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 The metastability of metallic glasses (MGs) can be altered via post-heat 
treatment around its glass transition temperature 𝑇𝑔. Here, the influence of the 

short-term heat treatment slightly below the glass transition on the thermal, 
thermomechanical, and structural properties are investigated. The water-cooled 
copper mold casting is used to produce the Cu46Zr44Al8Hf2 MGs under argon gas. 
Heat treatment was performed by continuous heating at 20 °C/min to 400 °C, 
followed by immediate cooling. Samples were characterized by differential 
scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) via 
continuously heating through its 𝑇𝑔 and 𝑇𝑥 (crystallization temperature) and by 

X-ray diffraction (XRD) in Bragg-Brentano (𝜃 − 2𝜃) geometry. Main findings 
observed are (1) an increase in the thermal stability, 𝑇𝑥 − 𝑇𝑔, registered by DMA 

and DSC, (2) a remarkable drop of the relaxation enthalpy in the DSC trace 
calculated from the change in specific heat before 𝑇𝑔, (3) appearance of a third 

broad peak after heat-treatment in XRD, and (4) steady profile of 𝐸′ below 𝑇𝑔 

correlated to the 𝛽-relaxation in DMA. The unexpected increase in ∆𝑇 is linked 
to the release of the residual stresses accumulated during fast-quenching of the 
molten ingot down to room temperature. This stress can be estimated as 240 
MPa on the outer surface and 100 MPa in the center of the cast CuZr-MG plates, 
which can be eliminated by the introduced heat-treatment method. Overall, this 
study suggests a direct and practical way to enhance the thermal stability and 
high strength retention of CuZr-based metallic glasses at elevated temperatures.  

 
© 2021 MIM Research Group. All rights reserved. 
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1. Introduction 

The thermodynamic behavior of complex alloy systems can reveal additional information 
such as mechanical damping, vibration-induced phase transformations and sensitive 
defect investigation compared to the conventional static-type characterization [1-7]. The 
instantaneously reversible elasticity, time-delayed viscoelasticity and time-dependent 
irreversible viscoplasticity are investigated experimentally and theoretically by applying a 
small vibrational load, which can be done at constant frequency or a range of frequencies 
during continuous heating or isothermal treatment [8-13]. Dynamic mechanical analysis 
(DMA) is nowadays used to identify the changes in the storage 𝐸′ and loss 𝐸′′moduli as a 
function of the glass transition and crystallization events of amorphous metallic alloys so-
called (bulk) metallic glasses (B)MGs [14-24].  

The transition of the metastable glasses to a stable configuration is called physical aging or 
structural relaxation by the annihilation of excess free volume [25], while 
isoconfigurational glassy state dynamics obey the Arrhenius behavior [26, 27]. The 
relaxation phenomenon has two major components: main (𝛼) and secondary (𝛽 or excess 
wing) [28, 29]. The α relaxation is mainly linked to the cooperative motion of atoms or 
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molecules in the liquid, whereas the secondary relaxation can be described as the local 
noncooperative motion of molecules or atoms [30, 31]. Some metallic glass classes show a 
prominent 𝛽-relaxation peak [32, 33], whereas others do not show a pronounced 
secondary peak but an excess wing of the 𝛼 relaxation peak [29, 34, 35]. 

 

In the class of metallic glass, CuZr-MGs exhibit appealing glass-forming ability with cooling 
rates down to 10 K/s, allowing them to be cast into mm-thick samples [36]. They possess 
higher yield strength (up to 2.5 GPa [37, 38]) close to the theoretical limit, up to 2.6% 
elastic strain at room temperature [39, 40], and acceptable fracture toughness of up to 100 
MPa m-1/2 [41]. Recent investigations on the isothermal annealing of BMGs below the glass-
transition temperature 𝑇g revealed the pronounced changes in terms of mechanical and 

thermal properties due to the structural relaxation, and in turn, the annihilation of free 
volume stored in MGs upon casting [42-55]. Among them, Li et al. has shown that although 
no pronounced changes are observed for the DSC trace, annealing close to sub-𝑇g  for a long 

duration can lead to brittle behaviour with nearly-zero fracture energy [43]. The long-term 
thermal annealing at temperatures below 𝑇g for Zr-containing metallic glasses was proven 

to originate from the temporary structural relaxation with an additional endotherm in the 
glass transition region, which can be fully reversed by the subsequent heat treatment for a 
short term above 𝑇g [42]. Thus, the endotherm observed in differential scanning 

calorimetry (DSC) right after 𝑇g is accounted for by the time-dependent relaxation process 

during sub-𝑇g annealing.  Another study from the same group has shown that the difference 

between the fictive (determined from calorimetry) and critical fictive (determined from 
annealing and 3-point bend test) temperatures defines their mechanical behaviour and its 
sensitivity to rate of cooling and annealing conditions [56]. In addition to the annihilation 
of free volume, phase devitrification can be also observed for the 
Zr57Ti8Nb2.5Cu13.9Ni11.1Al7.5 [57] and Zr55Cu30Al10Ni5 [58] alloys depending on the 
isothermal treatment temperature and time. 

It has been confirmed in the literature that the sub-𝑇g annealing induced structural 

reordering of Cu and Zr atoms leads to limited diffusion on the nanometer-scale registered 
by the synchrotron X-ray diffraction (XRD), which eventually results in considerable 
compressive plasticity [58-60]. This improvement was linked to the chosen heat treatment 
path: continuous heating to the desired sub-𝑇g, wait for several minutes until the 

temperature is stabilized, followed by rapid cooling to the desired temperature. For the 
Zr35Ti30Cu7.5Be27.5 with larger glass forming ability, our group has proven that the 
mechanical properties of the 2D honeycombs [46] and periodic heterostructures [45] do 
not alter for long-term isothermal heat treatment (18 h and below) even if the sub-Tg 
annealing is performed only 25 °C below its glass transition. 

The influence of sub-𝑇g annealing on CuZr-based metallic glasses was also studied in detail 

by our group. In the first study, Cu46Zr44Al8Hf2 composition was used, and various 
characterizations including DSC, dilatometry, 3-point bend-test, parallel-plate rheometry, 
XRD and transmission electron microscopy was conducted on a range of heat-treated 
samples below and above its Tg [49]. In the second article, by using the same material, we 
have analysed the differences in the atomic configuration on the optimized sample (heat-
treated at 400 °C) and the as-cast state using reciprocal and real space analysis with the 
data acquired from the synchrotron XRD measurements [61]. 

Here, we present that the thermomechanical, thermophysical and structural properties of 
Cu46Zr44Al8Hf2 metallic glasses are altered by continuous heating and subsequent cooling 
treatment. Thin sheets prepared from the mm-sized cast plate were subjected to µm-scale 
oscillating displacements in a 3-point bending mode. 𝐸′, 𝐸′′and 𝑡𝑎𝑛𝛿 values, particularly 
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around the supercooled liquid region and sub-glass transition were compared to the as-
cast state sample. The structural properties of each sample were characterized by XRD, 
whereas the continuous heating traces of the standard DSC were comparatively evaluated. 
The modifications are linked to the residual stresses imposed during casting and their 
release via the post-heat treatment process. 

2. Material and Method  

The master alloy of Cu46Zr44Al8Hf2 was prepared from elements with purity higher than 
99.99% by arc-melting (Edmund Bühler GmbH) in an argon atmosphere purified by Ti 
getter. The master alloys were heated above the liquidus temperature three times to 
homogenize the ingot. The water-cooled copper mold casting into plate shape with 75 * 10 
* 1 mm3 was conducted under the Ar atmosphere using an in-situ suction casting device 
attached to Edmund Bühler Arc Melter. Part of the rods was inserted in the TA Discovery 
Hybrid Rheometer DHR-3 and brought to 400 °C at a heating rate of 20 °C/min under N2 
atmosphere. After a lag time of 5 seconds, samples were immediately cooled to 150 °C at a 
cooling rate of 50 °C/min and subsequently water-quenched to room temperature. All the 
samples were ground and polished, where the final samples were 8.0 ± 1.0 mm in length 
and 4.5 ± 0.3 mm in width with a thickness of 0.50 ± 0.05 mm. Differential scanning 
calorimetry (DSC) measurements were performed with a Mettler Toledo DSC 3+ under Ar 
atmosphere at a constant heating rate of 20 °C/min with 20.0 ± 0.5 g polished samples. 
Dynamic mechanical analysis (DMA) was performed in three-point bending mode using a 
TA Discovery Hybrid Rheometer DHR-3 in the temperature range 50 °C – 600 °C with a 
heating and cooling rate of 10 °C/min and a frequency of 1 Hz for a 20 µm oscillation 
displacement which generates the oscillation stress. A constant preload of 25 N was 
applied. Nitrogen was used as purging gas during the experiments. The samples were 
examined by X-ray diffraction (XRD) in Bragg-Brentano (𝜃-2𝜃) geometry using a Bruker 

D2Phaser diffractometer with Co Kα radiation (𝜆 =  1.7089 Å) using a step size of 0.02. 

3. Results 

Since the temperature stabilization can be precisely controlled and rapidly satisfied in the 
DMA furnace, the samples were cooled immediately after heating (with a lag time of 5 
seconds). This procedure is different from the previous heat treatment studies performed 
in a standard calibrated furnace, where 5 minutes of isothermal heat treatment was 
applied both for temperature stabilization and atomic reconfiguration [49]. Figure 1 
compares the as-cast sample with the heat-treated sample at 400 °C for 5 minutes. The first 
broad amorphous X-ray diffraction maximum does not visibly change upon heat treatment, 
whereas the second broad maximum shifts slightly towards a larger 2𝜃 (Table 1). In 
amorphous structures, X-rays are scattered in many directions yielding a broad diffraction 
peak distributed in a wide range of 2𝜃 instead of high intensity narrower peaks [62]. The 
first and second broad amorphous X-ray diffraction maximum, Q1 = 1.36 Å-1 and Q2 = 2.35 
Å-1, respectively, is defined by the configuration of the nearest neighbor shell atoms. A 
detailed synchrotron XRD analysis using the same composition was performed by our 
group, which indicates the probabilities of the most abundant atomic pairs, Zr-Cu, followed 
by Cu-Cu and Zr-Zr, respectively [61].  A third peak for the heat-treated sample at 101° 
with Q3 = 5.42 Å-1 emerges due to the reconfiguration of these atomic pairs within the 
amorphous clusters. Thus, compared to our previous XRD findings [49, 61], the heat 
treatment environment and time for heat treatment seems to influence the type of 
medium-to-long-range order changes.  
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Fig. 1  X-ray diffraction patterns of the as-cast (blue) and heat-treated at 400 °C (wine). 
The black arrow indicates the small hump observed for the HT-400°C sample. Pseudo-

Voigt fitting (Cyan and light red colors) was applied to find the peak positions. 

The DSC traces of the as-cast and HT-400°C samples in Figure 2 registered the slight shift 
in 𝑇g towards smaller temperatures (by 5 °C). On the other hand, no change is observed for 

the crystallization temperature (𝑇x =  510 °C). Thus, the supercooled liquid region (SCLR), 
∆𝑇 = 𝑇x − 𝑇g, becomes larger with the short-term sub-𝑇g heat treatment, confirming the 

existence of structural modifications observed in the XRD diffractogram. The relaxation 
enthalpy before the relaxation endotherm, ∆Hrelax, shows a pronounced decrease as well as 
the change in the shape of the area, i.e. for the HT-400°C sample, specific heat (𝑐p) does not 

drop during relaxation as in the case for the as-cast samples. Thus, similar to our previous 
study, the stored free-volume in the metallic glass during casting is partially consumed by 
this heat treatment process without a significant degree of change in 𝑇𝑔 and 𝑇x [60].  

Since the temperature stabilization can be precisely controlled and rapidly satisfied in the 
DMA furnace, the samples were cooled immediately after heating (with a lag time of 5 
seconds). Figure 3 shows the before and after DMA measurement image of the 
representative as-cast sample. The metallic shiny and flat samples deform in the SCLR due 
to the dramatic drop in viscosity by roughly an order of magnitude per every 20 °C increase 
[63-65]. As a result, the samples were bent ~90° under small amounts of applied loads (25 
N), while the surface was oxidized and became black.  
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Fig. 2 Specific heat calculated from the DSC traces as a function of temperature for the 
as-cast (blue) and HT-400°C (wine) samples. 𝑇gas−cast

= 450 ± 2 °C, 𝑇gHT−400°C
= 445 ± 2 

°C, 𝑇x = 510 ± 2 °C, ∆𝐻relaxas−cast
= 9.2 ± 0.5 W g-1, and ∆𝐻relaxHT−400°C

= 5.5 ± 0.5 W g-1.  

 

 

Fig. 3 CuZr-based MG samples prepared for the three-point bending test. The flat, 
metallic gray sample (right) is the representative as-cast state sample—the sample 

bents during continuous heating in its SCLR under a small static load (left). 

 
The deformation profiles of the as-cast and HT-400°C samples are displayed in Figure 4a. 
A relatively constant storage modulus is observed for both samples until 275 °C. After this 
temperature, the as-cast state sample stiffens by the rise of the storage modulus 𝐸′ from 
99 GPa to 110 GPa. On the other hand, no remarkable change of the 𝐸′ = 105 𝐺𝑃𝑎 for the 
HT-400°C is observed. This is because of the increase in 𝐸′ below 𝑇g related to 𝛽-transition 

disappears after the sub-𝑇g heat treatment. The 𝑇g determined from the 𝐸′ onset 

(intersection of the dashed lines in Figure 4b) yields the values of 427 and 415 °C for the 
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as-cast and HT-400°C, respectively. Since the 𝑇g determined from the 𝐸′ onset being related 

to mechanical failure, it can be concluded that the sub-𝑇g annealing causes embrittlement, 

which can lead to early catastrophic failure, as reported in [42, 45, 46, 56]. After full 
crystallization, the storage modulus immediately exceeds the storage modulus of the initial 
states. 

 

(a) 

 

(b) 

Fig. 4  (a) Overview and (b) magnified traces of the storage modulus (𝐸′) vs. 
temperature (T) of the MG determined from three-point bending, under continuous 

heating at a heating rate of 10 °C/min and a frequency of 1 Hz between 50°C and 600 
°C. The temperature accuracy is within ± 2 °C. 

Figure 5a depicts the loss modulus, 𝐸′′, as a function of temperature. 𝑇g values determined 

from the 𝐸′′ peaks are 455 °C and 447 °C for the as-cast and HT-400°C samples, 
respectively. This peak corresponds to the temperatures where the viscous drop already 
begins, and thus, is more closely related to the physical property changes obtained from 
the differential scanning calorimetry (c.f. Figure 2). Compared to 𝐸′and 𝐸′′,  𝑡𝑎𝑛𝛿 = 𝐸′′/𝐸′ 
shows the peak at the highest temperature; for the as-cast and HT-400°C samples, these 
values are 479°C and 485°C, respectively. This point corresponds to the bottom points at 
the 𝐸′ vs. T graph in Figure 4b, indicating the full crystallization, 𝑇x. The extent of the SCLR 
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is larger for the heat-treated sample, corroborating our DSC results.  It is known that the 
height and shape of the 𝑡𝑎𝑛𝛿 peak change systematically with amorphous content. 𝑡𝑎𝑛𝛿max 
for the HT-400°C is 1.14, much higher than the 0.68; moreover, it is slightly broader than 
the as-cast state sample. The summary of the findings of the DSC, DMA and XRD studies are 
given in Table 1. 

 

(a) 

 

(b) 

Fig. 5 (a) The loss modulus (𝐸′′) and (b) 𝑡𝑎𝑛𝛿 vs. temperature (𝑇) of the MG 
determined from three-point bending, under continuous heating at a heating rate of 10 
°C/min and a frequency of 1 Hz between 50 °C and 600 °C. The temperature accuracy 

is within ± 2 °C. 

Our findings hint that the as-cast state sample might have residual stresses imposed upon 
casting, which can arrest the free volume in MGs. On the other hand, the post-heat 
treatment releases these stresses and contributes to the free volume. The residual stresses 
imposed on the sample upon quenching and the influence of post-heat treatment on the 
stress release are shown in the discussion part.               
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Table 1. Comparison of DSC, DMA and XRD data of the as-cast and heat-treated samples. 
Note that the temperature accuracy for the DSC and DMA measurements is within ± 2 °C, 
and the enthalpy of relaxation is within ± 0.5 W g-1; the storage and loss modulus is 
within ± 3 GPa, and XRD accuracy is within ± 0.02°. 

 
DSC Tg (°C) Tx (°C) ∆T (°C) ∆Hrelax 

(W g-1) 
As-cast 450 510 60 9.2 

HT-400°C 445 510 65 5.5 

DMA Tg (𝐸′
𝑜𝑛𝑠𝑒𝑡-°C) Tg (𝐸′′

𝑝𝑒𝑎𝑘-°C) Tx (𝑡𝑎𝑛𝛿𝑝𝑒𝑎𝑘-°C) ∆T′ (°C) 

As-cast 427 455 479 52 

HT-400°C 415 447 485 70 

DMA ∆T′′ (°C) E′ @ 275 °C E′
onset tanδ 

As-cast 24 99 110 0.68 

HT-400°C 38 105 105 1.14 

XRD 1st peak (°) 2nd peak (°) 3rd peak (°)  

As-cast 45.06 78.02 N/A  

HT-400°C 44.96 78.60 101.02  

 

4. Discussion 

The cooling rate of a plate can be estimated from the finite element modeling of the BMG 
ingots fabricated by the copper mold casting, where the obtained cooling rates of samples 
were in a linear agreement with the variation of sample diameter [66]. For the plate 
geometry, the equation to obtain the cooling rate 𝑅 was slightly modified as: 

𝑅 = 15800/(√4 ∗ (𝑤 ∗ 𝑡)/𝜋)
1.92

                                                                                           (1) 

where 𝑤 and 𝑡 are the width and thickness of the cast plate, respectively. For  𝑡 = 1 mm 
and 𝑤 = 10 mm, the cooling rate can be estimated as 𝑅 ~ 1375 °C/s. For metallic glasses, 
a remarkable slow-down is viscosity, and in turn, the atomic mobility is observed due to 
the decrease in the number of metastable configurations that glass can be present [67]. For 
this reason, we can estimate the heat transfer coefficient ℎ from the cooling rate at 𝑇g by: 

 

ℎ =
𝑅∗𝑉∗ 𝑐p∗𝜌 

𝑆∗(𝑇g−𝑇f)
                                                                                                                                        

(2) 

where 𝑉 = 𝐿 ∗ 𝑤 ∗ 𝑡 is the volume of the cast rod (𝐿 = 75 mm length of the rod), 𝑐p the 

specific heat and 𝜌 the density of the BMG, 𝑆 = 2(𝐿 ∗ 𝑤 + 𝑤 ∗ 𝑡 + 𝐿 ∗ 𝑡) the surface area 
and 𝑇f = 298 K the final temperature of the cast rod, respectively. 𝑐P and 𝜌 are determined 
by the continuous heating curve of a similar CuZrAl-based BMG and Archimedes’ method 
as 𝑐P ~ 450 J kg−1 °C−1and 𝜌 = 6970 kg m−3, respectively [68]. 𝑇g = 700 K is selected 

from the 𝐸′ onset in Fig. 4b to reflect the mechanical property changes. Inserting these 
values into the equation (2) yields h ~ 4820 W m−2 K−1. From the correlation between the 
hoop stress vs ℎ in Fig. 6 of ref. [69] the compressive (𝜎𝑐res, outer region) and tensile (𝜎tres, 
center region) residual stresses can be estimated as 𝜎cres = 240 MPa and 𝜎tres = 100 MPa. 
The mold material, i.e. whether it is stainless steel or copper, has a negligible influence on 
the RT stress state of the as-cast BMG rod. This is mainly because the metallic mold is 
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elastic throughout the casting process, and the residual stresses in as-cast BMGs are hardly 
influenced by the mold material and its shape (maximum by 3%) [69]. Hence, the elastic 
stresses are relaxed after removing the mold, leaving only the residual stress in the cast-
BMG. 

From our previous dilatometry measurements for the same composition, the thermal 
expansion coefficient can be retrieved as 𝛼 = 1.124 × 10−5 K−1 [49]. Hence, the 
continuous heating to 400 °C from RT creates counter stress according to: 

𝜎𝑥𝑥 = 𝐸(𝑥) ∗ 𝛼(𝑥) ∗ ∆𝑇                                                                                                                  (3) 

where 𝑥 is an arbitrary direction showing linearity, 𝐸 = 97 GPa (obtained from the DMA 
data) and ∆𝑇 = 375 K. If we assume an isotropic stress annihilation, then 𝜎 = 410 MPa. 
Assuming that a further stress release is possible while temperature stabilization and 
subsequent rapid quenching to minimize any post-shrinkage, the considered BMG is fully 
released from the residual stresses. 

The complete annihilation of the residual stresses is also reflected in the thermal, 
thermomechanical and structural properties of the considered CuZr-based MG. As 
expected, the sample structurally relaxes after the sub-𝑇g heat treatment, as revealed by 

the drop in the relaxation enthalpy and 𝑇g registered in Fig. 2. This special heat treatment, 

on the contrary to general heat treatment processes of MGs around and above 𝑇g, increases 

the thermal stability of the alloy (DT), which can be linked to the percolation of locally 
favoured clusters within the amorphous matrix which does not lead to observable 
crystallinity [70]. This change in local scale is also reflected in the new peak at 101° 
(corresponding to d = 1.09 Å) observed by the XRD study in Fig. 1. The release of the 
residual stresses results in a plateau with a relatively constant storage modulus of 105 MPa 
compared to the remarkable stiffening effect observed for the as-cast sample (Fig. 4 and 
Table 1).  Moreover, this stress release yields a significant decrease in 𝑇g measured both 

from the 𝐸′
𝑜𝑛𝑠𝑒𝑡  and 𝐸′′

𝑝𝑒𝑎𝑘  and increase in 𝑇x  measured from the 𝑡𝑎𝑛𝛿𝑝𝑒𝑎𝑘 , which in turn 

increases the DT. 

5. Conclusions 

In this contribution, direct evidence is provided that the thermomechanical properties of 
CuZr-based MGs under sinusoidal oscillating stress being altered by continuous heating to 
50 °C below 𝑇g, and rapidly cooled to room temperature after temperature balance. The 

findings clearly indicate that the sub-𝑇g heat treatment modifies the short-to-medium 

range ordering in metallic glass corroborated with the appearance of the 3rd broad hump 
in XRD. The sub-Tg heat treatment accounts for the stress release which alters the 
thermomechanical and thermophysical properties. In this regard, the heat-treated sample 
has high thermal stability and stiffness retention at elevated temperatures. 

The key novelties are: (1) This study is a continuous heating and cooling type heat 
treatment process without having a relatively long term (~5 min) heat treatment. (2) This 
is the first time in the literature that influence of the sinusoidal oscillating stress applied 
via DMA on the thermomechanical properties has been assessed for the heat-treated CuZr-
based metallic glasses. (3) This study links the correlation between thermophysical, 
thermomechanical and structural properties via the adopted heat treatment and the 
correlated release of the residual stresses. 

The metallic shiny and flat samples are bent ~90° under small amounts of applied static 
load (25 N) and oscillation displacement (20 µm), and the surface becomes oxidized during 
dynamic mechanical analysis (DMA) three-point bending experiment. The broad, 
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amorphous peaks for the as-cast sample do not differ after the heat treatment; however, a 
small third broad peak at 101° emerges. The differential scanning calorimetry (DSC) traces 
indicate an increase in 𝑇g  by 5 °C after heat-treatment. The enthalpy of relaxation ΔHrelax, 

on the other hand, decreases significantly from 9.2 W g-1 to 5.5 W g-1, confirming the 
changes in the configurational state. DMA performed in the three-point bending mode 
reveals that 𝐸′ shows a steady profile after sub-𝑇g annealing. The 𝑇g  and crystallization 

temperature 𝑇x determined from the onset of the decrease in the loss modulus 𝐸′′ and the 
peak positions of tan 𝛿, respectively, suggests that 𝑇g and ∆𝑇 are larger for the HT-400°C 

sample in line with the DSC findings. On the other hand, Tg measured from the onset of the 
storage modulus 𝐸′, indicating the sudden changes in the mechanical properties, is 12 °C 
larger for the as-cast state sample. The crystallization temperature Tx of the HT-400°C 
sample determined from the tan 𝛿 is 6 °C higher, confirming a remarkable difference 
between the supercooled liquid regions (cf. ∆𝑇 = 54 °C for as-cast and ∆𝑇 = 72 °C for HT-
400 °C samples). The unusual increase affirmed by the DSC and DMA analyses is accounted 
for by the residual stresses imposed on the sample during rapid quenching. The 
mathematical estimations to find these cumulative stresses yield 240 MPa and 100 MPa on 
the outer surface and center of the cast plate, respectively. Due to the linear expansion of 
the cast plates upon continuous heating, the residual stresses can be fully released by the 
subsequent sub-𝑇g heat-treatment.  
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