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 This paper studied the planar dynamics of top tensioned cantilevered pipes 
conveying pressurized steady two-phase flow under thermal loading. The 
governing equations of motions were derived based on Hamilton’s principle, the 
centerline is assumed to be extensible in order to account for possible thermal 
expansion; resulting to a set of coupled axial and transverse partial differential 
equations.  Analytical approach was used to resolve the governing equations 
using the multiple scale perturbation technique, which aided the development of 
theoretical schemes for estimating the natural frequencies and mode shapes. 
Numerical results were presented for a case study of two phase flow of water 
and air with the stability and dynamic behavior of the system studied linearly via 
Argand diagrams which were constructed as the mixture flow velocity is 
increased for various void fractions. The Argand diagram assessment of the axial 
vibration natural frequencies shows that the attainment of the critical velocity is 
delayed for a cantilever pipe conveying two phase flow compared to when the 
pipe is conveying single phase flow. The result of the linear analysis of the 
transverse vibration reveals that at the critical mixture velocity, the system loses 
stability through Hopf bifurcation. Similarly, to the axial vibration, the 
attainment of the critical velocity was observed to be at higher velocities for a 
cantilever pipe conveying two phase flow as compared to when the pipe is 
conveying single phase flow. In addition to, the critical velocity is observed to be 
increasing as the void fraction of the two phase flow increases. The assessment 
of the effect of thermal loading, pressurization and top tension on the attainment 
of the critical velocity shows that thermal loading, pressurization and 
compression at the tip hastens the attainment of the critical velocity while 
tensioning top tension delays the attainment of the critical velocity. 

© 2018 MIM Research Group. All rights reserved. 
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1. Introduction 

Instability of pipes conveying fluid are mainly of two different cases, the first is as a result 
of the unstable vibration caused by the fluid flow when the flow velocity surpasses a critical 
value and the other is a vibration due to oscillating fluid flow (Pulsating Flows). Vast 
publications exist on the study of the effect of internal flow on the dynamics of cantilever 
pipes, with most of the earlier work focusing on the linear dynamics of the pipe 
emphasizing on the determination of the critical velocity for the onset of flutter [1-5] for a 
single phase fluid. Sequel to these works, the nonlinear dynamics of pipes captivated the 
minds of many curious researchers which resulted to various publications on the subject; 
notable among these is the detail theoretical work by Semler et al [6] where a 
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comprehensive nonlinear equation was derived for a cantilever pipe based on inextensible 
theory. However, existing publications on the dynamics of fluid-conveying cantilevered 
pipes taking into account extensibility is rare with the pioneering work by Ghayesh et al 
[7], where he studied the nonlinear dynamics of cantilevered extensible pipe conveying 
single phase fluid without thermal loading, he observed that conversely to inextensible 
pipe, an extensible pipe elongates in the axial direction as the flow velocity increases.  

The combined thermal and pressurization effect on the instability of pipes is not an area 
with vast historical research trends. However, recent findings on the contributions of 
transient temperature to pipe walking prompted some studies on this subject, Qian et al. 
[8], studied the instability of simply supported pipes conveying fluid under thermal loads 
and discovered that the critical fluid velocity decreases with increasing temperature. 
Another interesting result of Marakala et al [9] reveals that the frequency of vibration 
increases with increase in pressure and decreases with increase in temperature. The 
increase in pressure increases the velocity of the fluid flow and reduces the damping effect. 
Temperature has an effect on displacement as well as frequency, since thermal contraction 
and expansion increases due to high heat transfer rate at high velocity. As the temperature 
of the fluid increases, the frequency decreases due to softening effect of tube. However, 
these publications were on the dynamics of a simply supported pipe. 

Two phase flow is a common flow phenomenon in various industrial pipes, but very few 
publications exist on the instability behavior of pipes conveying two phase flow. Miwa et 
al [10] did an in-depth review of the extent of existing work on two-phase flow induced 
vibrations, stating that there exist very few researches on the instability behavior of pipes 
due to internal two phase flow. In his review, Miwa et al explains that internal two phase 
flow induced vibration can be initiated by various hydrodynamic phenomena, depending 
on the geometrical configurations of the flow channels and operating conditions, gas-liquid 
two phase flow may create vibrations with various modes of amplitude and frequency. 
Young and Qiang [11] highlighted that in gas and liquid transportation, the gas and the 
liquid normally do not travel at the same velocity in the pipeline because of difference in 
viscosities, for an upward flow in a vertical pipe, the gas phase will flow at higher velocity 
than the liquid because it is denser and less viscous while in a downward flow, the gas is 
slower as a result of variation in densities. Monette and Pettigrew [12] presents an 
excellent experimental paper on the fluidelastic instability of flexible tubes subjected to 
two-phase flow which might be one of the premier paper on the dynamics of pipe 
conveying two phase flow, where experimental results were compared with the theoretical 
estimations and also reveals the relationship between the void fraction and the dynamics 
of the pipe for a two phase liquid-gas flow.   

Majority of the existing publications focused on single phase flow, not many considered 
thermal effect, and most of the existing equations of motion for cantilever pipe conveying 
fluids are based on the inextensible theory. However, there seems to be some gaps on the 
study of combined effect of Multiphase flow and thermal effect on the dynamics of 
cantilever pipes conveying fluids. This present study investigates the dynamics of top 
tensioned cantilever pipes conveying pressurized steady two-phase flow under thermal 
loading. Approximate analytical approach is used to resolve the governing equations by 
imposing the method of multiple scales perturbation technique directly to the systems 
equations (direct-perturbation method).  

2. Problem Formulation and Modelling  

Considering a system of cantilever cylindrical pipe of length (L), having a cross-sectional 
area (A), mass per unit length (mp) and flexural rigidity (EI), conveying multiphase flow, 
and flowing parallel to the pipe’s center line.  
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The center line axis of the pipe in its undeformed state is assumed to overlaps with the Y 
axis and the cylinder is assumed to vibrate in the (Y, X) plane (see fig. 1). To derive the 
system’s governing equations of motion, the following basic assumptions were made for 
the cylinder and the fluid: (i) the mean flow velocity is constant; (ii) the cylinder is slender, 
so that the Euler–Bernoulli beam theory is applicable; (iii) although the deflections of the 
cylinder may be large, the strains are small; (iv) the cylinder centreline is extensible.  

 

Fig. 1 System’s Schematics 

 

The centerline of the cantilever pipe is assumed extensible so as to account for possible 
expansion due to the high temperature of the fluid content. Semler et al [6] expressed the 
geometric relation of the centerline of an extensible pipe as: 

1 + ϵ(Y) = √[1 +
∂u

∂Y
]
2

+ [
∂v

∂Y
]
2

 

(1) 

           

ϵ(Y) is the axial strain along the pipe’s centerline. 

Assuming θ to be the angle between the pipe’s centerline and the Y- axis, this can be defined 
as: 

cos θ =
1 + ∂u/dY

1 + ϵ(Y)
, sin θ =

∂v/dY

1 + ϵ(Y)
         

(2) 

The curvature k is related to the geometry as: 

k =
1

1 + ϵ

∂θ

∂Y
 

(3) 
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The derivative in Eq. (3) can be obtained from Eq. (2) as: 

∂θ

∂Y
=
[
∂2v

∂Y2
(1 +

∂u

∂Y
) −

∂v

∂Y

∂2u

∂Y2
]

(1 + ϵ)2
 

(4) 

The second derivative is expressed adopting Lagrange notations as: 

(
∂θ 

∂Y
)
2 

= v′′2 − 2v′′2u′ − 2v′′2u′′2 − 2v′v′′u′′ 
(5) 

2.1. Derivation of the Equation of Motion  

The equations of motion are derived using the energy method. The energy method is based 
on the Hamilton’s principle, which is defined as the variations of the time derivative of the 
Lagrangian. This can be mathematically expressed as: 

δ∫ ℒ dt = ∫ ∑MjUj(ṙL +∑UjτL

n

j=1

)δrL

n

j=1

 dt,   
t2

t1

t2

t1

 

(6) 

Where 

n is the number of phases in the fluid, which will be 2 for a two phase flow 

Mj is the mass of the phases in the fluid 

Uj is the flow velocity of the phases in the fluid 

ℒ is the Lagrangian operator which is expressed as: 

ℒ = 𝒯f + 𝒯p − 𝒱f − 𝒱p, (7) 

 

𝒯p and 𝒱p are the kinetic and potential energies of the pipe, and 𝒯f and 𝒱f are the kinetic 

and potential energies associated with the conveyed fluid.  

The following expressions hold: 

ṙL = u̇Li + v̇Lk  and τL = u
′
Li + v

′
Lk  

2.1.1. Kinetic Energy 

The total kinetic energy of the system is the summation of the kinetic energy of the pipe 
and the kinetic energies of the phases/components of the flowing fluid.  

The velocity vector of the pipe’s centerline is expressed as: 

V⃗⃗ p =
∂u

∂t
î +

∂v

∂t
ĵ 

(8) 

Therefore, the kinetic energy of the pipe is expressed as: 

𝒯p =
1

2
mp∫ [(

∂u

∂t
)
2

+ (
∂v

∂t
)
2

] dx
L

0

 
(9) 
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As illustrated by Semler et al [6], the axial elongation of the pipe is complemented by a 
lateral contraction, due to the Poisson effect. This will impact the flow velocity of the fluid 
phases/components such that: 

∑Uj = [(1 + ϵ)/(1 + aϵ)]

n

j=1

∑U0j

n

j=1

 
(10) 

Where U0j and Uj are the flow velocities before and after elongation, the subscript (j) is 

used to identify the various phases/components of the conveyed fluid, (ϵ ) is the axial 
strain and (a) relates to the Poisson ratio (v) as a = 1 − 2v; for an extreme case v = 0.5 
and a  becomes zero Ghayesh [7]. 

The flow velocity relative to the centerline axis of the pipe is expressed as: 

V⃗⃗ f = {
∂u

∂t
+∑Uj(1 − aϵ) (1 +

∂u

∂x
)

n

j=1

} î + {
∂v

∂t
+∑Uj(1 − aϵ) (

∂v

∂x
)

n

j=1

} ĵ 

(11) 

Therefore, the Kinetic energy of the conveyed fluid is expressed as: 

𝒯f =
1

2
∑Mj∫ {(

∂u

∂t
)
2

+ (
∂v

∂t
)
2

+ Uj
2 [1 + 2

∂u

∂x
+ (
∂u

∂x
)
2

− 2a(
∂u

∂x
+
1

2
(
∂v

∂x
)
2

) + (
∂v

∂x
)
2

]
L

0

n

j=1

+ 2Uj [
∂u

∂t
(1 +

∂u

∂x
) +

∂v

∂t

∂v

∂x
]}dx 

(12) 

Summing Eq. (9) and Eq. (12) to have the total kinetic energy of the system and then 
considering the variations: 

δ∫ (KE)dt
t2

t1

= (mp +∑Mj

n

j=1

)∬(
∂u

∂t
δ (
∂u

∂t
) +

∂v

∂t
δ (
∂v

∂t
)) dxdt

+∑Mj

n

j=1

∬(Uj
2 [δ (

∂u

∂x
) +

∂u

∂x
δ (
∂u

∂x
)

− a(δ (
∂u

∂x
) +

∂v

∂x
δ (
∂v

∂x
)) +

∂v

∂x
δ (
∂v

∂x
)]

+ 2Uj [δ (
∂u

∂t
) +

∂u

∂t
δ (
∂u

∂x
) +

∂u

∂x
δ (
∂u

∂t
) +

∂v

∂t
δ (
∂v

∂x
)

+
∂v

∂x
δ (
∂v

∂t
)]) dxdt 

(13) 

Integrating Eq. (13) and adopting the Lagrange notations for the variations in space and 
Newton notations for the variations in time, the terms varying in space and time are 
grouped as; 
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δ∫ (KE)dt
t2

t1

=∬[−(mp +∑Mj

n

j=1

) (üδu + v̈δv)

−∑MjUj
2(u′′δu − av′′δv + v′′δv)

n

j=1

−∑MjU̇jδu

n

j=1

−∑2MjUju̇
′δu

n

j=1

−∑MjU̇ju
′δu

n

j=1

−∑2MjUjv̇
′δv

n

j=1

−∑MjU̇jv
′δv

n

j=1

] dxdt +∑MjUj∫ [u̇L𝛿𝑢 + v̇L𝛿𝑣]dt
t2

t1

n

j=1

 

(14) 

2.1.2. Potential Energy 

Semler et al [6] highlighted that the potential energy is as a result of the elastic deformation 
of the pipe and the effect of gravity. The deformation from elastic behavior of the pipe can 
be linked to the strain energy, which is expressed by Semler at al [6] as: 

𝒱p =
1

2
EA∫ ϵ2dx

L

0

+
1

2
EI∫ (1 + ϵ)2k2dx 

L

0

 
(15) 

This is clearly the combinations of the axial strain effect and the bending strain effect 
where (E) denotes the Young’s modulus, (I) denotes the pipe moment of inertia, (A) 
denotes the cross-sectional area, (ϵ) is the axial strain and (k) is the curvature term as 
expressed in Eq. (3). 

The thermal effect can be introduced by considering the linear strain tensor as a sum of 
the strain contributions from the mechanical stress and the thermal effect. Semler et al [6] 
further decomposed the axial strain into a steady strain component due to externally 
applied tension (T0) and pressure force component (P = pA) and an oscillatory strain 
component due to the oscillations of the pipe. These can be expressed as: 

ϵij = ϵij
σ + ϵij

∆ +
T0 − P

EA
 

(16) 

While the stress contributing strain component can be obtained through the binomial 
expansion of Eq. (1) as: 

ϵij
σ =

∂u

∂x
−
1

2
(
∂u

∂x
) (
𝜕𝑣

𝜕𝑥
)
2

+
1

2
(
𝜕𝑣

𝜕𝑥
)
2

−
1

8
(
𝜕𝑣

𝜕𝑥
)
4

 
(17) 

Considering that the gradient of the transverse displacement of the pipe is far greater than 

the gradient of the longitudinal displacement (
𝜕𝑣

𝜕𝑥
>

∂u

∂x
). Also, the thermal contributing 

strain component can be expressed in terms of the thermal expansively (𝛼) and the 
difference in temperatures (∆𝑇) as: 

𝜖𝑖𝑗
∆ = (−𝛼∆𝑇) (18) 

Substituting Eq. (17) and Eq. (18) into Eq. (16) and then substituting Eq. (16), Eq. (3) and 
Eq. (5) in to Eq. (15) resulting to: 
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𝒱𝑝 =
1

2
𝐸𝐴∫ [(𝑢′ −

1

2
𝑢′𝑣′2 +

1

2
𝑣′2 −

1

8
𝑣′4) +

T0 − 𝑃

𝐸𝐴
+ (−𝛼∆𝑇)]

2

𝑑𝑥
𝐿

0

+
1

2
𝐸𝐼 ∫ [𝑣′′2 − 2𝑣′′2𝑢′ − 2𝑣′′2𝑢′′2 − 2𝑣′𝑣′′𝑢′′] 𝑑𝑥 

𝐿

0

 

(19) 

With the reference plane in the same direction as the gravitational acceleration, the effect 
of gravity can be expressed as: 

𝒱𝑔 = 𝑔(∑𝑀𝑗 +𝑚

𝑛

𝑗=1

)∫ (𝑥 + 𝑢)𝑑𝑥
𝐿

0

 

(20) 

Combining equations (19) and (20), the potential energy of the system is expressed as:  

𝛿 ∫ (𝑃𝐸)𝑑𝑡
𝑡2

𝑡1

= 𝐸𝐴∬[(
T0 − 𝑃

𝐸𝐴
− (𝛼∆𝑇)) (𝛿𝑢′ − 𝑢′𝑣′𝛿𝑣′ −

1

2
𝑣′2𝛿𝑢′

+ 𝑣′𝛿𝑣′ −
1

2
𝑣′3𝛿𝑣′)

+ (𝑢′ −
1

2
𝑢′𝑣′2 +

1

2
𝑣′2 −

1

8
𝑣′4) (𝛿𝑢′ − 𝑢′𝑣′𝛿𝑣′

−
1

2
𝑣′2𝛿𝑢′ + 𝑣′𝛿𝑣′ −

1

2
𝑣′3𝛿𝑣′)] 𝑑𝑥𝑑𝑡

+ 𝐸𝐼∬[𝑣′′𝛿𝑣′′ − 𝑣′′𝛿𝑢′ − 2𝑢′𝑣′′𝛿𝑣′′ − 2𝑣′′2𝑣′𝛿𝑣′

− 2𝑣′2𝑣′′𝛿𝑣′′ − 𝑣′𝑣′′𝛿𝑢′′ − 𝑣′𝑢′′𝛿𝑣′′ − 𝑣′′𝑢′′𝛿𝑣′] 𝑑𝑥𝑑𝑡

+ 𝑔(∑𝑀𝑗 +𝑚

n

𝑗=1

)∫ (𝛿𝑢)𝑑𝑥𝑑𝑡 
𝐿

0

 

(21) 

According to Semler at al [6], for a pipe of length L=1, with |𝑢|~0.01, 𝑎𝑛𝑑 |𝑣|~0.1, 
neglecting terms of the order 0.0001 and below. 

Integrating Eq. (21) and collecting terms that varies in time and space as: 

𝛿 ∫ (𝑃𝐸)𝑑𝑡
𝑡2

𝑡1

=∬(−𝐸𝐴𝑢′′𝛿𝑢 − 𝐸𝐴(𝑢′𝑣′′ + 𝑣′𝑢′′)𝛿𝑣

−𝐸𝐴 (
3

2
𝑣′2𝑣′′) 𝛿𝑣

+ (𝑇0 − 𝑃 − 𝐸𝐴(𝛼∆𝑇))(𝑢
′𝑣′′ + 𝑣′𝑢′′)𝛿𝑣

+ (𝑇0 − 𝑃 − 𝐸𝐴(𝛼∆𝑇)) (
3

2
𝑣′2𝑣′′) 𝛿𝑣 − 𝐸𝐴𝑣′𝑣′′𝛿𝑢

+ (𝑇0 − 𝑃 − 𝐸𝐴(𝛼∆𝑇))𝑣
′′𝛿𝑣 

+ (𝑇0 − 𝑃 − 𝐸𝐴(𝛼∆𝑇))𝑣
′𝑣′′𝛿𝑢 + 𝐸𝐼𝑣′′′′𝛿𝑣

− 𝐸𝐼(𝑣′′′′𝑣′ + 𝑣′′𝑣′′′)𝛿𝑢

− 𝐸𝐼 (3𝑢′′′𝑣′′ + 4𝑣′′′𝑢′′ + 2𝑢′𝑣′′′′ + 2𝑣′2𝑣′′′′

+ 8𝑣′𝑣′′𝑣′′′ + 2𝑣′′3) 𝛿𝑣 − (𝑇0 − 𝑃 − 𝐸𝐴(𝛼∆𝑇))
′
𝛿𝑢

+ (𝑚 +∑𝑀𝑗

𝑛

𝑗=1

)𝑔𝛿𝑢)𝑑𝑥𝑑𝑡 

(22) 
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2.1.3. Non-Conservative Work Done 

As illustrated by Sinir [13], the damping effect can be accounted for by taking the first 
variations of the non-conservative force: 

∫ 𝛿𝑊𝑛𝑐

𝑡2

𝑡1

= ∫ 𝑐�̇�𝛿𝑣𝑑𝑡
𝑡2

𝑡1

 
(23) 

where c is the coefficient of viscous damping. Also, the right hand side term of the 
Hamilton’s equation (6): 

rhs =∑MjUj

n

j=1

∫ [(u̇L +∑Uj

n

j=1

u′
L)𝛿𝑢 + (v̇L +∑Uj

n

j=1

v′
L)𝛿𝑣]  dt = 0

t2

t1

 

(24) 

=∑MjUj

n

j=1

∫  (u̇L𝛿𝑢 + v̇L𝛿𝑣)dt
t2

t1

+∑MjU
2
j

n

j=1

∫  (u′
L𝛿𝑢 + v

′
L𝛿𝑣)dt

t2

t1

 
(25) 

The first term of equation (25) is identical to the last term of equation (14), therefore the 
rhs becomes: 

∑MjU
2
j

n

j=1

∫  (u′
L𝛿𝑢 + v

′
L𝛿𝑣)dt

t2

t1

 
(26) 

Physically, this implies a non-classical boundary condition at the free end for a discharging 
cantilever pipe: 

EIv′′′
L =∑MjU

2
j

n

j=1

∫  v′
L𝛿𝑣dt

t2

t1

 
(27) 

Thus, a force is imposed at the free end if the velocity of the exiting fluid is not tangential 
to the pipe. However this study assumes that the exiting flow remains tangential to the 
pipe at the free end, therefore classical boundary condition holds at the free end. 

2.2. Equation of Motion for Multiphase Flow 

Summing equations (14), (22), (23) and (25), the system’s equation of motion can be 
expressed as: 

(𝑚 +∑𝑀𝑗

𝑛

𝑗=1

) �̈� +∑M𝑗𝑈�̇�

𝑛

𝑗=1

+∑2𝑀𝑗𝑈𝑗�̇�
′

𝑛

𝑗=1

+∑𝑀𝑗

𝑛

𝑗=1

𝑈𝑗
2𝑢′′ +∑𝑀𝑗𝑈�̇�𝑢

′

𝑛

𝑗=1

− 𝐸𝐴𝑢′′ − 𝐸𝐼(𝑣 ′′′′𝑣 ′ + 𝑣 ′′𝑣 ′′′)

+ (𝑇0 − 𝑃 − 𝐸𝐴(𝛼∆𝑇) − 𝐸𝐴)𝑣
′𝑣 ′′

− (𝑇0 − 𝑃 − 𝐸𝐴(𝛼∆𝑇))
′
+ (𝑚 +∑𝑀𝑗

𝑛

𝑗=1

)𝑔 = 0 

(28) 
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(𝑚 +∑𝑀𝑗

𝑛

𝑗=1

) �̈� +∑2𝑀𝑗𝑈𝑗�̇�
′

𝑛

𝑗=1

+∑𝑀𝑗

𝑛

𝑗=1

𝑈𝑗
2𝑣 ′′ −∑𝑎𝑀𝑗

𝑛

𝑗=1

𝑈𝑗
2𝑣 ′′ +∑𝑀𝑗𝑈�̇�𝑣

′

𝑛

𝑗=1

+ 𝐸𝐼𝑣 ′′′′ − (𝑇0 − 𝑃 − 𝐸𝐴(𝛼∆𝑇))𝑣
′′ + 𝐶�̇�

− 𝐸𝐼 (3𝑢′′′𝑣 ′′ + 4𝑣 ′′′𝑢′′ + 2𝑢′𝑣 ′′′′ + 2𝑣 ′2𝑣 ′′′′ + 8𝑣 ′𝑣 ′′𝑣 ′′′

+ 2𝑣 ′′3)

+ (𝑇0 − 𝑃 − 𝐸𝐴(𝛼∆𝑇) − 𝐸𝐴) (𝑢
′𝑣 ′′ + 𝑣 ′𝑢′′ +

3

2
𝑣 ′2𝑣 ′′) = 0 

(29) 

The associated boundary conditions are: 

𝑣(0) = 𝑣′(0) 𝑎𝑛𝑑 𝑣′′(𝐿) = 𝑣′′′(𝐿) = 0  (30) 

𝑢(0) = 𝑢′(𝐿) = 0 (31) 

Where the terms represent: 

The inertia force terms: (𝑚 + ∑ 𝑀𝑗
𝑛
𝑗=1 )ü 𝑎𝑛𝑑 (𝑚 + ∑ 𝑀𝑗

𝑛
𝑗=1 )�̈�  

The Coriolis force: ∑ 2𝑀𝑗𝑈𝑗�̇�
′𝑛

𝑗=1  𝑎𝑛𝑑 ∑ 2𝑀𝑗𝑈𝑗 �̇�
′𝑛

𝑗=1   

The centrifugal force: ∑ 𝑀𝑗
𝑛
𝑗=1 𝑈𝑗

2𝑢′′ 𝑎𝑛𝑑 a∑ 𝑀𝑗
𝑛
𝑗=1 𝑈𝑗

2𝑣′′ 

The forces due to gravity:(𝑚 + ∑ 𝑀𝑗
𝑛
𝑗=1 )𝑔 

The bending stiffness term: 𝐸𝐼𝑣′′′′ 

The axial stiffness term: 𝐸𝐴𝑢′′ 

The damping term: 𝐶�̇� 

The forces due to unsteady flow: ∑ 𝑀𝑗𝑈�̇�
𝑛
𝑗=1  

The gradient terms: (𝑇0 − 𝑃 − 𝐸𝐴(𝛼∆𝑇))
′
 

Equations (28), (29), (30) and (31) are the governing equations and boundary conditions 
for a tensioned cantilever pipe conveying pressurized unsteady multiphase flow under 
thermal loading. 

2.2.1. Dimensionless Equation of Motion for Multiphase Flow 

The equation of motion may be rendered dimensionless to make the analysis of the system 
more robust and not constraint to one specific system by introducing the following non-
dimensional quantities; 

�̅� =
𝑢

𝐿
  ,    �̅� =

𝑣

𝐿
  ,   𝑡̅ = [

𝐸𝐼

∑𝑀𝑗 +𝑚
]

1
2⁄ 𝑡

𝐿2
  ,   𝑈𝑗 = [

𝑀𝑗

𝐸𝐼
]

1
2⁄

𝑈𝐿 ,

𝛾 =  
∑𝑀𝑗 +𝑚

𝐸𝐼
𝐿3𝑔, 

(32) 

𝛽𝑗 =
𝑀𝑗

∑𝑀𝑗+𝑚
,   𝛹𝑗 =

𝑀𝑗

∑𝑀𝑗
,  𝐷𝑎𝑚𝑝𝑖𝑛𝑔 𝑡𝑒𝑟𝑚: 𝜇 =

𝐶𝐿2

√∑(𝑀𝑗+𝑚)𝐸𝐼
 

𝑇𝑒𝑛𝑠𝑖𝑜𝑛:𝛱0 =
𝑇𝑜𝐿

2

𝐸𝐼
 , 𝐹𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦: 𝛱1 =

𝐸𝐴𝐿2

𝐸𝐼
, 𝑃𝑟𝑒𝑠𝑢𝑟𝑒: 𝛱2 =

𝑃𝐿2

𝐸𝐼
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�̈̅� +∑𝑈�̅�
̇

𝑛

𝑗=1

√𝛹𝑗√𝛽𝑗 + 2∑�̅�𝑗

𝑛

𝑗=1

√𝛹𝑗√𝛽𝑗 �̇̅�
′ +∑𝛹𝑗𝑈�̅�

2
�̅�′′

𝑛

𝑗=1

+∑𝑈�̅�
̇  √𝛹𝑗√𝛽𝑗�̅�

′

𝑛

𝑗=1

−𝛱1�̅�
′′ − (�̅� ′′′′�̅� ′ + �̅� ′′�̅� ′′′)

+ (𝛱0 − 𝛱2 − 𝛱1(𝛼∆𝑇) − 𝛱1)�̅�
′�̅� ′′

− (𝛱0 − 𝛱2 −𝛱1(𝛼∆𝑇))
′
+ 𝛾 = 0 

�̈̅� + 2∑𝑈𝑗

𝑛

𝑗=1

√𝛹𝑗√𝛽𝑗 �̇̅�
′ +∑𝛹𝑗𝑈�̅�

2
�̅� ′′

𝑛

𝑗=1

− 𝑎∑𝛹𝑗𝑈�̅�
2
�̅� ′′

𝑛

𝑗=1

+∑𝑈�̅�
̇  √𝛹𝑗√β

𝑗
�̅� ′

𝑛

𝑗=1

− (𝛱0 −𝛱2 − 𝛱1(𝛼∆𝑇))𝑣
′′ + �̅� ′′′′ + 𝜇�̇�

− (3�̅�′′′�̅�′′ + 4�̅� ′′′�̅�′′ + 2�̅�′�̅� ′′′′ + 2�̅� ′2�̅� ′′′′ + 8�̅� ′�̅� ′′�̅� ′′′

+ 2�̅� ′′3)

+ (𝛱0 − 𝛱2 − 𝛱1(𝛼∆𝑇) − 𝛱1) (�̅�
′�̅� ′′ + �̅� ′�̅�′′ +

3

2
�̅� ′2�̅�′′)

= 0 

(33) 

The dimensionless boundary conditions are: 

�̅�(0) = �̅�′(0) 𝑎𝑛𝑑 �̅� ′′(𝐿) = �̅� ′′′(𝐿) = 0 (34) 

�̅�(0) = �̅�′(𝐿) = 0 (35) 

In these equations, �̅� 𝑎𝑛𝑑 �̅� are respectively, the dimensionless displacements in the 
longitudinal and transverse direction, (𝑈𝑗) is the flow velocities of the constituent 

phases/components used in the parametric studies of the dynamics of the system, (𝛽𝑗) is 

the mass ratio same as in single phase flows as derived by Semler et al [6] and Paidoussis 
[20], (𝛹𝑗) is another mass ratio which is unique to multiphase flow relating the fluid mass 

independent of the mass of the pipe, (𝛾) is the gravity term, (𝜇) is the damping term and 
(𝛱0, 𝛱1, 𝛱2) represent the Tension term, Flexibility term and the pressurization term 
respectively.  

2.2.2. Dimensionless Equation of Motion for Two Phase Flow  

The governing equation can be reduced to that of a two phase as: 

�̈̅� + 𝑈1̅̅ ̅̇√𝛹1√𝛽1 +𝑈2̅̅ ̅̇√𝛹2√𝛽2 + 2𝑈1√𝛹1√𝛽1�̇̅�
′ + 2𝑈2√𝛹2√𝛽2�̇̅�

′

+ 𝛹1𝑈1̅̅ ̅
2
�̅�′′ +𝛹2𝑈2̅̅ ̅

2
�̅�′′ + 𝑈1̅̅ ̅̇ √𝛹1√𝛽1�̅�

′

+ 𝑈2̅̅ ̅̇ √𝛹2√𝛽2�̅�
′ − 𝛱1�̅�

′′ − (�̅� ′′′′�̅� ′ + �̅� ′′�̅� ′′′)

+ (𝛱0 − 𝛱2 − 𝛱1(𝛼∆𝑇) − 𝛱1)�̅�
′�̅�′′

− (𝛱0 − 𝛱2 − 𝛱1(𝛼∆𝑇))
′
+ 𝛾 = 0 

(36) 

�̈̅� + 2�̅�1√𝛹1√𝛽1�̇̅�
′ + 2�̅�2√𝛹2√𝛽2�̇̅�

′ +𝛹1𝑈1̅̅ ̅
2
�̅� ′′ + 𝛹2𝑈2̅̅ ̅

2
�̅� ′′ − 𝑎𝛹1𝑈1̅̅ ̅

2
�̅� ′′

− 𝑎𝛹2𝑈2̅̅ ̅
2
�̅� ′′ + 𝜇�̇� + 𝑈1̅̅ ̅̇ √𝛹1√𝛽1�̅�

′ + 𝑈2̅̅ ̅̇ √𝛹2√𝛽2�̅�
′

− (𝛱0 − 𝛱2 − 𝛱1(𝛼∆𝑇))𝑣
′′ + �̅� ′′′′

− (3�̅�′′′�̅� ′′ + 4�̅� ′′′�̅�′′ + 2�̅�′�̅� ′′′′ + 2�̅� ′2�̅� ′′′′ + 8�̅� ′�̅� ′′�̅� ′′′

+ 2�̅� ′′3)

+ (𝛱0 −𝛱2 − 𝛱1(𝛼∆𝑇) − 𝛱2) (�̅�
′�̅� ′′ + �̅� ′�̅�′′ +

3

2
�̅� ′2�̅� ′′)

= 0 

(37) 
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The associated boundary conditions are: 

�̅�(0) = �̅�′(0) 𝑎𝑛𝑑 �̅�′′(𝐿) = �̅� ′′′(𝐿) = 0 (38) 

�̅�(0) = �̅�′(𝐿) = 0 (39) 

2.2.3. Governing Equation for a steady two phase flow  

�̈̅� + 𝑈1𝐶21�̇̅�
′ + 𝑈2𝐶22�̇̅�

′ + 𝐶31𝑈1̅̅ ̅
2
�̅�′′ + 𝐶32𝑈2̅̅ ̅

2
�̅�′′ − 𝐶5�̅�′′

− (�̅�′′′′�̅�′ + �̅�′′�̅�′′′) + 𝐶6�̅�′�̅�′′ − 𝐶7′ + 𝛾 = 0 

(40) 

�̈̅� + 𝑈1𝐶21�̇̅�
′ + 𝑈2𝐶22�̇̅�

′ + 𝐶31𝑈1̅̅ ̅
2
�̅�′′ + 𝐶32𝑈2̅̅ ̅

2
�̅�′′ − 𝑎𝐶31𝑈1̅̅ ̅

2
�̅� ′′

− 𝑎𝐶32𝑈2̅̅ ̅
2
�̅� ′′ + 𝐶𝑚�̇� − 𝐶7𝑣′′ + �̅� ′′′′

− (3�̅�′′′�̅�′′ + 4�̅�′′′�̅�′′ + 2�̅�′�̅� ′′′′ + 2�̅�′2�̅�′′′′ + 8�̅�′�̅�′′�̅�′′′

+ 2�̅�′′3) + 𝐶6 (�̅�′�̅�′′ + �̅� ′�̅�′′ +
3

2
�̅� ′2�̅�′′) = 0 

(41) 

For a steady flow, velocities are not changing with time, therefore; 

𝑈1̅̅ ̅̇ = 𝑈2̅̅ ̅̇ = 0 (42) 

The associated boundary conditions are: 

�̅�(0) = �̅�′(0) 𝑎𝑛𝑑 �̅�′′(𝐿) = �̅� ′′′(𝐿) = 0 (43) 

�̅�(0) = �̅�′(𝐿) = 0 (44) 

Equations (40) to (44) are obtained using the notations: 

𝐶21 = 2√𝛹1√𝛽1    

𝐶22 = 2√𝛹2√𝛽2  

𝐶31 = 𝛹1  

𝐶32 = 𝛹2  

𝐶41 = 𝐶11    

𝐶42 = 𝐶12  

𝐶5 = 𝛱1          

𝐶6 = 𝛱0 − 𝛱2 − 𝛱1(𝛼∆𝑇) − 𝛱1  

𝐶7 = 𝛱0 − 𝛱2 − 𝛱1(𝛼∆𝑇)    

𝐶𝑚 = 𝜇 

2.3. Empirical Gas–Liquid Two-Phase Flow Model 

The components velocities in terms of the superficial velocities are expressed as: 

𝑉𝑔 = 𝑈𝑔𝑣𝑓,    𝑉𝑙 = 𝑈𝑙(1 − 𝑣𝑓) (45) 

Where 𝑈𝑔  and 𝑈𝑙  are the superficial flow velocities. Adopting the Chisholm empirical 

relations Woldesemayat and Ghajar [14], Void fraction:  
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𝑣𝑓 = [1 + √1 − x(1 −
𝜌𝑙
𝜌𝑔
) (
1 − x

x
) (
𝜌𝑔

𝜌𝑙
)]

−1

 

(46) 

Slip Ratio: 

𝑆 =
𝑉𝑔

𝑉𝑙
= [1 − x(1 −

𝜌𝑙

𝜌𝑔
)]

1/2

 
(47) 

The vapour quality: (x) The densities of the liquid and gas phases respectively: (𝜌𝑙 and 𝜌𝑔)  

Mixture Velocity:  

𝑉𝑇 = 𝑈𝑔𝑣𝑓 + 𝑈𝑙(1 − 𝑣𝑓) (48) 

Individual Velocities: 

𝑉𝑙 =
𝑉𝑇

𝑆 + 1
, 𝑉𝑔 =

S𝑉𝑇

𝑆 + 1
 

(49) 

For various void fractions (0.1, 0.3, 0.5, 0.7 and 0.9) and a series of mixture velocities, the 
corresponding slip ratio and individual velocities are estimated and used for numerical 
calculations. 

Single phase flow velocity can be recovered by making the slip ratio to be zero.  

3. Method of Solution 

Exact solutions of nonlinear equations are almost not available; an approximate solution 
will be sought for by utilizing the multiple time scale perturbation technique. This 
approach is applied directly to the partial differential equations (40) and (41), given that 
the common method of discretizing the equations first and then applying perturbation 
method yields less accurate results for finite mode truncations and higher order 
perturbation schemes [15-18].  

Adopting perturbation techniques, it is necessary to decide the terms to be considered 
small or weak. However, the study considers the contributions of the nonlinear terms, 
damping term, gradient term and gravity term to be small compared to the linear terms. 

The damping coefficient is ordered so that the effect of damping and nonlinearity appear 
in the same perturbation equation. 

�̈̅� + 𝑈1𝐶21�̇̅�
′ + 𝑈2𝐶22�̇̅�

′ + 𝐶31𝑈1̅̅ ̅
2
�̅�′′ + 𝐶32𝑈2̅̅ ̅

2
�̅�′′ − 𝐶5�̅�′′

+ 휀(−(�̅�′′′′�̅�′ + �̅� ′′�̅� ′′′) + 𝐶6�̅� ′�̅� ′′ − 𝐶7′ + 𝛾) = 0 

(50) 

�̈̅� + �̅�1𝐶21�̇̅�
′ + �̅�2𝐶22�̇̅�

′ + 𝐶31𝑈1̅̅ ̅
2
�̅� ′′ + 𝐶32𝑈2̅̅ ̅

2
�̅� ′′ − 𝑎𝐶31𝑈1̅̅ ̅

2
�̅� ′′

− 𝑎𝐶32𝑈2̅̅ ̅
2
�̅� ′′ + 휀𝐶𝑚�̇� − 𝐶7𝑣 ′′ + �̅� ′′′′

+ 휀 (−(3�̅�′′′�̅� ′′ + 4�̅� ′′′�̅�′′ + 2�̅�′�̅� ′′′′ + 2�̅� ′2�̅� ′′′′

+ 8�̅� ′�̅� ′′�̅� ′′′ + 2�̅� ′′3) + 𝐶6 (�̅�′�̅� ′′ + �̅� ′�̅�′′ +
3

2
�̅� ′2�̅� ′′))

= 0 

(51) 

We seek an approximate solution for �̅� 𝑎𝑛𝑑 �̅�  of the form: 
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�̅� = �̅�0(𝑇0, 𝑇1) + 휀�̅�1(𝑇0, 𝑇1) + 휀
2�̅�2(𝑇0, 𝑇1) + ⋯ (52) 

�̅� = �̅�0(𝑇0, 𝑇1) + 휀�̅�1(𝑇0, 𝑇1) + 휀
2�̅�2(𝑇0, 𝑇1) + ⋯ (53) 

Two time scales are needed 𝑇0 = 𝑡  and 𝑇1 = 휀𝑡 

Where 휀 is a small dimensionless measure of the amplitude of �̅� and �̅�, used as a book-
keeping parameter. Then, the time derivatives are: 

𝑑

𝑑𝑡
= 𝐷0 + ε𝐷1 + ε2𝐷2 + … 

(54) 

𝑑2

𝑑𝑡2
= 𝐷0

2 + 2ε𝐷0𝐷1 + ε2(𝐷1 
2 + 2𝐷0𝐷2) + … 

(55) 

𝑊ℎ𝑒𝑟𝑒 𝐷𝑛 =
𝜕

𝜕𝑇𝑛 
  

Substituting Eq. (55), Eq. (54), Eq. (53) and Eq. (52) into Eq. (50) and Eq. (51) and equating 
the coefficients of (휀) to zero and are respectively: 

U-Equation: 

𝑂(ε0).        𝐷0
2
�̅�0 + 𝐶21𝐷0�̅�0

′𝑈1 + 𝐶22𝐷0�̅�0
′′𝑈2 + 𝐶31�̅�0

′′𝑈1
2

+ 𝐶32�̅�0
′′𝑈2

2
− 𝐶5�̅�0

′′ = 0 

(56) 

𝑂(ε1).       𝐷0
2
�̅�1 + 𝐶21𝐷0�̅�1

′𝑈1 + 𝐶22𝐷0�̅�1
′𝑈2 + 2𝐷1𝐷0�̅�0

+ 𝐶31�̅�1
′′𝑈1

2
+ 𝐶32�̅�1

′′𝑈2
2
+ C21𝐷0�̅�0

′𝑈1
+ 𝐶22𝐷0�̅�0

′𝑈2 − 𝐶5�̅�1
′′ − �̅�0

′′′′�̅�0
′ − C7′ − 𝛾

− �̅�0
′′�̅�0

′′′ + 𝐶6�̅�0
′�̅�0

′′ = 0 

(57) 

V-Equation: 

𝑂(ε0).        𝐷0
2
�̅�0 − 𝐶7�̅�0′

′
+ �̅�0

′′′′ + 𝐶21𝐷0�̅�0
′𝑈1 + 𝐶22𝐷0�̅�0

′𝑈2
+ 𝐶31�̅�0

′′𝑈1
2
+ 𝐶32�̅�0

′′𝑈2
2
− 𝑎𝐶31�̅�0

′′𝑈1
2

− 𝑎𝐶32�̅�0
′′𝑈2

2
= 0 

(58) 

𝑂(ε1).       𝐷0
2
�̅�1 − 𝐶7�̅�1

′′ + �̅�1
′′′′ + 2�̅�0

′�̅�0
′′′′ + 4�̅�0

′′�̅�0
′′′ + 3�̅�0

′′�̅�0
′′′

+ 2�̅�0
3′′
+ 2𝐷0𝐷1�̅�0 + 𝐶31�̅�1

′′𝑈1
2
+ 𝐶32�̅�1

′′𝑈2
2

+ 8�̅�0
′�̅�0

′′�̅�0
′′′ + 𝐶6�̅�0

′�̅�0
′′ + 𝐶6�̅�0

′′�̅�0
′ + 𝐶𝑚𝐷0�̅�0

+
3

2
𝐶6�̅�0

2′
�̅�0

′′ + 𝐶21𝐷0�̅�0
′𝑈1 + 𝐶22𝐷0�̅�0

′𝑈2

+ 𝐶21𝐷1�̅�0
′𝑈1 + 𝐶22𝐷1�̅�0

′𝑈2 − 𝑎𝐶31�̅�1
′′𝑈1

2

− 𝑎𝐶32�̅�1
′′𝑈2

2
= 0 

(59) 

The order zero problems for both the axial and transverse vibration of the cantilever pipe 
have the form of an undamped and unforced flow induced vibration problem. This will be 
used to estimate the linear natural frequencies and mode shapes. 

3.1. Natural Frequencies and Modal Functions  

Estimation of the Natural frequencies and modal function is an order zero problem that 
can be determined by resolving Eq. (56) and Eq. (58).  
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The homogeneous solution of the leading order equations Eq. (56) and Eq. (58) can be 
expressed as: 

�̅�(𝑥, 𝑇0, 𝑇1)0 = 𝜙(𝑥)𝑛 𝑒𝑥𝑝(𝑖𝜔𝑛𝑇0) + 𝐶𝐶 (60) 

�̅�(𝑥, 𝑇0, 𝑇1)0 = 𝜂(𝑥)𝑛 𝑒𝑥𝑝(𝑖𝜆𝑛𝑇0) + 𝐶𝐶 (61) 

Where (𝐶𝐶) is the complex conjugate, 𝜙(𝑥)𝑛 𝑎𝑛𝑑 𝜂(𝑥)𝑛 are the modal functions for the 
axial and transverse vibrations for each mode (n) and 𝜔𝑛 𝑎𝑛𝑑 𝜆𝑛 are the eigenvalues for 
the axial and transverse vibrations for each mode (n).The eigenvalues are complex values 
with complex conjugate pair of solutions. Substituting Eq. (60) and Eq. (61) into Eq. (56) 
and Eq. (58) results to: 

(𝐶31𝑈1
2
+ 𝐶32𝑈2

2
− 𝐶5)𝜙(𝑥)𝑛

′′ + (𝐶21𝑈1 + 𝐶22𝑈2)𝑖𝜔𝑛𝜙(𝑥)𝑛
′

− 𝜙(𝑥)𝑛𝜔𝑛
2 = 0 

(62) 

𝜂(𝑥)𝑛
′′′′ + (𝐶31𝑈1

2
+ 𝐶32𝑈2

2
− 𝐶7 − 𝑎𝐶31𝑈1

2
− 𝑎𝐶32𝑈2

2
) 𝜂(𝑥)𝑛

′′

+ (𝐶21𝑈1 + 𝐶22𝑈2)𝑖𝜆𝑛𝜂(𝑥)𝑛
′ − 𝜂(𝑥)𝑛𝜆𝑛

2 = 0 

(63) 

The general solution to the ordinary differential equations Eq. (62) and Eq. (63) are 
expressed as: 

𝜙(𝑥)𝑛 = 𝐺1𝑛 𝑒𝑥𝑝(𝑖𝑘1𝑥) + 𝐺2𝑛 𝑒𝑥𝑝(𝑖𝑘2𝑥) (64) 

𝜂(𝑥)𝑛 = 𝐻1(𝑒𝑥𝑝(𝑖𝑧1𝑥) + 𝐻2𝑒𝑥𝑝 (𝑖𝑧2𝑥)+𝐻3𝑒𝑥𝑝(𝑖𝑧3𝑥) +
𝐻4𝑒𝑥 𝑝(𝑖𝑧4𝑥) 

(65) 

3.1.1. Solution to axial vibration problem 

Substituting Eq. (64) into Eq. (62) gives a quadratic relation of the form: 

(𝐶5 − 𝐶31𝑈1
2
− 𝐶32𝑈2

2
) 𝑘2 − (𝐶21𝑈1 + 𝐶22𝑈2)𝑖𝜔𝑛𝑘 − 𝜔𝑛

2 = 0 (66) 

 

Solving the quadratic equation (66) for the wave numbers (𝑘) as a function of the 
eigenvalue (𝜔𝑛): 

𝑘1 = 𝜔𝑛

[
 
 
 
 𝐶21𝑈1

2
+
𝐶22𝑈2

2
+
√𝐶212𝑈1

2
+2𝐶21𝐶22𝑈1𝑈2+𝐶22

2𝑈2
2
−4𝐶31𝑈1

2
−4𝐶32𝑈2

2
+4𝐶5

2

𝐶5 − 𝐶31�̅�1
2
− 𝐶32�̅�2

2

]
 
 
 
 

  

(67) 

𝑘2 = 𝜔𝑛

[
 
 
 
 𝐶21𝑈1

2
+
𝐶22𝑈2

2
−
√𝐶212𝑈1

2
+2𝐶21𝐶22𝑈1𝑈2+𝐶22

2𝑈2
2
−4𝐶31𝑈1

2
−4𝐶32𝑈2

2
+4𝐶5

2

𝐶5 − 𝐶31�̅�1
2
− 𝐶32�̅�2

2

]
 
 
 
 

 

(68) 

In order to obtain the eigenvalue, Eq. (64) is substituted into the boundary conditions in 
Eq. (44): 

 
𝜕𝜙(𝑙, 𝑡)

𝜕𝑥
= 0 𝑎𝑛𝑑 𝜙(0, 𝑡) = 0 

(69) 
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𝐺1 + 𝐺2 = 0 (70) 

𝐺1𝑘1𝑖 𝑒𝑥𝑝(𝑖𝐿𝑘1) + 𝐺2𝑘2𝑖 𝑒𝑥𝑝(𝑖𝐿𝑘2) = 0 (71) 

In matrix form: 

(
1                                   1

𝑖𝑘1𝑒𝑥𝑝 (𝑖𝐿𝑘1)       𝑖𝑘2𝑒𝑥𝑝 (𝑖𝐿𝑘2)
)

⏟                    
𝐷

(
𝐺1
𝐺2
) = 0 

(72) 

For a non-trivial solution, the determinant of (D) must varnish;  

−𝑖𝑘1 𝑒𝑥𝑝(𝑖𝐿𝑘1) + 𝑖𝑘2 𝑒𝑥𝑝(𝑖𝐿𝑘2) = 0 (73) 

Substituting Eq. (67) and Eq. (68) into Eq. (73) and solving for the eigenvalue: 

𝜔𝑛 =
2𝜋𝑛 − 𝑖. 𝑙𝑛 (

𝑏

𝑎
)

(𝑎 − 𝑏)𝐿
, 𝑛 = 1,2,3, … 

(74) 

𝑎 =

𝐶21𝑈1

2
+
𝐶22𝑈2

2
+
√𝐶212𝑈1

2
+2𝐶21𝐶22𝑈1𝑈2+𝐶22

2𝑈2
2
−4𝐶31𝑈1

2
−4𝐶32𝑈2

2
+4𝐶5

2

𝐶5 − 𝐶31𝑈1
2
− 𝐶32𝑈2

2  

 

𝑏 =

𝐶21𝑈1

2
+
𝐶22𝑈2

2
−
√𝐶212𝑈1

2
+2𝐶21𝐶22𝑈1𝑈2+𝐶22

2𝑈2
2
−4𝐶31𝑈1

2
−4𝐶32𝑈2

2
+4𝐶5

2

𝐶5 − 𝐶31𝑈1
2
− 𝐶32𝑈2

2  

 

Eq. (74) is the pipe’s axial vibration eigenvalue. Solving Eq. (70) and Eq. (71) gives the 
constants G1 and G2. Therefore, the modal function for the axial vibration of the pipe is 
expressed as: 

𝜙(𝑥)𝑛 = 𝐺1𝑛 𝑒𝑥𝑝(𝑖𝑘1𝑥) + 𝐺2𝑛 𝑒𝑥𝑝(𝑖𝑘2𝑥) (75) 

 

Substituting Eq. (64) into Eq. (60) yields: 

�̅�(𝑥, 𝑇0)0 =∑𝐺𝑗𝑛 𝑒𝑥𝑝(𝑖𝑘𝑗𝑛𝑥) 𝑒𝑥𝑝(𝑖𝜔𝑛𝑇0) 

2

𝑗=1

=∑𝐺𝑗𝑛 𝑒𝑥𝑝(−𝐼𝑚(𝑘𝑗𝑛𝑥) − 𝐼𝑚(𝜔𝑛𝑇0)) 𝑒𝑥𝑝(𝑖(𝑅e(𝑘𝑗𝑛𝑥)

2

𝑗=1

+ 𝑅𝑒(𝜔𝑛𝑇0)))  

(76) 

It is clear from Eq. (76) that the real part is the natural frequency and the imaginary part 
is the amplitude. However, a marginally negative value of the imaginary part of any of the 
eigenvalue (𝜔𝑛) will cause the axial displacement (�̅�) to grow exponentially in time and 
this signifies the onset of the system’s instability.  
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3.1.2. Solution to Transverse Vibration Problem 

Substituting Eq. (65) into Eq. (63) gives a quartic relation: 

𝑧4𝑗𝑛 + (𝐶7 − 𝐶31𝑈1
2
− 𝐶32𝑈2

2
+ 𝑎𝐶31𝑈1

2
+ 𝑎𝐶32𝑈2

2
) 𝑧2𝑗𝑛

− (𝐶21𝑈1 + 𝐶22𝑈2)𝑧𝑗𝑛𝜆𝑛 − 𝜆
2
𝑛 = 0 

(77) 

𝑗 = 1,2,3,4 𝑎𝑛𝑑 𝑛 = 1,2,3,4,5…  

In order to obtain the eigenvalue, Eq. (65) is substituted into the boundary conditions in 
Eq. (43): 

𝜂(0) = 𝜂′(0) 𝑎𝑛𝑑 𝜂′′(𝐿) = 𝜂′′′(𝐿) = 0 (78) 

This gives four algebraic equations which can be expressed in matrix form as: 

[
 
 
 

1 1 1 1
𝑧1𝑛 𝑧2𝑛 𝑧3𝑛 𝑧4𝑛

(𝑧1𝑛)
2. exp (𝑖. 𝑧1𝑛) (𝑧2𝑛)

2. exp (𝑖. 𝑧2𝑛) (𝑧3𝑛)
2. exp (𝑖. 𝑧3𝑛) (𝑧4𝑛)

2. exp (𝑖. 𝑧4𝑛)

(𝑧1𝑛)
3. exp (𝑖. 𝑧1𝑛) (𝑧2𝑛)

3. exp (𝑖. 𝑧2𝑛) (𝑧3𝑛)
3. exp (𝑖. 𝑧3𝑛) (𝑧4𝑛)

3. exp (𝑖. 𝑧4𝑛)]
 
 
 

⏟                                                    
𝐺

 . [

1
𝐻2𝑛
𝐻3𝑛
𝐻4𝑛

] . 𝐻1𝑛

= (

0
0
0
0

) 

 

For a non-trivial solution, the determinant of (G) must varnish, That is: 

𝐷𝐸𝑇(𝐺) = 0 (79) 

In order to find modal solutions of  (𝜆), Eq. (77) and Eq. (79) must be solve simultaneously, 
this can be solved numerically using nonlinear numerical routine. 

The mode function of the transverse vibration corresponding to the nth eigenvalue is 
expressed as: 

ƞ(𝑥)𝑛 = 𝐻1𝑛. [𝑒
𝑥 .𝑧1𝑛 .𝑖 − (𝐴 + 𝐵 + 𝐶 + 𝐷) − 𝐸] (80) 

𝐴 = 
𝑒𝑥 .𝑧4𝑛 .𝑖 .  [𝑒 𝑧1𝑛 .𝑖 . (𝑧1𝑛)

3. 𝑧2𝑛 −  𝑒
 𝑧1𝑛 .𝑖 . (𝑧1𝑛)

3.  𝑧3𝑛 −  𝑒
 𝑧1𝑛 .𝑖  .  𝑧4𝑛. (𝑧1𝑛)

2 . 𝑧2𝑛 

(𝑧2𝑛 − 𝑧4𝑛). (𝑧3𝑛 − 𝑧4𝑛) . [𝑒
 𝑧2𝑛 .𝑖 . (𝑧2𝑛)

2 − 𝑒  𝑧3𝑛 .𝑖  . (𝑧3𝑛)
2]

 
 

𝐵 = 
𝑒𝑥 .𝑧4𝑛 .𝑖 .  [𝑒 𝑧1𝑛 .𝑖 . 𝑧4𝑛 . (𝑧1𝑛)

2. 𝑧3𝑛 −  𝑒
 𝑧2𝑛 .𝑖 . 𝑧1𝑛 . (𝑧2𝑛)

3 +  𝑒 𝑧2𝑛 .𝑖  .  𝑧4𝑛.  𝑧1𝑛 . (𝑧2𝑛)
2  

(𝑧2𝑛 − 𝑧4𝑛). (𝑧3𝑛 − 𝑧4𝑛) . [𝑒
 𝑧2𝑛 .𝑖. (𝑧2𝑛)

2 − 𝑒  𝑧3𝑛 .𝑖  . (𝑧3𝑛)
2]

 

 

 

𝐶 = 
𝑒𝑥 .𝑧4𝑛 .𝑖 .  [𝑒 𝑧3 .𝑖 . 𝑧1𝑛 . (𝑧3𝑛)

3 −  𝑒 𝑧3 .𝑖 . 𝑧4𝑛 . 𝑧1𝑛 . (𝑧3𝑛)
2 +  𝑒  𝑧2𝑛 .𝑖  . (𝑧2𝑛)

3. 𝑧3𝑛  

(𝑧2𝑛 − 𝑧4𝑛). (𝑧3𝑛 − 𝑧4𝑛) . [𝑒
 𝑧2𝑛 .𝑖 . (𝑧2𝑛)

2 − 𝑒  𝑧3𝑛 .𝑖  . (𝑧3𝑛)
2]

 
 

  𝐷 = 
𝑒𝑥 .𝑧4𝑛 .𝑖.  [−𝑒  𝑧2𝑛 .𝑖.𝑧4𝑛 .(𝑧2𝑛)

2.𝑧3𝑛−  𝑒
 𝑧3 .𝑖.𝑧2𝑛.(𝑧3𝑛)

3+  𝑒 𝑧3 .𝑖 .𝑧4𝑛.𝑧2𝑛.(𝑧3𝑛)
2   

(𝑧2𝑛− 𝑧4𝑛).(𝑧3𝑛− 𝑧4𝑛) .[𝑒 𝑧2𝑛 .𝑖.(𝑧2𝑛)2− 𝑒 𝑧3𝑛 .𝑖 .(𝑧3𝑛)2]
  

𝐸 = 
𝑒𝑥 .𝑧2𝑛 .𝑖 . (𝑧1𝑛 − 𝑧4𝑛). [𝑒

 𝑧1 .𝑖 .  (𝑧1𝑛)
2 −  𝑒 𝑧3 .𝑖 . (𝑧3𝑛)

2]   

(𝑧2𝑛 − 𝑧4𝑛).  [𝑒
 𝑧2 .𝑖 . (𝑧2𝑛)

2 − 𝑒  𝑧3 .𝑖  . (𝑧3𝑛)
2]

+ 
𝑒𝑥 .𝑧3 .𝑖 . (𝑧1𝑛 − 𝑧4𝑛). [𝑒

 𝑧1𝑛 .𝑖 .  (𝑧1𝑛)
2 −  𝑒𝑧2𝑖. (𝑧2𝑛)

2]   

(𝑧3𝑛 − 𝑧4𝑛).  [𝑒
 𝑧2 .𝑖 . (𝑧2𝑛)

2 − 𝑒 𝑧3 .𝑖  . (𝑧3𝑛)
2]

 

 

Substituting Eq. (65) into Eq. (61) yields: 
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v̅(𝑥, 𝑇0)0 =∑𝐻𝑗𝑛 𝑒𝑥𝑝(𝑖𝑧𝑗𝑛𝑥) 𝑒𝑥𝑝(𝑖𝜆𝑛𝑇0) 

4

𝑗=1

=∑𝐻𝑗𝑛 𝑒𝑥𝑝(−𝐼𝑚(𝑧𝑗𝑛𝑥)

4

𝑗=1

− 𝐼𝑚(𝜆𝑛𝑇0)) 𝑒𝑥𝑝(𝑖(𝑅𝑒(𝑧𝑗𝑛𝑥) + 𝑅𝑒(𝜆𝑛𝑇0)))  

(81) 

It can be observed from Eq. (81) that the real part is the natural frequency and the 
imaginary part is the amplitude. However, a marginally negative value of the imaginary 
part of any of the eigenvalue (λn) will cause the transverse displacement (v̅) to grow 
exponentially in time and this signifies the onset of the system’s flutter instability. 

4. Numerical Solution  

This section presents the numerical solutions of the governing equations for a cantilever 
pipe conveying steady pressurized air/water two-phase flow under thermal loading. The 
air density and water density are considered as 1.225 kgm-3 and 1000 kgm-3 respectively.  

4.1. Axial Natural Frequency 

Equation (66) relates the flow parameters, pipe properties and the linear axial natural 
frequency. It can be seen from the equation that the linear axial natural frequency is 
independent of the effect of thermal loading, pressurization and top tension. However, 
variations in the flow velocities and the flexibility of the pipe will alter the linear axial 
natural frequencies. From equation (74), analytical solutions of the axial complex 
frequencies are solved for varying velocity and plotting the Argand diagram of the 
imaginary against the real for the various velocities, Figure 2 and 3 are obtained.   

Individual velocity is considered for single phase flow while mixture velocity is considered 
for two phase flows. Adopting the Chisholm empirical relations as presented in equations 
(45) to (49), the slip ratio is estimated for the selected void fraction of 0.3 and the mixture 
velocity is disintegrated into the component velocities in the motion equation (66). 

 

 

Fig. 2 First four modes axial dimensionless complex frequency as a function of 
dimensionless single phase flow velocity for β=0.2 and Π1=100 
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Fig. 3 First four modes axial dimensionless complex frequency as a function of 
dimensionless two phase flow mixture velocity for β (liquid) =0.19998, ψ (liquid) 

=0.9995, β (gas) =0.000105, ψ (gas) =0.0005, void fraction =0.3 and Π1=100. 

 

For both the single phase and two phase flow, the flow velocity is used as a parametric 
variant gradually increasing from zero. At zero velocity, the natural frequency is that of a 
cantilever beam with the fluid mass as added mass. The path of the Argand diagram has a 
similar trend. As the fluid velocity tends towards the critical velocity; all the paths move 
towards the origin of the Argand diagram, which is similar to the observation by Kuiper 
[19]. 

From equation (66), the two phase flow critical velocity can be expressed as: 

𝑉𝑐 = √
𝐶5(𝑆 + 1)

𝐶32. 𝑆2 + 𝐶31
 

(83) 

Single phase 𝑉𝑐 can be recovered by setting S=0, which is seen to have a lesser value as 
compared with the two phase critical velocity. 

As explained earlier, the system will be linearly unstable if the imaginary part of any of the 
Eigen-frequencies is less than zero. The results show that all paths possess a positive 
imaginary part. This signifies a stable system for flow velocities lesser than the critical 
velocity for a pipe discharging fluid. Comparing the Argand diagrams, it can be observed in 
Figure 3 that for a two phase flow the plot points cumulates to a denser plot path which 
signifies that more plot points are required for the convergence of the paths of the plots to 
the origin as compared to single phase flow in Figure 2 with sparse plot points. This 
observation indicates that for cantilevered pipe conveying two phase flow, the critical 
velocity which signifies the onset of instability is delayed and occurs at higher velocities as 
compared to when the pipe is conveying single phase flow.  

4.2. Transverse Natural Frequency 

The transverse natural frequency of the cantilever pipe as seen in equation (77) is a 
function of the flow parameters, pipe properties, thermal loading, pressurization and top 
tension. Solving the dispersive quartic equation (77) with the condition for a non-trivial 
solution in equation (79) simultaneously using nonlinear numerical routine written in 
Matlab, the complex eigenvalues are obtained. 
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4.2.1. The Effect of Flow Parameters 

Although not the focal topic of this study, results were obtained for a simplest system with 
β=0.2 and Π0=Π1=Π2=0, a=αΔT=0 for a single phase flow through the pipe and compared 
to previous results published by Paidoussis [20] in order to demonstrate the validity of the 
present study. 

 

 

Fig. 4 First four modes transverse dimensionless complex frequency as a function of 
dimensionless single phase flow velocity for β=0.2 and Π0=Π1=Π2=0, a=αΔT=0 

The Argand diagram presented in Figure 4 is similar to the Figure 5 obtained by Gregory 
& Paidoussis in 1966 as published by Paidoussis [20].  

 

Fig 5. The dimensionless complex frequency of the four lowest modes of the 
cantilevered as a function of the dimensionless flow velocity, u, for β = 0.2: ——, exact 

analysis; – – –, four-mode Galerkin approximation [20] 

 

Similar to the study on the axial natural frequency, the flow velocity is used as a parametric 
variant gradually increasing from zero. At zero velocity, the natural frequency is that of a 
cantilever beam with the fluid mass as added mass. However, as the velocity attains higher 
values, the 𝐼𝑚(𝜔) in the second mode of the system starts to diminish and in time becomes 
negative; Therefore, a Hopf bifurcation occurs at an approximate dimensionless velocity of 
5.65 which is the critical velocity at which the systems becomes transversely unstable. 
Also, a fourth-mode oscillatory instability is observed through Hopf bifurcation at an 
approximate dimensionless velocity of 13.58 as obtained by Paidoussis [20]. 
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In this present study, various void fractions (0.1, 0.3, 0.5, 0.7 and 0.9) are considered  with 
the corresponding slip ratios estimated from the Chisholm empirical relations presented 
in equations (44) and (49) the linear dynamic behavior of the two phase air and water flow 
is studied as follow with Π0=Π1= Π2=0, a=αΔT=0: 

 

Fig. 6 First four modes transverse dimensionless complex frequency as a function of 
dimensionless two phase flow mixture velocity for β (liquid) =0.19999, ψ (liquid) 

=0.99986, β (gas) =0.0000272, ψ (gas) =0.00014, void fraction =0.1 

 

Fig. 7 First four modes transverse dimensionless complex frequency as a function of 
dimensionless two phase flow mixture velocity for β (liquid) =0.19998, ψ (liquid) 

=0.99948, β (gas) =0.000105, ψ (gas) =0.00052, void fraction =0.3 

 

Fig 8 First four modes transverse dimensionless complex frequency as a function of 
dimensionless two phase flow mixture velocity for β (liquid) =0.19995, ψ (liquid) 

=0.99878, β (gas) =0.000245, ψ (gas) =0.00122, void fraction =0.5 
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Fig. 9 First four modes transverse dimensionless complex frequency as a function of 
dimensionless two phase flow mixture velocity for β (liquid) =0.19989, ψ (liquid) 

=0.99715, β (gas) =0.0005713, ψ (gas) =0.00285, void fraction =0.7 

 

Fig. 10 First four modes transverse dimensionless complex frequency as a function of 
dimensionless two phase flow mixture velocity for β (liquid) =0.19956, ψ (liquid) 

=0.98910, β (gas) =0.0022, ψ (gas) =0.0109, void fraction =0.9. 

Similar to the trend observed in Figure 4 for a single phase flow, Figure 6 to Figure 10 
reveals that for the various void fractions considered, Hopf bifurcation occurred at the 
second mode which signifies the onset of instability transversely, the velocities at which 
this occurred is the critical velocity for the various void fractions. In addition, oscillatory 
instability is observed through Hopf bifurcation for the fourth-modes for void fractions 0.1, 
0.3, 0.5 and 0.7 as revealed in Figure 6 to Figure 9, the implication of this is that for these 
void fractions, the fourth mode, the pipe loses stability and regains it and loses it again at 
some velocities. However, this did not occur in when the void fraction is 0.9 as shown in 
Figure 10, at the forth mode the pipe loses stability and did not regain it again. 
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Table 1: Summary of the dimensionless critical velocities for various void fractions 
Void 

Fraction 
Slip 

ratio 
Dimensionless 

Mode 2 Hopf 
bifurcation 

velocity (Critical 
Velocity) 

Dimensionless 
Mode 4 Hopf 
bifurcation 

velocity  

Dimensionless 
Superficial critical 

velocity 

Dimensionless 
critical velocity 

Liquid Gas Liquid Gas 

0.1 1.057 11.502 27.392 6.213 59.104 5.592 5.910 

0.3 1.237 12.505 29.782 7.988 23.046 5.591 6.914 

0.5 1.616 14.613 34.804 11.173 18.053 5.587 9.026 

0.7 2.685 20.382 48.524 18.436 21.216 5.531 14.851 

0.9 8.351 35.338 86.671 37.791 35.065 3.779 31.559 

 

 

Fig. 11 Dimensionless superficial critical velocities for various void fraction 

 

Fig. 12 Dimensionless critical velocities for various void fractions 

Figure 11 and Figure 12 show that the attainment of the critical mixture velocity is delayed 
as the void fraction increases. Comparing the obtained critical velocity of the pipe 
conveying single phase flow as obtained in Figure 4 to that obtained for the various void 
fractions, it can be seen that the presence of the two phase flow delays the attainment of 
the critical velocity. This can be attributed to the fact that all the velocity dependent terms 
increases for a two phase flow as compared to a single phase flow (Centrifugal term and 
the Coriolis term). However the Coriolis term is a damping term Paidoussis [20], the 
additional Coriolis damping imposed by the two phase flow damps the system and makes 
the critical velocity of the two phase flow higher than that of a single phase flow. Also, this 
term increases as the void fraction increase and accounts for the increase in the value of 
the critical velocity as the void fraction increases.  
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4.2.2. The Effect of Pressurization 

The effect of the pressure term is seen to make the second mode Hopf bifurcation to occur 
at a lower dimensionless mixture velocity of 8.238 as seen in Figure 13 as compared to the 
dimensionless critical mixture velocity of 12.505 obtained in Figure 7. As seen in equation 
(78) it is obvious that the pressure term acts similarly to the centrifugal term (MU2) and 
contributes to the buckling force which hastens the onset of instability of the pipe.  This 
observation is in line with Paidoussis [20], which highlighted that given sufficient 
pressurization, divergence may be induced by pressure alone. 

 

Fig. 13 First four modes transverse dimensionless complex frequency as a function of 
dimensionless two phase flow mixture velocity for β (liquid) =0.19998, ψ (liquid) 

=0.99948, β (gas) =0.000105, ψ (gas) =0.00052, void fraction =0.3, Π2 =10, 
Π1=Π0=a=αΔT=0 

4.2.3. The Effect of Top Tension 

The effect of tension term can be in two ways, depending on if it is positive or negative. A 
tension value less than zero indicates a compressing effect which will contributing to the 
buckling force in the same manner as pressurization, However, for values of tensions 
higher than zero as depicted in Figure 14, the observed trend is opposite to that of the 
pressurization effect. The positive tensioning effect is observed to have delayed the 
attainment of the onset of instability to a higher dimensionless mixture critical velocity of 
15.637 as compared to the dimensionless critical mixture velocity of 12.505 obtained in 
Figure 7.  

 

Fig. 14 First four modes transverse dimensionless complex frequency as a function of 
dimensionless two phase flow mixture velocity for β (liquid) =0.19998, ψ (liquid) 
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=0.99948, β (gas) =0.000105, ψ (gas) =0.00052, void fraction =0.3,  Π0 =10, 
Π1=Π2=a=αΔT=0 

4.2.4. The Effect of Thermal Loading 

Linearly, the effect of thermal loading is akin to that of pressurisation, it can be observed 
from equation (78) that thermal loading term will also contribute to the buckling force and 
this will aid the divergence of the pipe. Figure 15 shows that the onset of instability 
occurred at a lower dimensionless critical velocity of 7.071 as compared to the 
dimensionless critical mixture velocity of 12.505 obtained in Figure 7. This corroborates 
the softening effect highlighted by Marakala et al [9]. 

 

Fig. 15 First four modes transverse dimensionless complex frequency as a function of 
dimensionless two phase flow mixture velocity for β (liquid) =0.19998, ψ (liquid) 

=0.99948, β (gas) =0.000105, ψ (gas) =0.00052, void fraction =0.3, α=0.002, ΔT=60, 
Π1 =100, Π0=Π2=a=0 

4.2.5. The Effect of Poisson Ratio 

Figure 16 show that the modelling the effect of Poisson ratio delays the instability of the 
pipe. The dimensionless critical velocity is obtained to be 14.576 which is a higher velocity 
as compared to the dimensionless critical mixture velocity of 12.505 obtained in Figure 7. 
Also, the 4th mode Hopf bifurcation disappears with inclusion of the Poisson ratio. 

 

Fig. 16. First four modes transverse dimensionless complex frequency as a function of 
dimensionless two phase flow mixture velocity for β (liquid) =0.19998, ψ (liquid) 

=0.99948, β (gas) =0.000105, ψ (gas) =0.00052, void fraction =0.3, α=0, ΔT=0, Π1 = 
Π0=Π2=0, a=0.3. 
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Table 2: Summary of the effect of various parameters on critical flow velocity 

 

5. Conclusion 

The uniqueness and contribution of this work is the derivation of the governing equations 
and the study of the fluid elastic instability behaviour of extensible cantilever pipes 
conveying multiple phase flow as compared to previous works on pipes conveying single 
phase flows.  This study examines the instability of a top tensioned cantilever pipe 
conveying pressurized two phase flow. Taking into consideration the extensible theory, 
nonlinear equations of motion and boundary conditions were obtained for a cantilever 
pipe conveying multiple phase flow using Hamilton’s principle. The equations were made 
to be non-dimensional so as to remove the dependence on geometric and dimensional 
parameters. Using the method multiple scale perturbation technique, approximate 
solutions were obtained for a case study of a cantilever pipe conveying two phase flow of 
gas and liquid mixture. The leading order equation is a linear equation with the form of an 
undamped and unforced flow induced vibration problem. Resolution of the leading order 
equation resulted to the development of analytical scheme for estimating the axial and 
transverse natural frequencies. Numerical calculations were done to find the first four axial 
and transverse natural frequencies; Argand diagrams were generated for varying flow 
velocities. In order to assess the validity of the study, single phase results were compared 
with results in literature and the comparison was good. The two phase flow was modelled 
using the Chisholm empirical relations for various void fractions; the flow velocity was 
modelled as a mixture velocity accounting for the slip ratio of the phases.  The axial natural 
frequency plot for both the single phase and two phase flow exhibits similar trends, with 
all the paths moving towards the origin of the Argand diagram. The velocity at which the 
curve intersects with the abscissa is the critical velocity of the axial vibration, which was 
observed to have a higher value for two phase flow as compared with the single phase flow. 
For the transverse natural frequencies, the Argand diagrams reveals that as the increase 
in flow velocity progresses gradually, a value was attained when Hopf bifurcation 
occurred, which is considered as the transverse vibration’s critical flow velocity. The 
attainment of this critical flow velocity was examined for various void fractions and it was 
observed that the attainment of the critical velocity is delayed as the void fraction 
increases. A study of the effect of top tension, pressurization, thermal loading and Poisson 
ratio reveals that the critical velocity is attained earlier when pressurization is considered, 
while the effect of tension is in two ways either compressing or tensioning, a value of force 
less than zero will create a compression effect and acts in the same way as pressurization 
which aids divergence while a tensioning effect will delay the attainment of the critical 
velocity, the linear effect of thermal loading is akin to that of pressurisation, it hastens the 
attainment of the critical velocity and inclusion of the Poisson ratio in the model delays the 
attainment of the critical velocity of the pipe similar to the tensioning effect.  
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