non-zero lateral displacement and edge moments. While 
the direct differentiation of a Fourier sine series leads to a cosine series without the constant 
term, it is not accomplished to be a complete set of functions. To obtain the correct series 
expressions for the derivatives of a Fourier series, Stokes’ transformation technique must be 
employed. This technique defines each derivative with an independent series and obtains the 
newly defined series by integrating the parts in order to achieve the relationship between the 
Fourier coefficients (See Appendix A). This is the advantage of Stokes’ transformation 
technique that we can define a Sinus Fourier Series (or Cosine Fourier Series) which is 
employed for all boundary conditions applicable for some degree of freedom in any arbitrary 
edges. for In order to employ Stokes’ formulation in any combination of the boundary 
conditions, the structure is assumed to be elastically restrained by means of rotational and 
translational springs at the two ends of the beams and shells, four edges of the plates. In 
solving any boundary value problem, derivatives of the response function are needed to apply 
the geometric and natural boundary conditions. When a Fourier series is employed, it 
generally satisfies only one or a few particular sets of boundary conditions. Accordingly, for 
the problems with various unspecified boundary conditions, a particular derivation method 
different from the conventional techniques should be applied to be able to simultaneously 
deal with different boundary conditions; by employing Stokes’ transformation, first- and 
higher-order derivate of a Fourier series are defined in a particular manner so that the 
derivative functions are related to the boundary values needed to obtain the response [41].  

By substituting the derivatives of w(x) into Eq. (3.13), the unknown coefficient wm can be 
determined, using the following equation: 

         

(4.3) 

∑ 𝛾𝑚 [
2

𝐿
((𝑤𝐿(−1)

𝑚 − 𝑤0)(𝜆
2 + 𝛾𝑚

2 ) + (𝑤0
′′ − 𝑤𝐿

′′(−1)𝑚)) +∞
𝑚=1

𝛾𝑚𝑤𝑚(𝜆
2 + 𝛾𝑚

2 )] 𝑠𝑖𝑛(𝛾𝑚𝑥) = 0  

Substituting the derivatives of φ(x) into Eq. (3.14) results in the following equation in terms 
of coefficients 𝜑𝑚 and �̅�0: 

(4.4) 

�̅�0 +∑ 𝜑𝑚 𝑐𝑜𝑠(𝛾𝑚𝑥)
∞
𝑚=1 + 𝛽 {

𝑤𝐿
′′−𝑤0

′′

𝐿
+ ∑ [

2

𝐿
(𝑤𝐿

′′(−1)𝑚 − 𝑤0
′′) −∞

𝑚=1

𝛾𝑚
2 (

2

𝐿
(𝑤𝐿(−1)

𝑚 − 𝑤0) + 𝛾𝑚. 𝑤𝑚)]} 𝑐𝑜𝑠(𝛾𝑚𝑥)  +
𝑤𝐿−𝑤0

𝐿
+

∑ [
2

𝐿
(𝑤𝐿(−1)

𝑚 − 𝑤0) + 𝛾𝑚. 𝑤𝑚] 𝑐𝑜𝑠(𝛾𝑚𝑥) = 0
∞
𝑚=1   

 

Finally, the unknown coefficients wm, φm and  �̅�0 are demonstrated as follows: 

 (4.5) 𝑤𝑚 =
2

𝐿

(𝑤𝐿
′′(−1)𝑚 − 𝑤0

′′) + (𝑤0 − 𝑤𝐿(−1)
𝑚)(𝜆2 + 𝛾𝑚

2 )

(𝜆2 + 𝛾𝑚
2 )𝛾𝑚

 

 (4.6) 𝜑𝑚 =
2

𝐿

(𝛽𝜆2+1)(𝑤0
′′−𝑤𝐿

′′(−1)𝑚)

(𝜆2+𝛾𝑚
2 )

       ;           �̅�0 =
𝛽

𝐿
(𝑤0

′′ −𝑤𝐿
′′) +

𝑤0−𝑤𝐿

𝐿
  

By considering Eq. (3.8)-(3.12), the second derivatives of the lateral displacement can be 
obtained as follows: 
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(4.7) 

𝑑2𝑤

𝑑𝑥2
= −

𝐻∗

𝐷𝑥
(𝑀𝑥 +𝑀𝑥

𝑇)     ;      𝐻∗ =
𝐺∗

𝐺∗ + 𝑁𝑥
 

This means that the second derivatives of the lateral displacement at both ends are associated 
with the in-plane moments in the x-direction to derive any arbitrary boundary conditions. 

4.1. Boundary conditions 

In order to employ Stokes’ transformation in any combination of the boundary conditions, the 
beam is assumed to be elastically restrained by setting the rotational (K2 and K4) and 
translational (K1 and K3) springs at the two ends, as shown in Fig. 2. The geometrical and 
natural boundary conditions at x=0 are presented as follows: 

                                 (4.8) {

𝑀𝑥
0|𝑥=0 = −𝐾2𝜑0

 𝑄𝑥𝑧
0 + 𝑁𝑥

𝑑𝑤

𝑑𝑥
|
𝑥=0

= −𝐾1𝑤0
 

Mx
0 and Qxz

0  are moment and shear force per length at x=0, respectively. In the same manner, 
the boundary conditions are presented at x=L and written similar to relation (4.8). 
Consequently, four equations are extracted in terms of 𝑤0, 𝑤𝐿 , 𝜑0  and 𝜑𝐿. By applying Stokes’ 
transformation technique to relation (4.8), the natural and geometrical boundary conditions 
can be rewritten in terms of end values as follows: 

(4.9) 

𝐾2 [
𝛽𝐻∗

𝐿𝐷𝑥
(𝑀𝑥

𝐿 −𝑀𝑥
0) +

𝑤0−𝑤𝐿

𝐿
] + 𝐾2 [

2𝐻∗

𝐿𝐷𝑥
(𝛽𝜆2 +

1)∑ (
𝑀𝑥
𝐿(−1)𝑚−𝑀𝑥

0+𝑀𝑥
𝑇((−1)𝑚−1)

𝜆2+𝛾𝑚
2 )∞

𝑚=1 ] + 𝑀𝑥
0 = 0  

 

(G∗ + Nx) [
wL−w0

L
+

2H∗

LDx
∑ (

Mx
0−Mx

L(−1)m+Mx
T(1−(−1)m)

λ2+γm
2 )∞

m=1 ] +

G∗ [
βH∗

LDx
(Mx

L −Mx
0) +

w0−wL

L
] + G∗ [

2H∗

LDx
(βλ2 +

1)∑ (
Mx
L(−1)m−Mx

0+Mx
T((−1)m−1)

λ2+γm
2 )∞

m=1 ] K1w0 = 0  

(4.10) 

 

Similar equations can be derived for x=L, leading to obtaining the four linear algebraic 
equations containing four unknown boundary values as follows: 

(4.11) [𝐴𝑖𝑗]{𝑤0, 𝑤𝐿 , 𝑀𝑥
0, 𝑀𝑥

𝐿}
𝑇
= 0     ;      (𝑖, 𝑗 = 1,2,3,4) 

A non-trivial solution implies that the determinant of the coefficients of the matrix [Aij] is 

vanished, which results in an equation whose lowest root is the critical buckling temperature. 

The components of the matrix [Aij] are given in Appendix B. 

4.1.1. Rigid boundary conditions 

   4.1.1.1. Simply-simply supported beam 

When the beam is simply supported at the two ends (x=0, x=L), the values of translational and 
rotational spring stiffness coefficients are presented as follows: 
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(4.12) 

𝑥 = 0 ∶ 𝑆𝑖𝑚𝑝𝑙𝑦 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑
 
⇒ {

𝐾1
 
→∞

𝐾2
 
→0

     ;      𝑥 = 𝐿

∶ 𝑆𝑖𝑚𝑝𝑙𝑦 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑
 
⇒ {

𝐾3
 
→∞

𝐾4
 
→0

 

By substituting the above-mentioned values in characteristic equation of matrix [Aij], we can 

obtain 

 

(4.13) 
𝐺∗ − 𝑑11𝑇 −

𝐺∗

𝐺∗ + 𝐷𝑥𝛾𝑚
2
= 0     ;      𝑑11 = ∫𝐸(𝑧)𝛼(𝑧)𝑑𝑧

ℎ

2

−
ℎ

2

 

4.1.1.2. Clamped-clamped beam 

In this case, the translational and rotational spring stiffness approaches infinity in both ends, 
and the boundary conditions for clamped-clamped beam are achieved as follows: 

(4.14) 𝑥 = 0 ∶ 𝐶𝑙𝑎𝑚𝑝𝑒𝑑
 
⇒ {

𝐾1
 
→∞

𝐾2
 
→∞

     ;       𝑥 = 𝐿 ∶ 𝐶𝑙𝑎𝑚𝑝𝑒𝑑 
 
⇒ {

𝐾3
 
→∞

𝐾4
 
→∞

 

By putting the above-mentioned values in characteristic equation of matrix [Aij], we can 

obtain 

                                                (4.15) 
∑(

1− (−1)𝑚

𝜆2 + 𝛾𝑚
2
) = 0

∞

𝑚=1

 

4.1.1.3. Clamped-simply supported beam 

In this case, the values of translational and rotational spring stiffness coefficients are 
presented as follows: 

              

(4.16) 

𝑥 = 0 ∶ 𝐶𝑙𝑎𝑚𝑝𝑒𝑑
 
⇒ {

𝐾1
 
→∞

𝐾2
 
→∞

      ;      𝑥 = 𝐿 ∶ 𝑆𝑖𝑚𝑝𝑙𝑦 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑 

 
⇒ {

𝐾3
 
→∞

𝐾4
 
→0

  

In a similar manner, by replacing the above-mentioned values in the characteristic equation 

of matrix [Aij], the following form is obtained: 

                              (4.17) 
∑ (

1

𝜆2 + 𝛾𝑚
2
) = −

𝛽

2(𝛽𝜆2 + 1)

∞

𝑚=1

 

4.1.2. Elastically restrained beam 

It is supposed that at x=0 the beam is clamped and restrained at x=L by translational and 
rotational (K3 and K4) springs: 



 Hosseini et al. / Research on Engineering Structures & Materials 4(2) (2018) 103-125 

 

113 

 

𝑥 = 0 ∶⇒  {
𝐾1 = 106

𝐾2 = 106
                      ;                𝑥 = 𝐿 ∶⇒  {

0 < 𝐾3 < ∞
0 < 𝐾4 < ∞

               
(4.18) 

By substituting the above-mentioned values in the characteristic equation of matrix [Aij], the 

following equation is obtained to determine the critical buckling temperature: 

   

(4.19) 

2𝐻∗

𝐿𝐸∗
(𝑆𝑚 − 𝐻𝑚) [

𝐴1

𝐿
+

2𝐻∗

𝐿𝐸∗
𝛽
𝐾4

𝐿
(𝐴1 + 𝐺

∗)(𝜆4(𝑆𝑚 + 𝐻𝑚)(𝛽 + 1) + 𝛽𝜆
2 + 1) +

2𝐻∗

𝐿𝐸∗
𝐾3𝐾4 ((𝑆𝑚 + 𝐻𝑚)(1 + 𝛽

2𝜆4) + (1 + 2𝜆2(𝑆𝑚 + 𝐻𝑚)))] −

2𝐻∗

𝐿𝐸∗
(𝐾3𝐻𝑚(𝛽𝜆

2 − 1) −
𝛽𝐾3

2
) = 0  

When both sides of the beam are supported by translational and rotational boundary 
conditions as follows, we have: 

              (4.20) 
𝑥 = 0 

 
⇒ {

0 < 𝐾1 < ∞
0 < 𝐾2 < ∞

     ;                                       𝑥 = 𝐿 
 
⇒ {

0 < 𝐾3 < ∞
0 < 𝐾4 < ∞

 

5.  Results 

Using Matlab software, we developed a computer program to ascertain the accuracy and 
reliability of Stokes’ transformation technique with the available solution. To this end, some 
numerical solutions are presented to investigate the influence of material and geometrical 
parameters on critical temperature value in buckling. Functionally-graded materials (FGMs) 
with a mixture of silicon and nitride as the ceramic (Si3N4) and stainless steel (SUS304) as 
the metal are utilized to examine the present method. Material properties, including Young’s 
modulus and thermal expansion coefficient, are shown in Table 1. Poisson’s ratio is ν = 0.3 for 
metal and ceramic constituents. 

Table 1: Material properties 

Material E (Gpa) α (1/°C) 

Si3N4 322.2 7.475e-6 

SUS304 207.79 15.321e-6 
 

 

In all numerical results, a shear correction factor of π2/12 is employed [43]. It is assumed that 
the beam is exposed to uniform temperature rise across the thickness. Variation in modulus 
of elasticity and thermal expansion coefficient for two different distributions of ceramic and 
metal is FGM1(a=1/b=1/c=2/p) and FGM2(a=1/b=0/c/p), respectively. The illustrations of Young 
modulus variations along with the graphs and details are available in Fig. 3. As observed, the 
FG material distribution obeys a symmetric profile in FGM1, whereas in FGM2 the material 
distribution through the thickness has an asymmetric pattern. For the sake of brevity, the 
details are not presented here; the details are available in [48].  
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(a) 

 

(b) 

Fig. 3. Variations of the Young modulus through the thickness for cases (a) FGM1 and (b) 
FGM2 

 

5.1. Rigid boundary conditions 

Since infinite Fourier series is applied as the solution method in the present study, evaluating 
the convergence of the results is necessary. For this purpose, the critical value of temperature 
for a homogenous beam (p=0) with two types of end conditions (both ends are clamped (CC) 
and clamped-simply supported (CS)) and the slenderness ratio L/h=25 are calculated in Table 
(2), using different numbers of Fourier series terms. The results are compared with those 
reported in [10]. As shown in Table 2, a good convergence is observed when 55 terms of the 
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series are utilized. In table 3, convergence study is carried out for the beam when is supported 
on clamped edge at x=0 whereas the values of the translational and rotational stiffness of the 
springs at the other end vary from 102 to 106. As listed, 40 terms truncated from the infinite 
Fourier series give an acceptable accuracy of the critical buckling temperature for the beam 
with elastically-restrained ends. 

Table 2: Convergence in the present method in case of L/h=25 

Boundary 

Conditions 

Number of polynomial terms of finite series in calculating thermal buckling 

(FGM2) 

10 20 30 40 50 55 60 65 

0p   
CC 763.101 722.198 718.511 710.907 703.341 698.951 698.951 698.951 

CS 420.396 389.150 368.451 362.200 360.847 358.977 358.970 358.970 

10p   
CC 751.622 710.719 707.032 699.428 691.862 687.472 687.381 687.381 

CS 418.595 387.349 366.650 360.399 359.046 357.176 357.17 357.17 
 

 

Table 3: Convergence in the present method for a beam with the clamped, elastically 
restrained ends 

Number of polynomial terms of finite series 
   (K3,K4) 

    50       40    30 20 10 

344.5080 344.509 346.656 353.9487 354.8153 )2,10210( 
p=0 

352.8740 352.876 353.009 358.2737 353.0566 )6,10610( 

224.2580 224.2588 226.4060 230.6987 235.5653 )2,10210( 
p=1 

258.7840 258.7860 258.9190 259.1838 259.9667 )6,10610( 
 

 

Thermal buckling analysis of two models of FGM1 and FGM2 under different rigid boundary 
conditions for various FGM power indices and slenderness ratios (L/h) are presented in 
Tables 4 and 5, respectively. As observed, the critical temperature values for FGM1 model get 
more than those for FGM2 model. Moreover, for the two models of FGMs, the critical 
temperatures for CC boundary condition attain the highest value.  The results of thermal 
buckling for FGM2 are compared with those obtained based on the closed-form solution in 
[10]. It is seen that there is a very good agreement between the results, confirming the high 
accuracy of the current methodology. Finally, it should be noted that the Young modulus of 
Silicon Nitride is greater than that of stainless steel. Therefore, for p=0, the beam exhibits the 
homogenous characteristics value of stiffness; on the other hand, increasing the FGM power 
index does not cause the ceramic volume fraction to decrease the beam stiffness significantly. 
Consequently, for all values of slenderness ratio in Table 5, the greatest value of critical 
temperature corresponds to p=0, and the critical temperature decreases along with the 
increase in the FGM power index.  
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Table 4: The variation of the critical value of the FG beam temperature for 
FGM1(a=1/b=1/c=2/p) 

p L/h 
Boundary 

Conditions 

10 3 1 0   

2503.7 3046.9 3524.5 4067.8 10 

CC 

430.20 523.53 605.59 698.95 25 

300.51 363.83 426.14 485.29 30 

221.55 286.19 314.06 358.17 35 

169.98 206.54 240.90 275.79 40 

1660.5 1808 2028 2156.4 10 

CS 

276.76 301.14 337.30 358.97 25 

192.67 209.63 234.78 249.87 30 

141.76 154.24 172.73 183.84 35 

108.64 118.21 132.37 140.88 40 

664.90 808.98 943.95 1080.5 10 

SS 

108.70 132.16 154.10 176.31 25 

75.58 91.89 107.14 122.58 30 

55.57 67.56 78.77 90.12 35 

42.57 51.75 30.34 69.03 40 
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Table 5: Comparison of critical temperature in this study and Ref. [10] for FGM2 (a=1/b=0/c/p) 

p=10 p=3 p=1 p=0 L/h 
Boundary 

Conditions 

Ref. 

[10] 

Presen

t work 

Ref. 

[10] 

Presen

t work 

Ref. 

[10] 

Presen

t work 

Ref. 

[10] 

Present 

work 
  

2159.5 2192.3 2353.3 2403.5 2646.7 2687.7 3992.2 4067.8 10 

CC 

376.20 376.70 409.41 412.98 458.76 461.82 692.81 698.95 25 

262.61 264.02 285.76 288.33 320.13 322.78 483.50 485.29 30 

193.54 195.22 210.60 211.90 235.89 237.92 356.29 358.17 35 

148.48 149.26 161.56 163.01 180.95 181.70 273.31 275.79 40 

1153.5 1169.2 1256.2 1273.1 1410.2 1428.6 2128.4 2156.4 10 

CS 

193.86 195.01 210.94 212.19 236.29 237.67 356.88 358.97 25 

135.02 135.76 146.91 147.71 164.54 165.43 248.53 249.84 30 

99.37 99.89 108.12 108.68 121.09 121.71 182.90 183.84 35 

76.17 76.55 82.87 83.29 92.81 93.27 140.19 180.88 40 

582.33 586.50 633.83 638.34 710.53 715.52 1072.9 1080.5 10 

SS 

95.27 95.79 103.65 104.23 116.08 116.72 175.34 176.31 25 

66.24 66.61 72.07 72.47 80.71 81.15 121.91 122.58 30 

48.71 48.97 52.99 53.28 59.34 59.66 89.64 90.12 35 

37.31 37.51 40.59 40.81 45.46 45.70 68.66 69.03 40 

 

5.2. Elastically-restrained boundary conditions 

In this section, thermal buckling of a beam with flexible edge conditions is investigated. In Fig. 
4, variation in the buckling temperature for different values of L/h and p for the two models 
of FGM1/2 are sketched with respect to variation of FG power index and K3 and K4.  At x=0, the 
values of the translational and rotational stiffness of springs are considered to be fixed 
(K1=K2=1010). As seen in Fig. 4, the critical buckling temperature rises more for FGM1 in 
comparison with FGM2; by increasing (K3, K4) = (105,104) to (K3, K4) = (107,106), the buckling 
temperature reaches to its maximum value. 



Hosseini et al. / Research on Engineering Structures & Materials 4(2) (2018) 103-125 

 

118 

 

 

 

 



 Hosseini et al. / Research on Engineering Structures & Materials 4(2) (2018) 103-125 

 

119 

 

 

Fig. 4.  Variation of the critical buckling temperature (Tcr) for different values of (K3, K4), 
(L/h), and p in the two models of FGM1/2 

 

Fig. 5 demonstrates the variation of the critical value of temperature when the translational 
value of elastic support is considered to be fixed as (K1=K3=1010). The influences of different 
values of rotational stiffness factors (K2 and K4), different FGM power indices, and slenderness 
ratio on the responses of the beam in thermal buckling for the two models of FGM1/2 are 
presented. As seen in Fig. 5, the critical buckling temperature rises more for FGM1 in 
comparison with FGM2; by increasing (K2, K4) = (105,104) to (K3, K4) = (107,106), the buckling 
temperature reaches to its maximum value. 
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Fig. 5. Variations of the critical buckling temperature (Tcr) for different values of (K2, K4), 
(L/h), and p in the two models of FGM1/2 

 

6.  Conclusion 

In the present study, the thermal buckling behavior of FG beam was studied, using the 
trigonometric form of Fourier series expansion and Stokes’ transformation technique. To that 
end, the governing equations in buckling based on Von-Karman nonlinearity with 
Timoshenko beam assumption were derived. Furthermore, the influence of the four-
parameter power-law FG model on critical temperature was considered. It was found that the 
proposed method can handle both elastically-restrained and rigid edge supports.  The results 
can be summarized as follows:  

 Increasing the slenderness ratio enhances the critical buckling temperature, whereas 
increasing FG power index decreases it. These are all due to the fact that the beam 
behavior gets closer to the pure metallic material. 

 As observed, the critical temperature values for FGM1 model get more than those for 
FGM2 model. Moreover, for the two models of FGMs, the critical temperatures for CC 
boundary condition attain the highest value.   

 Increasing the translational and rotational spring coefficient makes the beam stiffer 
and prevents it from being flexible when exposed to the thermal variation of the 
environment; as a result, the critical buckling temperature is increased. 

 The influence of two models of metal-ceramic distribution across the 
thickness(FGM1/2 models) on the responses of the beam in thermal buckling of FG 
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beam is shown that the critical buckling temperature rises more for symmetrical 
model of FGM beam with respected to unsymmetrical one. 

 For all values of slenderness ratio, the greatest value of critical temperature 
corresponds to homogenous ceramic beam (p=0) with clamped-clamped boundary 
condition, whereas the critical temperature decreases along with the increase in the 
FGM power index (p>0).  

 The proposed approach may be extended to study thermal buckling as well as post-
buckling of beams, plates, and shells when subjected to arbitrary boundary 
conditions. 
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Appendix A 

Lateral displacement derivatives in Stokes’ transformation technique  

By defining the lateral displacement in sine Fourier series in the interval of 0<x<L in the 

following form, we have: 

w(x) =∑ wm sin (
mπx

L
)

∞

m=1
   0<x<L (8.1) 

 

The first order and the higher order of derivatives of w(x) are obtained by applying Stokes’ 
transformation technique; the boundary values are separately determined without using 
relation (8.1) in order to involve them in finding the derivatives of w(x) containing the 
unknown boundary values at the two ends of the beam [38]: 

 

 

(8.2) 0 ≤ 𝑥 ≤ 𝐿 
𝑑𝑤

𝑑𝑥
=
𝑤𝐿 − 𝑤0

𝐿
+ ∑ [

2

𝐿
(𝑤𝐿(−1)

𝑚 −𝑤0) + 𝛾𝑚𝑤𝑚]

∞

𝑚=1

𝑐𝑜𝑠(𝛾𝑚𝑥) 

(8.3) 0 < 𝑥 < 𝐿 
𝑑2𝑤

𝑑𝑥2
= −∑ 𝛾𝑚 [

2

𝐿
(𝑤𝐿(−1)

𝑚 − 𝑤0) + 𝛾𝑚𝑤𝑚]

∞

𝑚=1

𝑠𝑖𝑛(𝛾𝑚𝑥) 

(8.4) 0 ≤ 𝑥 ≤ 𝐿 

𝑑3𝑤

𝑑𝑥3
=

𝑤𝐿
′′−𝑤0

′′

𝐿
+∑ [

2

𝐿
(𝑤𝐿

′′(−1)𝑚 −𝑤0
′′) − 𝑤𝑚

2 (
2

𝐿
{𝑤𝐿(−1)

𝑚 −∞
𝑚=1

𝑤0} + 𝛾𝑚𝑤𝑚)] 𝑐𝑜𝑠(𝛾𝑚𝑥)  
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(8.5) 0 < 𝑥 < 𝐿 

𝑑4𝑤

𝑑𝑥4
= −∑ 𝛾𝑚 [

2

𝐿
(𝑤0

′′ − 𝑤𝐿
′′(−1)𝑚) + 𝛾𝑚

2 . (
2

𝐿
{𝑤𝐿(−1)

𝑚 − 𝑤0} +
∞
𝑚=1

𝛾𝑚𝑤𝑚)] 𝑠𝑖𝑛(𝛾𝑚𝑥)  

Appendix B 

 The components of coefficients matrix [𝐀𝐢𝐣] 

𝐴11 =
𝐾2

𝐿
 ;  𝐴12 = −

𝐾2

𝐿
  ;   𝐴13 = −

𝐾2𝐻
∗

𝐿𝐷𝑥
[𝛽 + 2(𝛽𝜆2 + 1)∑ (

1

𝜆2 + 𝛾𝑚
2
)

∞

𝑚=1

] + 1 ; 

𝐴14 =
𝐾2𝐻

∗

𝐿𝐷𝑥
[𝛽 + 2(𝛽𝜆2 + 1)∑ (

(−1)𝑚

𝜆2 + 𝛾𝑚
2
)

∞

𝑚=1

] 

A21 =
K4

L
 ;  A22 = −

K4

L
 ;  A23 = −

K4H
∗

LDx
[β + 2(βλ2 + 1)∑ (

(−1)m

λ2 + γm
2
)

∞

m=1

] 

 

A24 =
K4H

∗

LDx
[β + 2(βλ2 + 1)∑ (

1

λ2 + γm
2
)

∞

m=1

] + 1 

 

A31 = −
A1

L
+ K1 ;  A32 =

A1

L
 ; A33 =

H∗

LDx
[2(A1 − G

∗βλ2) ∑ (
1

λ2 + γm
2
) − βG∗

∞

m=1

] 

A34 = −
H∗

LDx
[2(A1 − G

∗βλ2) ∑ (
(−1)m

λ2 + γm
2
) − βG∗

∞

m=1

] 

𝐴41 = −
𝐴1

𝐿
 ; 𝐴42 =

𝐴1

𝐿
+ 𝐾3 ;  𝐴43 =

𝐻∗

𝐿𝐷𝑥
[2(𝐴1 − 𝐺

∗𝛽𝜆2) ∑ (
(−1)𝑚

𝜆2 + 𝛾𝑚
2
) − 𝛽𝐺∗

∞

𝑚=1

] 

𝐴44 = −
𝐻∗

𝐿𝐷𝑥
[2(𝐴1 − 𝐺

∗𝛽𝜆2) ∑ (
1

𝜆2 + 𝛾𝑚
2
) − 𝛽𝐺∗

∞

𝑚=1

] 

 

(8.6) 
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