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The 2-dimensional steady state boundary layer flow of nanofluids over an 
impermeable semi-infinite moving flat plate is studied. It is assumed that the flat 
plate moves with a constant velocity. Utilizing similarity transformation, the 
nonlinear governing equations are transformed to ordinary differential 
equations and then the resulting ODE is solved using the homotopy perturbation 
method. The strength of HPM solutions were verified by comparing with 
numerical results obtained using Runge-Kutta Gill method with shooting 
technique. Two types of nanoparticles gold and thorium in the water based fluid 
are considered. The Dimensionless velocity profiles are addressed for various 
nanoparticles and for different values of the nanoparticle volume fraction. The 
outcome of the nanoparticle volume fraction on the flow characteristics and 
mainly on the velocity gradient 𝑓′′(0) is investigated. It is finding that thorium 
nanoparticles have the highest velocity compared to Gold nanoparticles, that is 
the Thorium nanoparticle density is low compared to Gold nanoparticle density.  
The enhancing values nanoparticle volume fraction slowdown the fluid velocity 
and velocity gradientis high for Gold compared to Thorium. 

© 2020 MIM Research Group. All rights reserved. 
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1. Introduction

Gold nanoparticles have advantages over other metal nanoparticles due to their 
biocompatibility and non-cytotoxicity. Gold is utilized internally in human from last fifty 
years due to their chemical inertness. The size of Gold nanoparticles can be minimized 
during their synthesis and function alization with various groups. Gold nanoparticles 
accumulate in the tumor cells and illustrate optical scattering. So these can act as the probe 
for the microscopic study of cancer cells. These are also used in chemotherapy and 
diagnosis of cancer cell. Gold-water nanofluids using molecular dynamics nanofluids 
belong to a new class of fluids with enhanced thermo physical properties and heat transfer 
performance. 

Nanofluid is a considerable factor affecting the next major industrial revolution of the 
recent century. Many researchers have focused on modeling the thermal conductivity and 
obtained different viscosities of nanofluid. Ultra high- performance cooling is one of the 
most vital needs of many industrial technologies. Choi et al. [1] further a little quantity of 
nanoparticles to conventional heat transfer fluids and scrutinized the increase of thermal 
conductivity. Das [2] studied the effect of nanofluid flow past a permeable stretching sheet 
with slip, thermal buoyancy and heat Source/sink by numerically. Makinde and Aziz [3] 
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offered a numerical study on the boundary layer flow induced in a nanofluid due to a 
linearly stretching sheet with a convective boundary condition. Thiagarajan and Selvaraj 
[4] investigated nanofluid MHD stagnation point flow over a flat plate with heat transfer. 
Sobamowo et al. [5-8] presented the various types of nanofluid boundary layer flow 
problems. Anwar et al. [9] investigated the effect of free convection boundary layer 
nanofluid flow through a non-linear stretching surface. Bachok et al. [10] presented 
boundary-layer flow nanofluid past a moving semi-infinite flat plate in unvarying free 
stream, and establish that dual solutions exist when the plate and the free stream shift in 
the opposite directions. Bachok et al. [11] presented the problem of the identical free 
stream of nanofluid parallel to a fixed or moving flat plate by numerically. Presently, 
number of researchers studied numerical investigation of nanofluid flow over various 
types of plate problems [Hayate et al. [12, 13], Sheikholeslami [14, 15], Ahmad et al. [16]].  
He [17-20] expanded the homotopy perturbation method for solving linear, nonlinear and 
initial and boundary value problems by combining the standard homotopy and the 
perturbation methods. Recently, Sobamowo et al. [21-24] studied the homotopy 
perturbation method for different type of fluids with boundary value problems. Oguntala 
et al. [25] investigated the homotopy perturbation method for heat transfer process on 
inclination with porous fin heat sink. By making use of above research work, the plan of 
the current investigation to study the effect of Gold – Thorium water based nanofluid 
through a semi-infinite moving plate. The similarity transformations are used and solved 
by both HPM method and Runge-Kutta Gill method; the solutions are compared with the 
help of graphs. 

2.Mathematical formulation 

Consider the 2-dimensional laminar flow through a continuously moving flat horizontal 
plate embedded in Gold – Thorium water-based nanofluid. The nanofluid can contain each 
of six types of nanoparticles including gold and thorium. It is considered that the plate has 
a constant velocity. A uniform spherical size and shape is assumed for the nanoparticles. 
It is also assumed that the base fluid and the nanoparticles are in the thermal equilibrium, 
and no velocity slip occurs between the base fluid and the nanoparticles Raftari et al. [26]. 
Considering these assumptions the laminar boundary layer equations are as follows.      
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The principal boundary conditions are as follows: 
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U  is the plate velocity which is constant, and 𝑥 and 𝑦 directions with 

corresponding velocity components are 𝑢 and 𝑣 respectively. Where the viscosity of the 
nanofluid 𝜇𝑛𝑓 , the density of the nanofluid 𝜌𝑛𝑓 .  
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Where 𝜇𝑓  is the viscosity of the fluid, 𝜌𝑓 and 𝜌𝑠 are the reference density of the fluid 

fraction and solid fraction respectively, and   is the nanoparticle volume fraction. 

The similarity variable and stream functions are defined as follows, 
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Where the local Reynolds number is 𝑅𝑒𝑥 = 𝑈𝑤𝑥 ∕ 𝑣𝑓 , in whichthe kinematic viscosity of 

the base fluid (water ) is 𝑣𝑓 . The stream function is 𝜓(𝑥, 𝑦) which identically satisfies Eq.(1) 

and is defined as 𝑢 =
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The dimensionless momentum and boundary conditions are as follows; 
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with the boundary conditions 

( ) 00 =f , ( ) 10 =f , ( ) 0' =f  (7) 

The significant quantity is the local skin friction coefficient 𝐶𝑓,𝑥defined as 𝑐𝑥,𝑓 = 𝜏𝑤 ∕ 𝜌𝑓𝑈𝑤
2  

in which the plate surface shear stress is given as 𝜏𝑤 = 𝜇𝑛𝑓(ⅆ𝑢 ∕ ⅆ𝑦)𝑦=0 Use of the 

similarity parameters (5) gives [27]. 
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3. Solution by homotopy perturbation method (HPM)

Using HPM [17, 18, 19 and 20], the original nonlinear ODE (which cannot be solved easily) 
is divided into some linear ODEs. 

At first, the governing ODE (6) and the boundary conditions (7) are written as: 
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According to HPM, the following serious in terms of powers of 𝜌is substituted in Eq. (11): 
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After some algebraic manipulation, equating the identical powers of𝜌to zero gives: 
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Eq. (13) for𝜌0 has the following solution: 
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Here𝑎is a constant which is further to be determined. If solution (16) for 𝑢0 is substituted 
in the equation for𝜌1, Eq. (14), it will become as: 
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Eq. (17) for 1u can be solved in an unbounded domain under the boundary conditions 

𝑢1(0) = 0, 𝑢1
′ (0) = 0, 𝑢1

′ (∞) = 0 (as it is shown in the Appendix) [17], 

which gives𝑢1 as: 
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. Thus the first order approximate semi analytical solution 𝑓(𝜂) = 𝑢(𝜂) +

𝑢1(𝜂)becomes as: 
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According to Eq. (19), the dimensionless plate surface shear stress is as: 
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4. Numerical Analysis 

The equations (6) with boundary conditions are solved numerically using the Runge-Kutta 
Gill method algorithm with a systematic governing of 𝑓′′(0) by the shooting technique 
until the boundary conditions are satisfied. The step size is taken as 𝛥𝜂 = 0.01. The 
process is repeated until the results are correct up to the desired accuracy of 10−5level. 
Numerical results are found for several values of the nanoparticle volume fraction 𝜙 on 
velocity𝑓′(𝜂) and velocity gradient𝑓′′(0). Table 1 compares the HPM solution and 
numerical solution values of the dimensionless fluid velocity gradient at the surface 𝑓′′(0) 
for gold and thorium water nanofluids for various values of the nanoparticle volume 
fraction𝜙. 

Table 1. Values of velocity gradient 𝑓′′(0) for some values 𝜙 for thorium and gold water 
nanofluids. 

 
  

Thorium 
(HPM) 

Thorium 
(Numerical) 

Gold 
(HPM) 

Gold  
(Numerical) 

 
0 

 
-0.471404 

 
-0.44411 

 
-0.471404 

 
-0.44411 

 
0.1 

 
-0.594801 

 
-0.55999 

 
-0.695050 

 
-0.65412 

 
0.2 

 
-0.632370 

 
-0.59599 

 
-0.769766 

 
-0.72461 

 

 

 

 

Table 2. Thermophysical properties of base fluid and the nanoparticles at 288K   

 
 

Water Thorium Gold 

 

)/( 3mkg  

 
1000.5 

 
11724 

 
19300 

 
)/( kgKjCP
 

 
4181.8 

 
118 

 
126 

 
)/( mKWk  

 
0.59 

 
54 

 
318 

 

5. Results and Discussion 

In this study, boundary layer flow of nanofluids over a semi-infinite moving flat plate 
embedded in the water-based nanofluid is investigated analytically utilizing homotopy 
perturbation method. Also, comparison between the numerical results and HPM solution 
of velocity including different values of active parameters is shown in this figure. In table. 
2 the density of water and nanopaticles used in the present study are given. 
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Figure 1 and  2 display the effect of nanoparticle volume fraction on the velocity profiles 
of the  thorium  and gold water nanofluids. It is clear that an increase in the nanoparticle 
volume fraction decreases the velocity profiles. This phenomenon occurs because 
presence of the nanoparticles leads to further thinning of boundary layer thickness.  The 
physical meaning is the increasing value of nanoparticle volume fraction means the fluid 
density is increased, so fluid velocity is reduced [6].     

From Figure 3 it is observed that the thorium nanoparticles have the highest value of 
velocity profile compared to gold nanoparticles. The velocity profile of a nanofluid is based 
on the density of the nanofluids. The reason is thorium nanoparticle have low density 
compared to gold nanoparticle.  

 

Fig. 1 Velocity profiles 𝑓′(𝜂) for different nanoparticle volume fractions for thorium 
water nanofluid. 
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Fig. 2 Velocity profiles 𝑓′(𝜂) for different nanoparticle volume fractions for gold water 

nanofluid. 

 

Fig. 3 Velocity profiles 𝑓′(𝜂) for different nanoparticles when .1.0=  
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Fig. 4 Effect of the nanoparticle volume fraction 


 on the fluid velocity gradient for 
different types of nanofluids. 

Figure 4 presents the variations of 𝑓′′(0)with 𝜙for various nanoparticles (Gold and 
Thorium) using HPM solution from Table 1. It is seen that with the increase of 𝜙 the 
magnitude of 𝑓′′(0)increases for thorium-water and gold-water working fluids. 
Comparison of Figure 4 with the nanoparticles densities in table 2 makes it clear that the 
nanoparticles with higher density result in higher magnitudes of 𝑓′′(0). 

6. Conclusion  

In this work was to examined the effect of convective boundary layer flow of a Gold – 
Thorium water based nanofluid through a moving flat plate by  both analytically and 
numerically.  Analytically by HPM method and numerically by Runge-Kutta Gill method. 
The effects of different nanofluids on Skin friction and velocity profiles are discussed with 
the help graph. The main concluding observations can be summarized as follows:  

• The two dimensional boundary layer flows of nanofluids over an impermeable 
consciously moving horizontal plate is studied. The results show that the present 
HPM solution with only two terms agrees within 3% error with numerical 
solutions for the velocity gradient at the plate surface.    

• Thorium nanoparticles have the highest value of velocity profile compared to 
gold nanoparticles. 

• Velocity gradient decreases with increasing values of nanoparticle volume 
fraction for both of thorium water nanofluid and gold water nanofluid 

• Increasing values nanoparticle volume fraction decreases the velocity profile. 
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Nomenclature 

(u, v) velocity of the fluid in the x, y directions  respectively(m/s) 

Cfx skin friction coefficient 

Rex local Reynolds number 

x distance along the surface (m) 

y distance normal to the surface (m) 

f dimensionless stream functions 

Greek Symbols 

η similarity variable 

ρ density of the fluid (kg/m3) 

f  kinematic viscosity of the base fluid (water) 

f  density of the fluid fraction 

s  density of solid fraction 

f  the viscosity of the fluid 

nf  viscosity of the nanofluid 

nf  the density of the nanofluid 

  the nanoparticle volume fraction 
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