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 In this work, the free vibration and the stability problems of functionally graded 
beams are analysed via the Timoshenko theory through the Navier procedure 
and via an appropriated finite element (FE) approach. In particular, it is shown 
how the definition of homogenized/generalized displacements allows to 
uncouple boundary conditions, obtaining a remarkable advantage in terms of 
computational effort. Moreover, a unified expression capable to express the 
buckling load for different constrain conditions is discovered. The latter may be 
considered the natural extension of the Euler’s one derived in the century XVIII. 
In order to verify the reliability of the proposed method, natural frequencies, 
buckling loads and static displacements of differently constrained beams are 
numerically evaluated.    
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1.	Introduction	

Since the beginning of the actual century, there has been a considerable interest in the 
study of functionally graded materials (FGMs) due to their ability to satisfy the increasing 
demands in modern technologies. This class of composites is formed by varying percentage 
content of materials in any desired direction and, consequently, it owns properties that 
vary gradually with respect to the spatial coordinates. Compared with the traditional 
laminated composite materials, the FGMs have no interfaces of material property, so that 
the phenomena of stress concentration can be reduced greatly. The literature on the topic 
shows several studies on the structures in both the civil and mechanical engineering. 
Among these papers, for example, a three dimensional solution for the problem of 
transversely loaded, all around clamped, rectangular plates, within the linear, small 
deformation theory of elasticity, is presented by Elishakoff & Gentilini [1]. Theoretical and 
numerical formulations based on the third-order deformation plate are developed by 
Reddy [2]. Huang & Shen [3] treat the nonlinear vibration and dynamic response of FGM 
plates, taking into account conduction and temperature-dependent material properties. 
Referring to the modelling of functionally graded beams (FGBs), Reddy [4] applies couple 
stress theories, introduced by Eringen [5] and developed by Yang et al. [6], to describe 
micro-mono-dimensional structures. Most of the work mentioned have considered 
variation of the material properties in the thickness direction. A relatively small number of 
researchers consider the variation of the material properties along the axial direction 
[7],[8]. Moreover, Zhu & Sankar [9] consider the Euler beam theory in the special case of 
Young modulus varying following a polynomial law in the thickness direction. Although 
the presence of papers showing the application of new formulations, only a small number 
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of them aims to simplify the solution procedures for the FGBs under the Euler-Bernoulli 
and Timoshenko hypotheses.  

In Euler-Bernoulli beam theory, cross sections, perpendicular to the neutral axis before the 
bending, remain perpendicular to the neutral axis even after the bending. This model is 
suitable for slender beams and lower modes of vibration, while it is inadequate to 
characterize the response of short beams, due to lower shear rigidity. To overcome this 
draw back, the Timoshenko beam theory is largely applied. A useful review of the studies 
on shear deformable beams and plates can be found in the book by Wang & al. [10]. 
Furthermore, the work made by Li & al. [11] is also interesting. They show a unified 
approach for analysing static and dynamic behaviour of both Euler-Bernoulli and 
Timoshenko FGBs introducing a new variable linked to vertical and rotational degrees of 
freedom of beams. This type of technique is widely used in literature and it leads to 
physical speculations based on not local theories [12] and computational advantageous 
methods [13]. With the same philosophy, Falsone G. & La Valle G. [14] show a new kind of 
approach that lies on the concept of homogenization of the general beam cross-section and 
on the introduction of generalized quantities with the aim of simplifying differential 
equations governing the correspondent elastic equilibrium problem.  

The goal of this work is to apply homogenized/generalized displacements, introduced in 
the last cited paper in static conditions, for dynamic problems and buckling problems. 
Moreover, a FE formulation, based on the use of the homogenized/generalized 
displacements, is shown for the Timoshenko FGBs. The paper is organized as follows: first 
the differential equations governing dynamic equilibrium of FGBs, in terms of 
homogenized/generalized axial and transversal displacements, are derived. Then, the 
above cited FE formulation is shown in the details. In section 5, the buckling problem is 
treated, showing how the use of the above cited displacement leads to a very simple 
formulation, able to give some exact solutions. Lastly, in section 6, some simple numerical 
examples are shown to verify the reliability of the reported approach.   

2.	Preliminary	Concepts	

In this section, some preliminary known concepts are given in order to introduce the 
notations and the formulations that will be used in the remaining part of the paper. 

 

Fig. 1 Geometry of a functionally graded beam 

The beams are referred to a Cartesian coordinate system (O; x, y, z) with the origin O placed 
in the geometrical centre of an extreme section; the z-axis coincides with the beam axis, 
while the y-axis coincides with the section principal axis along the thickness. The Young 
modulus is assumed changing along the thickness in a generic way.  

2.1.	Hamilton’s	Principle	for	Timoshenko	FGBs.	

The Timoshenko theory is based on the following assumptions in the displacement field 
(see [15], [16], [17], [18] and [19]):  



Falsone	and	La	Valle	/	Research	on	Engineering	Structures	&	Materials	7(4)	(2021)	523‐538	

 

525 

𝑢௭ሺ𝑥, 𝑦, 𝑧, 𝑡ሻ ൌ 𝑤ሺ𝑧, 𝑡ሻ ൅ 𝑦𝜙ሺ𝑧, 𝑡ሻ (1a) 

𝑢௬ሺ𝑥, 𝑦, 𝑧, 𝑡ሻ ൌ 𝑣ሺ𝑧, 𝑡ሻ (1b) 

𝑢௫ሺ𝑥, 𝑦, 𝑧, 𝑡ሻ ൌ 0 (1c) 

where uz and uy are the punctual displacement components, while w, v and ϕ are the 
displacement variables generalized to the cross-section. The punctual axial and shear 
deformations, εz and	 γzy, and the punctual axial and shear stresses, σz and τzy, can be 
obtained by the compatibility conditions and constitutive relations that, taking into 
account Eq. (1a), give:  

𝜀௭ሺ𝑥, 𝑦, 𝑧, 𝑡ሻ ൌ
𝜕𝑢௭ሺ𝑥, 𝑦, 𝑧, 𝑡ሻ

𝜕𝑧
ൌ

𝜕𝑤ሺ𝑧, 𝑡ሻ

𝜕𝑧
൅ 𝑦

𝜕𝜙ሺ𝑧, 𝑡ሻ

𝜕𝑧
 (2a) 

𝛾௭௬ሺ𝑥, 𝑦, 𝑧, 𝑡ሻ ൌ
𝜕𝑣ሺ𝑧, 𝑡ሻ

𝜕𝑧
൅ 𝜙ሺ𝑧, 𝑡ሻ (2b) 

𝜎௭ሺ𝑥, 𝑦, 𝑧, 𝑡ሻ ൌ 𝐸ሺ𝑦ሻ𝜀௭ሺ𝑥, 𝑦, 𝑧, 𝑡ሻ ൌ 𝐸ሺ𝑦ሻ ቈ
𝜕𝑤ሺ𝑧, 𝑡ሻ

𝜕𝑧
൅ 𝑦

𝜕𝜙ሺ𝑧, 𝑡ሻ

𝜕𝑧
቉ (2c) 

𝜏௭௬ሺ𝑥, 𝑦, 𝑧, 𝑡ሻ ൌ 𝐺ሺ𝑦ሻ𝛾௭௬ሺ𝑥, 𝑦, 𝑧ሻ ൌ 𝐺ሺ𝑦ሻ ቈ
𝜕𝑣ሺ𝑧, 𝑡ሻ

𝜕𝑧
൅ 𝜙ሺ𝑧, 𝑡ሻ቉ (2d) 

E(y) and G(y) being the normal and transversal material modulus, respectively. Here, they 
are assumed to change along the y axis. The generalized internal actions, the axial one N, 
the transversal one T and	the bending moment M,	are given by: 

𝑁ሺ𝑧, 𝑡ሻ ൌ න𝜎௭ሺ𝑥, 𝑦, 𝑧, 𝑡ሻ𝑑𝐴
஺

ൌ 𝐸଴
𝜕𝑤ሺ𝑧, 𝑡ሻ

𝜕𝑧
൅ 𝐸ଵ

𝜕𝜙ሺ𝑧, 𝑡ሻ

𝜕𝑧
 (3a) 

𝑀ሺ𝑧, 𝑡ሻ ൌ න𝑦𝜎௭ሺ𝑥, 𝑦, 𝑧, 𝑡ሻ𝑑𝐴
஺

ൌ 𝐸ଵ
𝜕𝑤ሺ𝑧, 𝑡ሻ

𝜕𝑧
൅ 𝐸ଶ

𝜕𝜙ሺ𝑧, 𝑡ሻ

𝜕𝑧
 (3b) 

𝑇ሺ𝑧, 𝑡ሻ ൌ න𝜏௭௫ሺ𝑥, 𝑦, 𝑧, 𝑡ሻ𝑑𝐴
஺

ൎ
𝐺଴

𝜒
ቈ
𝜕𝑣ሺ𝑧, 𝑡ሻ

𝜕𝑧
൅ 𝜙ሺ𝑧, 𝑡ሻ቉ (3c) 

where the following notation has been used: 

𝐸௜ ൌ න𝑦௜𝐸ሺ𝑦ሻ𝑑𝐴
஺

 

𝑖 ∈ ሼ0,1,2ሽ 

(4a) 

𝐺଴ ൌ න𝐺ሺ𝑦ሻ
஺

𝑑𝐴 (4b) 

and where	 is the correction shear factor. In order to obtain the governing equations, the 
Hamilton’s Principle is applied:  

     
0

0
T

K U V dt 	
			

(5)	
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where δU	is the virtual strain energy, δK	is the virtual kinetic energy, and δV	is the virtual 
work done by the external forces. Taking into account Eqs.(3), they assume the following 
form:  

𝛿𝑈 ൌ න න൫𝜎௭𝛿𝜀௭ ൅ 𝜏௭௬𝛿𝛾௭௬൯𝑑𝐴𝑑𝑧
஺

௅

଴

ൌ න

⎩
⎨

⎧𝐸଴
𝜕𝑤
𝜕𝑧

𝜕𝛿𝑤
𝜕𝑧

൅ 𝐸ଵ ൬
𝜕𝑤
𝜕𝑧

𝜕𝛿𝜙
𝜕𝑧

൅
𝜕𝜙
𝜕𝑧

𝜕𝛿𝑤
𝜕𝑧

൰ ൅

൅𝐸ଶ
𝜕𝜙
𝜕𝑧

𝜕𝛿𝜙
𝜕𝑧

൅
𝐺଴

𝜒
൤
𝜕𝑣
𝜕𝑧

𝜕𝛿𝑣
𝜕𝑧

൅
𝜕𝑣
𝜕𝑧

𝛿𝜙 ൅ 𝜙
𝜕𝛿𝑣
𝜕𝑧

൅ 𝜙𝛿𝜙൨
⎭
⎬

⎫௅

଴
𝑑𝑧 

(6a) 

𝛿𝐾 ൌ න ൤𝑚଴ ൬
𝜕𝑤
𝜕𝑡

𝜕𝛿𝑤
𝜕𝑡

൅
𝜕𝑣
𝜕𝑡

𝜕𝛿𝑣
𝜕𝑡

൰ ൅ 𝑚ଵ ൬
𝜕𝜙
𝜕𝑡

𝜕𝛿𝑤
𝜕𝑡

൅
𝜕𝑤
𝜕𝑡

𝜕𝛿𝜙
𝜕𝑡

൅ 𝑚ଶ
𝜕𝜙
𝜕𝑡

𝜕𝛿𝜙
𝜕𝑡

൰൨
௅

଴
𝑑𝑧 (6b) 

𝛿𝑉 ൌ െ න ൫𝑞௭𝛿𝑤 ൅ 𝑞௬𝛿𝑣൯𝑑𝑧
௅

଴
 (6c) 

where: 

   i
i

A

m y y dA                                                        (6d) 

qz	and qy being the axial and transversal external loads, while (z) is the material mass 
density of the FGB. Substituting the expressions of	δU,	δK,	δV	from Eqs. (6a,c) into Eq. (5), 
integrating by parts with respect to both t	and z and fixing the following usual dynamic 
boundary conditions: 

𝛿𝑤ሺ𝑧, 0ሻ ൌ 𝛿𝑤൫𝑧, 𝑡௙൯ ൌ 0 (7a) 

𝛿𝜙ሺ𝑧, 0ሻ ൌ 𝛿𝜙൫𝑧, 𝑡௙൯ ൌ 0 (7b) 

𝛿𝑣ሺ𝑧, 0ሻ ൌ 𝛿𝑣൫𝑧, 𝑡௙൯ ൌ 0                              (7c) 

tf being the final instant of the analysis temporal interval, it is possible to obtain:  

𝛿𝑢: െ𝐸଴ ቆ
𝜕ଶ𝑤
𝜕𝑧ଶ ൅

𝐸ଵ

𝐸଴

𝜕ଶ𝜙
𝜕𝑧ଶ ቇ ൅ 𝑚଴

𝜕ଶ𝑤
𝜕𝑡ଶ ൅ 𝑚ଵ

𝜕ଶ𝜙
𝜕𝑡ଶ െ 𝑞௭ ൌ 0 (8a) 

𝛿𝜙: െ𝐸ଶ ቆ
𝜕ଶ𝜙
𝜕𝑧ଶ ൅

𝐸ଵ

𝐸ଶ

𝜕ଶ𝑤
𝜕𝑧ଶ ቇ ൅

𝐺଴

𝜒
൬

𝜕𝑣
𝜕𝑧

൅ 𝜙൰ ൅ 𝑚ଶ
𝜕ଶ𝜙
𝜕𝑡ଶ ൅ 𝑚ଵ

𝜕ଶ𝑤
𝜕𝑡ଶ ൌ 0 (8b) 

𝛿𝑣: െ
𝐺଴

𝜒
ቆ

𝜕ଶ𝑣
𝜕𝑧ଶ ൅

𝜕 𝜙

𝜕𝑧
ቇ െ 𝑞௬ ൅ 𝑚଴

𝜕ଶ𝑣
𝜕𝑡ଶ ൌ 0 (8c) 

with the boundary conditions:  

൤൬𝐸଴
𝜕𝑤
𝜕𝑧

൅ 𝐸ଵ
𝜕𝜙
𝜕𝑧

൰ 𝛿𝑤൨
଴

௅

ൌ 0 (9a) 

൤൬𝐸ଵ
𝜕𝑤
𝜕𝑧

൅ 𝐸ଶ
𝜕𝜙
𝜕𝑧

൰ 𝛿𝜙൨
଴

௅

ൌ 0 (9b) 
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൤
𝐺଴

𝜒
൬

𝜕𝑣
𝜕𝑧

൅ 𝜙൰ 𝛿𝑣൨
଴

௅

ൌ 0 (9c) 

Eqs. (9a,b) show that the static boundary conditions are coupled. This makes not simple 
the application of the FE method and the solution of some relevant problems, as the 
analysis of the free vibration frequencies or the buckling loads. 	

2.2.	Generalized/Homogenized	Displacements	

In the above cited authors’ work [14], the expressions of the generalized/homogenized 

axial displacement, w, and rotation,  , are given as: 

1

0

( , ) ( , ) ( , ) ( , ) ( , )GE

E
w z t w z t z t w z t y z t

E
      (10a) 

1

2

1
( , ) ( , ) ( , ) ( , ) ( , )

CE

E
z t z t w z t z t w z t

E y
       (10b) 

The inverse relationships are:  

𝑤ሺ𝑧, 𝑡ሻ ൌ
𝑤̄ሺ𝑧, 𝑡ሻ െ 𝑦ீா𝜙ሜ ሺ𝑧, 𝑡ሻ

1 െ
௬ಸಶ

௬಴ಶ

 (11a) 

𝜙ሺ𝑧, 𝑡ሻ ൌ
𝜙ሜ ሺ𝑧, 𝑡ሻ െ

ଵ

௬಴ಶ
𝑤̄ሺ𝑧, 𝑡ሻ

1 െ
௬ಸಶ

௬಴ಶ

 (11b) 

3.	Hamilton’s	Principle	In	Terms	Of	Generalized/Homogenized	Displacements	

By replacing Eqs. (10a,b) and Eqs. (11a,b) into Eqs. (8a,c) and (9a,c), it is possible to obtain 
the governing equations of Timoshenko FGBs. They have the following expressions: 

𝛿𝑤: െ𝐸଴
𝜕ଶ𝑤̄
𝜕𝑧ଶ ൅ 𝑚ଵଵ

𝜕ଶ𝑤̄
𝜕𝑡ଶ ൅ 𝑚ଵଶ

𝜕ଶ𝜙ሜ

𝜕𝑡ଶ െ 𝑞௭ ൌ 0 (12a) 

𝛿𝜙: െ𝐸ଶ
𝜕ଶ𝜙ሜ

𝜕𝑧ଶ ൅
𝐺଴

𝜒
൬

𝜕𝑣
𝜕𝑧

െ 𝛺ଶଵ𝑤̄ ൅ 𝛺ଶଶ𝜙ሜ ൰ ൅ 𝑚ଶଵ
𝜕ଶ𝑤̄
𝜕𝑡ଶ ൅ 𝑚ଶଶ

𝜕ଶ𝜙ሜ

𝜕𝑡ଶ ൌ 0 (12b) 

𝛿𝑣: െ
𝐺଴

𝜒
ቆ

𝜕ଶ𝑣
𝜕𝑧ଶ െ 𝛺ଶଵ

𝜕𝑤̄
𝜕𝑧

൅ 𝛺ଶଶ
𝜕𝜙ሜ

𝜕𝑧
ቇ െ 𝑞௬ ൅ 𝑚଴

𝜕ଶ𝑣
𝜕𝑡ଶ ൌ 0 (12c) 

with the following boundary conditions:  

൤𝐸଴
𝜕𝑤̄
𝜕𝑧

𝛿𝑤൨
଴

௅

ൌ 0 (13a) 

ቈ𝐸ଶ
𝜕𝜙ሜ

𝜕𝑧
𝛿𝜙቉

଴

௅

ൌ 0 (13b) 
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൤
𝐺଴

𝜒
൬

𝜕𝑣
𝜕𝑧

൅ 𝛺ଶଶ𝜙ሜ െ 𝛺ଶଵ𝑤̄൰ 𝛿𝑣൨
଴

௅

ൌ 0 (13c) 

in which some useful coefficients have been defined:  

𝜴ଵଵ ൌ
1

1 െ
௬ಸಶ

௬಴ಶ

ൌ 𝜴ଶଶ (14a) 

𝜴ଵଶ ൌ 𝑦ீா𝜴ଵଵ (14b) 

𝜴ଶଵ ൌ
1

𝑦஼ா
𝜴ଶଶ (14c) 

𝑚ଵଵ ൌ 𝑚଴𝜴ଵଵ െ 𝑚ଵ𝜴ଶଵ (14d) 

𝑚ଵଶ ൌ െ𝑚଴𝜴ଵଶ ൅ 𝑚ଵ𝜴ଶଶ (14e) 

𝑚ଶଵ ൌ െ𝑚ଶ𝜴ଶଵ ൅ 𝑚ଵ𝜴ଵଵ (14f) 

𝑚ଶଶ ൌ 𝑚ଶ𝜴𝟐𝟐 െ 𝑚ଵ𝜴ଵଶ (14g) 

It is easy to verify that the introduction of the new kinematic quantities allows to decouple 
the first two boundary conditions (Eqs.(13a,b)). This simplifies remarkably the application 
of the FE method, as will be seen in the next section 

4.	Dynamic	and	Static	Applications	of	FE	Method	

4.1	Dynamic	Problem	

Following the usual FE procedures for the dynamic analysis of beams (see, for example  
[20], [21], [23] and [24]), it is useful to approximate the kinematic variables as the product 
of two independent functions, one of the spatial coordinate and one of the time. By applying 
the same assumption here, the generalized/homogenized displacements are 
approximated as follows:  

𝑤̄ሺ𝑧, 𝑡ሻ ൌ 𝑊ሜ ሺ𝑧ሻ𝑒ି௜ఠ௧ (15a) 

𝜙ሜ ሺ𝑧, 𝑡ሻ ൌ 𝛷ሜ ሺ𝑧ሻ𝑒ି௜ఠ௧ (15b) 

𝑣ሺ𝑧, 𝑡ሻ ൌ 𝑉ሺ𝑧ሻ𝑒ି௜ఠ௧ (15c) 

Taking into account these relationships and fixing qy= qz=0, in order to analyse beam free 
vibrations, Eqs. (12a,c) become:  

𝛿𝑤: െ𝐸଴
𝑑ଶ𝑊ሜ

𝑑𝑧ଶ െ 𝜔ଶሺ𝑚ଵଵ𝑊ሜ ൅ 𝑚ଵଶ𝛷ሜ ሻ ൌ 0 (16a) 

𝛿𝜙: െ𝐸ଶ
𝑑ଶ𝛷ሜ

𝑑𝑧ଶ ൅
𝐺଴

𝜒
൬

𝑑𝑉
𝑑𝑧

െ 𝛺ଶଵ𝑊ሜ ൅ 𝛺ଶଶ𝛷ሜ ൰ െ 𝜔ଶሺ𝑚ଶଵ𝑊ሜ ൅ 𝑚ଶଶ𝛷ሜ ሻ ൌ 0 (16b) 

𝛿𝑣: െ
𝐺଴

𝜒
ቆ

𝑑ଶ𝑉
𝑑𝑧ଶ െ 𝛺ଶଵ

𝑑𝑊ሜ

𝑑𝑧
൅ 𝛺ଶଶ

𝑑𝛷ሜ

𝑑𝑧
ቇ െ 𝜔ଶ𝑚଴𝑉 ൌ 0 (16c) 

In order to implement a FE approach, let us consider the weak formulation directly to Eqs. 
(16) (strong and weak formulations are crucial concepts of partial differential equations: 
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the weak formulation turns a differential equation to an integral one). If a generic FE of 
length h is referred to a local axis reference 0<ξ<h, it is possible to write:  

ቈെ𝐸଴
𝑑𝑊ሜ

𝑑𝜉
𝜈ଵ቉

଴

௛

൅ න 𝐸଴
𝑑𝑊ሜ

𝑑𝜉

௛

଴

𝑑𝜈ଵ

𝑑𝜉
𝑑𝜉 െ 𝜔ଶ න 𝑚ଵଵ

௛

଴
𝑊ሜ 𝜈ଵ ൅ 𝑚ଵଶ𝛷ሜ 𝜈ଵ𝑑𝜉 ൌ 0 (17a) 

ቈെ𝐸ଶ
𝑑𝛷ሜ

𝑑𝜉
𝜈ଶ቉

଴

௛

൅ න 𝐸ଶ

௛

଴

𝑑𝛷ሜ

𝑑𝜉
𝑑𝜈ଶ

𝑑𝜉
൅

𝐺଴

𝜒
൬

𝑑𝑉
𝑑𝑧

െ 𝛺ଶଵ𝑊ሜ ൅ 𝛺ଶଶ𝛷ሜ ൰ 𝜈ଶ𝑑𝜉

െ 𝜔ଶ න 𝑚ଶଵ𝑊ሜ 𝜈ଶ

௛

଴
൅ 𝑚ଶଶ𝛷ሜ 𝜈ଶ𝑑𝜉 ൌ 0 

(17b) 

൤െ
𝐺଴

𝜒
൬

𝑑𝑉
𝑑𝑧

െ 𝛺ଶଵ𝑊ሜ ൅ 𝛺ଶଶ𝛷ሜ ൰ 𝜈ଷ൨
଴

௛

൅ න
𝐺଴

𝜒
൬

𝑑𝑉
𝑑𝑧

െ 𝛺ଶଵ𝑊ሜ ൅ 𝛺ଶଶ𝛷ሜ ൰
௛

଴

𝑑𝜈ଷ

𝑑𝜉
𝑑𝜉

െ 𝜔ଶ න 𝑚଴𝑉
௛

଴
𝜈ଷ𝑑𝜉 ൌ 0 

(17c) 

where 1, 2 and 3 are opportune weight functions. Eqs. (17a,c) allow to evidence primary 
and secondary variables. The degree of interpolation for the functions W ,   and V  can 
be generic, but  the degree of interpolation of V  must be an unit more than that of   (we 
define it as Consistent Interpolation Element (CIE)). Then, it is: 

𝑊ሜ ሺ𝜉ሻ ൎ ൣ𝛹̱ௐሜ ሺ𝜉ሻ൧
்

𝑊ሜ̱ ௘ൣ𝛹̱ௐሜ ሺ𝜉ሻ൧
்

ൌ ቀ𝛹ଵ
ௐሜ ሺ𝜉ሻ, 𝛹ଶ

ௐሜ ሺ𝜉ሻ, . . . , 𝛹௡
ௐሜ ሺ𝜉ሻቁ (18a) 

𝛷ሜ ሺ𝜉ሻ ൎ ൣ𝛹̱ఃሜ ሺ𝜉ሻ൧
்

𝛷ሜ̱ ௘ൣ𝛹̱ఃሜ ሺ𝜉ሻ൧
்

ൌ ቀ𝛹ଵ
ఃሜ ሺ𝜉ሻ, 𝛹ଶ

ఃሜ ሺ𝜉ሻ, . . . , 𝛹௡
ఃሜ ሺ𝜉ሻቁ (18b) 

𝑉ሺ𝜉ሻ ൎ ሾ𝛹̱௏ሺ𝜉ሻሿ்𝑉̱ൣ𝛹̱௏ ሺ𝜉ሻ൧
்

ൌ ൫𝛹ଵ
௏ሺ𝜉ሻ, 𝛹ଶ

௏ሺ𝜉ሻ, . . . , 𝛹௡ାଵ
௏ ሺ𝜉ሻ൯ (18c) 

Replacing Eqs. (18a,c) into Eqs. (17a,c) and, with the aim of applying a Ritz-Galerkin  FE 
approach, setting ν1(ξ)= 𝛹௜

ௐഥ (ξ) (i=1,…,n), ν2(ξ)= 𝛹௜
Фഥ (ξ) (i=1,…,n) and ν3(ξ)= 𝛹௜

௏(ξ) 
(i=1,…,n+1), the following equations are obtained:  

⎝

⎛൦

𝐾̱̱ௐሜ ௐሜ 0̱̱ 0̱̱

𝐾̱̱ఃሜ ௐሜ 𝐾̱̱ఃሜ ఃሜ 𝐾̱̱ఃሜ ௏

𝐾̱̱௏ௐሜ 𝐾̱̱௏ఃሜ 𝐾̱̱௏௏

൪

௘

െ 𝜔ଶ ൦

𝑀̱̱ௐሜ ௐሜ 𝑀̱̱ௐሜ ఃሜ 0̱̱

𝑀̱̱ఃሜ ௐሜ 𝑀̱̱ఃሜ ఃሜ 0̱̱

0̱̱ 0̱̱ 𝑀̱̱௏௏

൪

௘⎠

⎞ ቎
𝑊ሜ̱

𝛷ሜ̱
𝑉̱

቏

௘

ൌ ቎

𝑄̱ଵ

𝑄̱ଶ

𝑄̱ଷ

቏

௘

⇒ ൫𝐾̱̱௘ െ 𝜔ଶ𝑀̱̱௘൯𝑢̱௘ ൌ 𝑄̱௘ 

(19) 

where:  

𝐾̱̱ௐሜ ௐሜ ൌ න 𝐸଴

௛

଴

𝑑𝛹̱ௐሜ ሺ𝜉ሻ

𝑑𝜉
𝑑ൣ𝛹̱ௐሜ ሺ𝜉ሻ൧

்

𝑑𝜉
𝑑𝜉 (20a) 

𝐾̱̱ఃሜ ௐሜ ൌ න െ
𝐺଴

𝜒
𝛺ଶଵ𝛹̱ఃሜ ሺ𝜉ሻൣ𝛹̱ௐሜ ሺ𝜉ሻ൧

்
𝑑

௛

଴
𝜉 (20b) 

𝐾̱̱ఃሜ ఃሜ ൌ න 𝐸ଶ
𝑑𝛹̱ఃሜ ሺ𝜉ሻ

𝑑𝜉

௛

଴

𝑑ൣ𝛹̱ఃሜ ሺ𝜉ሻ൧
்

𝑑𝜉
൅

𝐺଴

𝜒
𝛺ଶଶ𝛹̱ఃሜ ሺ𝜉ሻൣ𝛹̱ఃሜ ሺ𝜉ሻ൧

்
𝑑𝜉 (20c) 



Falsone	and	La	Valle	/	Research	on	Engineering	Structures	&	Materials	7(4)	(2021)	523‐538	

 

530 

𝐾̱̱ఃሜ ௏ ൌ න
𝐺଴

𝜒

௛

଴
𝛹̱ఃሜ ሺ𝜉ሻ

𝑑ሾ𝛹̱௏ሺ𝜉ሻሿ்

𝑑𝜉
𝑑𝜉 (20d) 

𝐾̱̱௏ௐሜ ൌ ׬ െ
ீబ

ఞ
𝛺ଶଵ

௛

଴

ௗఅ̱ೇሺకሻ

ௗక
ൣ𝛹̱ௐሜ ሺ𝜉ሻ൧

்
𝑑𝜉             (20e) 

𝐾̱̱௏ఃሜ ൌ න
𝐺଴

𝜒
𝛺ଶଶ

𝑑𝛹̱௏ሺ𝜉ሻ

𝑑𝜉

௛

଴
ൣ𝛹̱ఃሜ ሺ𝜉ሻ൧

்
𝑑𝜉 (20f) 

𝐾̱̱௏௏ ൌ න
𝐺଴

𝜒

௛

଴

𝑑𝛹̱௏ሺ𝜉ሻ

𝑑𝜉
𝑑ሾ𝛹̱௏ሺ𝜉ሻሿ்

𝑑𝜉
𝑑𝜉 (20g) 

𝑀̱̱ௐሜ ௐሜ ൌ න 𝑚ଵଵ

௛

଴
𝛹̱ௐሜ ሺ𝜉ሻൣ𝛹̱ௐሜ ሺ𝜉ሻ൧

்
𝑑𝜉 (20h) 

𝑀̱̱ௐሜ ఃሜ ൌ න 𝑚ଵଶ𝛹̱ௐሜ ሺ𝜉ሻ
௛

଴
ൣ𝛹̱ఃሜ ሺ𝜉ሻ൧

்
𝑑𝜉 (20i) 

𝑀̱̱ఃሜ ௐሜ ൌ න 𝑚ଶଵ

௛

଴
𝛹̱ఃሜ ሺ𝜉ሻൣ𝛹̱ௐሜ ሺ𝜉ሻ൧

்
𝑑𝜉 (20j) 

𝑀̱̱ఃሜ ఃሜ ൌ න 𝑚ଶଶ𝛹̱ఃሜ ሺ𝜉ሻ
௛

଴
ൣ𝛹̱ఃሜ ሺ𝜉ሻ൧

்
𝑑𝜉 (20k) 

𝑀̱̱௏௏ ൌ ׬ 𝑚଴
௛

଴
𝛹̱௏ሺ𝜉ሻሾ𝛹̱௏ሺ𝜉ሻሿ்𝑑𝜉    (20l) 

and: 

𝑄̱ଵ ൌ ሾെ𝑁ሺ0ሻ 0 . . . 0௡ିଵ 𝑁ሺℎሻሿ் (20m) 

𝑄̱ଶ ൌ ሾെ𝑀ሺ0ሻ 0 . . . 0௡ିଵ 𝑀ሺℎሻሿ் (20n) 

𝑄̱ଶ ൌ ሾെ𝑇ሺ0ሻ 0 . . . 0௡ 𝑇ሺℎሻሿ்                                                                             (20o) 

Eqs. (10) and (11) show that the generalized kinematic variables can be expressed in 
function of the generalized/homogenized ones and vice versa, in such a way their 
continuity is guaranteed. The continuity of generalized/homogenized variables is imposed 
by defining the location matrix Le for each finite element. Defining U as the vector whose 
entrances are the nodes displacements and Q as the vector containing the internal forces 
at the nodes, and following the same steps of the classical FE approach, it is possible to 
obtain: 

  2K M U Q  (21) 

where:  

    1T T T
e e e e e e e e e eK L K L M L M L Q L Q U L u  (22) 

By imposing static and kinematic boundary conditions, given Eqs. (10) and Eqs. (13), the 
system of equations (21) allows to derive the eigenvalues problem able to define the 
dynamic behaviour of a FGB. 	
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4.2	Static	Problem	

Eqs. (12), simplified for the static case, take the form:  

െ𝐸଴
𝑑ଶ𝑤̄
𝑑𝑧ଶ െ 𝑞௭ ൌ 0 (23a) 

െ𝐸ଶ
𝑑ଶ𝜙ሜ

𝑑𝑧ଶ ൅
𝐺଴

𝜒
൬

𝑑𝑣
𝑑𝑧

െ 𝛺ଶଵ𝑤̄ ൅ 𝛺ଶଶ𝜙ሜ ൰ ൌ 0 (23b) 



 

     
 

2
0

21 222
0y

G d v dw d
q

dz dz dz
 (23c) 

Through the same steps considered previously, the solving equation is obtained as:  

 KU F Q  (24) 

where K, U, Q are equal to those which appear in Eq. (21); F is defined as follows:  

 T
e eF L F  (25) 

and: 

𝐹̱௘ ൌ ൥
𝐹̱ଵ
0̱
𝐹̱ଷ

൩ (26a) 

𝐹̱ଵ ൌ න 𝛹̱ௐሜ ሺ𝜉ሻ𝑞௭ሺ𝜉ሻ𝑑𝜉
௛

଴
 (26b) 

𝐹̱ଷ ൌ න 𝛹̱௏ሺ𝜉ሻ𝑞௬ሺ𝜉ሻ𝑑𝜉
௛

଴
 (26c) 

5.	Analytical	Solutions	for	Buckling	Analysis		

In this section the generalized/homogenized displacements are used with the aim of 
finding analytical solutions for the buckling problem of Timoshenko FGBs. It is noteworthy 
that some of the analytical solutions set out herein are a novelty in literature; this despite 
a lot of paper which deal with this problem already exist, for example, [24], [25], [26], [27], 
[28], and [29]. 

5.1.	Buckling	Load	of	a	Clamped‐Free	Beam	

In order to investigate the buckling of a generic column subjected to a compressive force 
P, Eqs. (12) become: 

െ𝐸଴
𝑑ଶ𝑤̄
𝑑𝑧ଶ ൌ 0 (27a) 

െ𝐸ଶ
𝑑ଶ𝜙ሜ

𝑑𝑧ଶ ൅
𝐺଴

𝜒
൬

𝑑𝑣
𝑑𝑧

൅ 𝛺ଶଶ𝜙ሜ െ 𝛺ଶଵ𝑤̄൰ ൌ 0   (27b) 
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

 

     
 

2 2
0

22 212 2
0

G d v d dw d v
P

dz dz dz dz
   (27c) 

with the boundary conditions:  

൤𝐸଴
𝑑𝑤̄
𝑑𝑧

𝛿𝑤൨ ൌ 0 (28a) 

൤൬
𝐺଴

𝜒
൬

𝑑𝑣
𝑑𝑧

൅ 𝛺ଶଶ𝜙ሜ െ 𝛺ଶଵ𝑤̄൰ െ 𝑃
𝑑𝑣
𝑑𝑧

൰ 𝛿𝑣൨
଴

௅

ൌ 0   (28b) 

ቈ𝐸ଶ
𝑑𝜙ሜ

𝑑𝑧
𝛿𝜙቉

଴

௅

ൌ 0 (28c) 

Noting that for a clamped-free beam the generalized transversal stress is equal to zero in 
the free end, T(L)=0, it is possible to assume T(z)=0 for all the beam. Furthermore, 
combining Eq.(27a), Eq.(28a) and Eqs.(11), 𝑤ഥ(z)=0 is obtained. Hence, Eq. (28b) allows to 
give the generalized/ homogenised rotation 𝜙ത as a function of the generalized transversal 
displacement v: 

      
 




 
         

 

0

0
22

0
22

( )
0 ( )

G
P

dv z dv zG dv z
z P z

Gdz dz dz



 (29) 

Substituting Eq.(29) into Eq.(27b) and deriving with respect to z, the differential equations 
governing the buckling problem of a Timoshenko FGB is derived:  

 
  

  


4 2
2 22 2

4 2
0

/
0

1 /

d v z d v P E
dz dz P G

 (30) 

This result implies that the buckling load Pn for this kind of beam is given by: 




  
 

2 2
2

2

22
0

(2 )
E

n E
E

P n E
P P

P L
G

 
(31) 

In order to clarify the transition process between Eqs. (30) and (31), we need to 
remember that the general solution of Eq. (30) is: 

      cosv z A z Bsin z Cz D  (32) 

By imposing the boundary conditions v(0)=0, v(L)=0, dv/dz(0)=0 (see Eqs. (11a,b-29) with 
w(0)=0 since the beam is supposed clamped in z=0), d2v/dz2(L)=0 (see Eqs. (13b-29)); we 
get the following system in the unknown variables A, B, C and D: 
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   

   

 

 

 
    


 
  

0

cos sin 0

0

cos sin 0

A D

A L B L CL D

B C

A L B L

 (33) 

System (33) gives no trivial solution if and only if cos(L)=0: it follows L=n/2 then Eq. 
(31) is achieved.  

5.2.	Buckling	Load	for	a	Simply	Supported‐Simply	Supported	Beam	

In this case, Eqs.(27) and Eqs.(28) continue to hold. Taking into account Eq.(27a), Eq.(28a) 
and Eqs.(11), it is possible to obtain 𝑤ഥ(z)=yGE𝜙ത(0). Therefore, deriving Eq. (27b) and 
adding to it Eq.(27c), it is easy to show that Eq.(30) still holds. This implies that the 
buckling load is given by: 




  
 

2 2
2

2

22
0

E
n E

E

P n E
P P

P L
G

 
(34) 

Similar steps as the one just made in Subsection 5.1 needs to be performed. 

6.	Numerical	Applications	

From here on out,	the following acronyms are introduced: S-S for simply supported-simply 
supported; C-C for clamped-clamped; C-F for clamped-free and C-S for clamped-simply 
supported. 

6.1.	Natural	Frequencies	for	S‐S	Beams		

Let us consider a S-S Timoshenko FG beam with a rectangular cross of width b, height h, 
length L, shear correction factor : 

     65 17.6 10 m 2 20 1.2h b h L h  (35) 

The beam is characterized by an elastic modulus and a density variable along the thickness 
with an exponential law:  

𝐸ሺ𝑦ሻ ൌ ሺ𝐸௕ െ 𝐸௔ሻ ൬
𝑦
ℎ

൅
1
2

൰
ே

൅ 𝐸௔ (36a) 

𝜌ሺ𝑦ሻ ൌ ሺ𝜌௕ െ 𝜌௔ሻ ൬
𝑦
ℎ

൅
1
2

൰
ே

൅ 𝜌௔ (36b) 

where Ea=14400 MPa, Eb=1440 MPa, ρa=122 kg/mm, ρb=12.2 kg/mm. The exponent N 
defines the composition of the section and, here, it is assumed equal to five different values. 
The elastic tangential module is given by the usual expression:  

   
 


2 1

E y
G y  (37) 

ν being the classical Poisson coefficient, here chosen equal to 0.38. The results obtained by 
the FE approach previously introduced (numerically approximated) are compared with 
the natural frequencies obtained in accordance with the procedure exposed by Li [11] 
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(theoretical and numerical approximated). Ten finite elements having the same length 
have been used; moreover, polynomial interpolating functions of order one for 𝑤ഥ and 𝜙ത 
and of order two for v have been applied (This level of refinement is maintained for all 
numerical applications exposed in this section). The accordance of the values reported in 
Table 1 ensures the correctness of the methodology applied. Clearly, these FE results could 
be improved by a p-refinement or a h-refinement.  

Table 1. First three natural frequencies (expressed in s-1) for a S-S beam with different 
values of N 

N ω1 Li ω1 FEM ω2 Li ω2 FEM ω3 Li ω3 FEM 
0.2 0.85 0.85 3.36 3.41 7.41 7.67 
0.5 0.81 0.82 3.22 3.27 7.11 7.37 
1 0.77 0.78 3.06 3.11 6.77 7.02 
5 0.82 0.82 3.25 3.30 7.17 7.43 

100 0.93 0.92 3.67 3.67 8.08 8.24 

6.2.	Natural	Frequencies	for	C‐C	and	C‐S	Beams	

The same mechanical and geometrical characteristics assumed in the previous subsection 
are taken into account. For the beams here considered, no analytical solution exists in the 
literature. Consequently, the FE method exposed in section 4 has been applied for any 
examined boundary conditions. Natural frequencies derived for a C-S Timoshenko beam 
are collected in Table 2, while those derived for a S-S beam are given in Table 1. Table 2 
shows the results obtained for the C-C beam. Lastly, the natural frequencies linked to a C-
F beam are reported in Table 3.  

Table 2. First three natural frequencies (expressed in s-1) for C-C and C-S beams with 
different values of N 

C-C beam C-S beam 
N	 ω1 ω2 ω3 ω1 ω2 ω3 

0.2 1.98 5.62 11.44 1.33 4.32 9.03 
0.5 1.90 5.41 11.03 1.27 4.15 8.69 
1 1.81 5.15 10.54 1.21 3.95 8.29 
5 1.92 5.45 11.11 1.29 4.19 8.76 

100 2.17 6.12 12.36 1.46 4.73 9.82 
 

Table 3. First three natural frequencies (expressed in s-1) for the C-F beam with different 
N 

C-F beam

N	 ω1 ω2 ω3 
0.2 0.30 1.90 5.33 
0.5 0.29 1.83 5.12 
1 0.28 1.73 4.87 
5 0.29 1.84 5.16 

100 0.33 2.09 5.82 

Eqs. (36a,b) describe the change of material along the cross section of the analysed beam; 
these laws are functions of a parameter N which can be considered an indicator of the 
mixture of the two components that constitute the sample in exam. In detail, when N tends 
to infinity then the cross section tends to be homogeneous with the properties of the 
stiffest component (Ea=14400 MPa, ρa=122 kg/mm); on the other hand, when N	tends to 
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zero then the beam tends to be homogenous with the properties of the weakest one 
(Eb=1440 MPa, ρb=12.2 kg/mm). In light of the above, it is not surprising that in Table 1, 2 
and 3 the natural frequencies increase with growing N.	

6.3.	Buckling	Loads	for	S‐S	and	C‐F	Beams	

Eqs.(31) and Eq.(34) are here applied to the same above considered beams. In this case, 
the use of the homogenized/generalized displacements makes possible to have exact 
relations expressing the buckling load of these Timoshenko FGBs. Table 4 shows the 
numerical results obtained evaluating Eqs. (31) and (34): indeed, buckling loads increases 
with growing N since the sample becomes progressively more stiff (same remarks are true 
for natural frequencies (see Subsections 6.1 and 6.2) 

6.4.	Static	Bending	C‐C	and	C‐S	Beams	

In this application, the same mechanical and geometrical characteristics used previously 
are maintained. The static external action is represented by a vertical uniformly 
distributed load with intensity qy= 10 N/mm. The coefficient N appearing in Eqs.(41) is 
assumed equal to 10. Fig.2 and Fig.3 show the transversal displacements obtained with the 
FE formulation, here presented, compared with the analytical ones.    

Table 4. First three buckling loads (expressed in newton (N)) for S-S and the C-F beam 
with different values of N 

S-S beam C-F beam 
N	 P1 P2 P3 P1 P2 P3 

0.2 0.06 0.22 0.47 0.014 0.06 0.12 
0.5 0.10 0.39 0.85 0.025 0.10 0.22 
1 0.19 0.76 1.67 0.05 0.19 0.43 
5 0.28 1.08 2.34 0.07 0.28 0.61 

100 0.36 1.42 3.09 0.09 0.36 0.81 

 

 

Fig.2 Static transversal deflection (expressed in mm) under constant load for C-C beam 
with N=10 
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Fig.3 Static transversal deflection (expressed in mm) under constant load for C-S beam 
with N=10 

Fig.2-3 show a higher rate of convergence in the case in which natural (or static) boundary 
conditions need to be imposed: in the same condition, the accuracy of the numerical 
solution obtained for the C-S beam (Fig. 3) is better than the one obtained in the C-C case 
(Fig. 3). This aspect is strictly related to the new approach introduced: the generalized-
homogenized displacements aim to create natural boundary conditions equivalent but 
simpler than the classical ones valid for FG beams. Indeed, the analytical solution is derived 
following the same procedure shown in the previous paper of the authors [14].  

7.	Conclusions	

In the present work, a new theoretical formulation based on some 
homogenized/generalized displacements has been introduced in order to solve bending, 
free vibration and buckling problems of Timoshenko FGBs, i.e. mono dimensional elements 
with constitutive properties that vary gradually along the thickness. The proposed 
formulation allows the definition of a new FE approach able to uncouple the required 
boundary conditions and it involves the use of the Navier method for solving dynamic 
problems: according to the latter, the kinematic variables are approximated as the product 
of two independent functions. The homogenized/generalized displacements are 
appropriately defined with the aim of uncoupling the expression of axial, shear and 
moment stresses generalized to the cross section in the case of FGMs so as to achieve a 
greater procedural saving. Numerical results are compared, when possible, to the 
analytical ones obtained by following Li’s model and a good match is shown. Different 
conditions of constraint are analysed to verify the reliability and the physical 
correspondence of the proposed approach: natural frequencies related to S-S, C-C, C-S, C-F 
beams and buckling loads for S-S, C-F are compared for different values of an opportune 
parameter which rules the material composition of the cross section. In accordance with 
physical intuition, natural frequencies and buckling loads increase with increasing the 
mean Young’s modulus and the mean shear modulus of the cross section.  Just for the sake 
of clarity, transversal numerical displacements are derived only for C-C and C-S beams 
under static condition of load and they are compared with the exact ones. The performed 
numerical applications have revealed that the proposed procedure is highly competitive 
with the most used in literature: moreover, a higher rate of convergence in the case in 
which natural (or static) boundary conditions need to be imposed is shown. Finally, a 
closed expression capable of expressing buckling loads linked to FGBs is discovered: it does 
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not yet exist in literature and it could be considered the natural extension of that valid for 
homogenous mono-dimensional structures.  
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