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 Concrete is the most widely used material in the construction industry due to its 
strength, workability and durability. But under a sustained load, concrete is 
prone to creep causing excessive long-term deflection of structural members, 
cracks in tensile members, redistribution of stresses over time in composite 
structures, and loss of prestressing force in prestressed concrete elements. 
Therefore, structural engineers must accurately predict the concrete creep over 
the long-term. The concrete creep coefficient is an important entry in many 
calculations and analyses of reinforced concrete structures. Currently, many 
models such as the Eurocode 2 model have predicted the concrete creep 
coefficient. Based on a large database for creep tests, this study aims to improve 
the prediction of the Eurocode 2 creep coefficient model at long-term by 
implementing correction coefficients into the model. Since Bayesian-type 
inferences are suitable tools for revising and updating design codes, the 
correction coefficients are calculated based on Bayesian linear regression. 
Statistical indicators demonstrate the accuracy and effectiveness of the 
proposed improvement and modification.  
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1. Introduction 

Concrete is a composite material consisting of a mortar phase and aggregates and is known 
as a brittle material having low tensile strength and tensile strain capacity. For that, 
concrete is usually reinforced using different materials such as steel or fiber [1]. In 
literature, reinforced concrete structures are continually studied as being one of the 
world’s most common building materials in the construction industry [2–4].   

When concrete is subjected to long-term stresses, it is prone to creep. In other words, creep 
is the time-dependent movement or deformation of concrete. Indeed, creep can affect 
structural behavior by violating the service limit states, by losing the prestressing forces, 
or by redistributing the stress [5–9]. Therefore, creep is of great practical importance to 
structural engineers, and thus, it has been studied by many researchers [10–17]. Hence, 
designers must accurately predict creep strains using precise methods.  

There are many sophisticated and practical models for predicting creep [18–22]. The 
Eurocode 2 model [19] is one of the most widely used models for predicting shrinkage and 
creep.  Based on a large experimental database, the EC2 shrinkage model has been updated 
[23], and correction coefficients have also been proposed for the Eurocode 2 creep model 
[24] but the calculation of these correction coefficients are limited for a specific condition 
of initial time loading, relative humidity, or compressive strength. For that, it is necessary 
to improve the creep coefficient prediction by taking into consideration the different 
concrete mix compositions and the various environmental conditions.  
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In order to optimize and improve a model, many optimization models have been developed 
in the literature [25–27]. Frequentist inference and Bayesian inference are two types of 
statistical inference. Frequentist ordinary least squares (OLS) regression models are 
perceived to handle large data sets and are easy to perform while Bayesian linear 
regression (BLR) models have been traditionally restricted to small sample sizes and have 
many things need to be specified such as prior distributions, initial values for numerical 
approximation, and the likelihood function. On the other hand, Bayesian inference allows 
informative priors where the prior knowledge or results of a previous model can be used 
to inform the current model and can avoid problems with model identification by 
manipulating prior distributions, especially in complex models. BLR model also delivers 
the answer to the right question in the sense that Bayesian inference provides answer to 
conditional on the observed data and not based on the distribution of estimators or test 
statistics over imaginary samples not observed [28]. Moreover, Bayesian inference has a 
decision theoretic foundation [29,30]. The purpose of most statistical inference is to 
facilitate decision-making, and the Bayesian decision is the optimal decision. Bayesian 
inference has been used in different civil engineering problems [31–34]. In addition, 
Bayesian inference is also an appropriate tool for revising and updating design codes; 
therefore, BLR is used in this study.   

This study aims is to evaluate the long-term Eurocode 2 creep coefficient model and 
improve it by implementing correction coefficients to the model using Bayesian linear 
regression for different concrete mix compositions and under various environmental 
conditions.  

2. Database and Methods  

2.1. Northwestern University Database 

During the period 2010-2013, a large database was assembled at Northwestern University 
(NU), mainly under the support of the U.S. Department of Transportation [24]. This NU 
database is based on information extracted from numerous reports, journal articles, and 
conference proceedings. The tests of this database are performed using different concrete 
mix compositions and under various environmental conditions such as aggregate-cement 
ratio (a/c),  water-cement ratio (w/c), concrete compressive strength (fcm), cement type, 
effective thickness (h0), loading age (t0), sustained stress over the compressive strength at 
loading age σ/fcm(t0) , temperature (T), relative humidity (RH), etc. 

2.2. Eurocode 2 creep predictions 

The Eurocode 2 model (EC2) [15] predicts compliance according to Eq. (1). Compliance is 
defined as the total load-induced strain at age t per unit caused by a unit uniaxial sustained 
load applied since loading age t0 [25]. 

𝐽(𝑡, 𝑡0) =
1

𝐸𝑐𝑚𝑡0
+

𝜑28(𝑡,𝑡0)

𝐸𝑐𝑚28
                                                                                      (1) 

where Ecmt0 is the modulus of elasticity of concrete at the loading age t0 (MPa), Ecm28 is the 
mean modulus of elasticity at 28 days (MPa), and φ28(t,t0) is the dimensionless 28-day 
creep coefficient. 

The creep coefficient, φ28(t,t0), gives the ratio of the creep strain since the start of age 
loading t0 to the elastic strain due to constant stress applied at a concrete age of 28 days. 
Fig. 1 represents the plot of the natural logarithm of the EC2 creep coefficient (ln(φEC2)) 
versus the natural logarithm of the creep coefficient obtained from the NU database 
(ln(φNU)). In order to show the linearity between ln(φEC2) and ln(φNU), a quadratic term 
model has been proposed to fit the relation between these two variables. The polynomial 
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term for the second-order was not significant. Moreover, a comparison between the 
quadratic term model and the linear model was performed based on the Akaike 
information criterion (AIC)  [35] and the results showed that the linear model is a good fit 
for the data. Therefore, the long-term creep coefficient is considered to be updated and 
calibrated based on the NU database by inserting correction coefficients, A and B, into the 
formula as shown in Eq. (2). 

𝜑𝑢𝑝𝑑(𝑡, 𝑡0) = 𝐴 × 𝜑28(𝑡, 𝑡0)
𝐵                                                                                      (2) 

 

 

Fig. 1 Plot of the natural logarithm of the EC2 creep coefficient versus the natural 
logarithm of the actual creep coefficient 

2.3 Bayesian Linear Regression 

Bayesian statistics primarily involve conditional probability, which is the probability of an 
event X given event Y, and it can be calculated using Bayes’ rule (Eq. (3)). 

𝑃(𝑋|𝑌) =
𝑃(𝑌|𝑋)×𝑃(𝑋)

𝑃(𝑌)
                                                                                                   (3) 

where X and Y are events, P(X) and P(Y) are the marginal probabilities of event X and event 
Y occurring respectively, P(X|Y) is the conditional probability that event X occurs given 
that event Y has already occurred, and P(Y|X) is the conditional probability that event Y 
occurs given that event X has already occurred. 

Bayesian inference uses Bayes’ theorem to deduce properties on a population or a 
probability distribution from data (Eq. (4)).  

𝑃(𝛩|𝑑𝑎𝑡𝑎) =
𝑃(𝑑𝑎𝑡𝑎|𝛩)𝑥𝑃(𝛩)

𝑃(𝑑𝑎𝑡𝑎)
                                                                                                                                                                                         (4) 

where Θ = {μ, σ} represents the set of parameters of a Gaussian distribution where μ is the 
mean and σ is the standard deviation, P(Θ|data) is the posterior distribution, P(data|Θ) is 
the likelihood distribution, P(Θ) is the prior distribution. 

Bayesian Linear Regression (BLR) is an approach to linear regression in which statistical 
analysis is undertaken within the context of Bayesian inference. Therefore, linear 
regression is formulated using probability distributions rather than point estimates. To 
apply the BLR model, and since linearization does not affect the results, the logarithm of 
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Eq. (2) is calculated, and the error ∈ is considered in the calculations as shown in the 
following equation: 

𝑙𝑛 (𝜑𝑢𝑝𝑑(𝑡, 𝑡0)) = 𝑙𝑛(𝐴) + 𝐵 × 𝑙𝑛(𝜑28(𝑡, 𝑡0))+∈                                                  (5) 

To calculate A and B, the updated creep coefficient is assumed to be the value obtained 
experimentally in the NU database. 

Considering y = ln(𝜑𝑢𝑝𝑑(𝑡, 𝑡0)) and 𝑥 = ln(𝜑28(𝑡, 𝑡0)), Eq. (5) can be written as: 

𝑦 = 𝐴 + 𝐵𝑥 + 𝜖                                                                                                                      (6) 

The equation of the i-th observation can be written as: 

𝑦𝑖 = 𝐴 + 𝐵𝑥𝑖 + 𝜖𝑖                                                                                                                                                                                                                    (7) 

y is the response variable that corresponds to the i-th experimental value; x is the predictor 
variable that relates to the value predicted by the EC2 equation, A is the y-intercept 
parameter, B is the slope parameter, and 𝜖𝑖 is the i-th error. 

2.3.1 Likelihood distribution ℒ(𝐴, 𝐵, 𝜎2) 

The error 𝜖𝑖 is assumed to be independent and identically distributed as normal random 
variables with zero mean and constant variance σ2. Therefore, the random variable of each 
response yi, conditioning on the observed data xi and the parameters A, B and σ2, is also 
normally distributed: 

𝑦𝑖 |𝑥𝑖 , 𝐴, 𝐵, 𝜎2 ~
𝑖𝑖𝑑

 𝑁𝑜𝑟𝑚𝑎𝑙(𝐴 + 𝐵𝑥𝑖 , 𝜎
2),             𝑖 = 1, . . , 𝑛                                                                                             

Thus, the likelihood of each yi given xi, A, B, and  𝜎2 is given by: 

𝑝(𝑦𝑖  |𝑥𝑖 , 𝐴, 𝐵, 𝜎2) =
1

√2𝜋𝜎2
 𝑒𝑥𝑝 (−

(𝑦𝑖−(𝐴+𝐵𝑥𝑖))
2

2𝜎2 )                                                                                                                                                  (8) 

The likelihood of y1,…, yn, denoted as ℒ(𝐴, 𝐵, 𝜎2), is the product of each 
likelihood 𝑃(𝑦𝑖 |𝑥𝑖 , 𝐴, 𝐵, 𝜎2) since each response yi is independent from each other. 

𝑝(𝑦1, … , 𝑦𝑛 |𝑥𝑖, 𝐴, 𝐵, 𝜎2) = ∏ 𝑃(𝑦𝑖  |𝑥𝑖, 𝐴, 𝐵, 𝜎2)𝑛
𝑖=1                                                                                                                                                        (9) 

2.3.2 Prior distribution 

Since no prior information is available, reference priors are used. The joint prior 
distribution of A, B under σ2 is assumed to be a uniform prior, while the prior distribution 
of σ2 proportional to the inverse of σ2 [36]: 

𝑝(𝐴, 𝐵| 𝜎2) ∝ 1                                                                                                                                                                                                                                                                                   (10) 

 𝑝(𝜎2) ∝
1

𝜎2                                                                                                                                        (11) 

By combining these two conditional probabilities, the joint prior distribution obtained is: 

𝑝(𝐴, 𝐵, 𝜎2) ∝
1

𝜎2                                                                                                                            (12) 
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2.3.3 Posterior distribution 

According to Eq. (4), the joint posterior distribution of A, B, and σ2 is proportional to the 
product of the likelihood and the joint prior distribution. 

𝑝(𝐴, 𝐵, 𝜎2|𝑦1, … , 𝑦𝑛) ∝ ∏ 𝑃(𝑦𝑖  |𝑥𝑖, 𝐴, 𝐵, 𝜎2)𝑛
𝑖=1 𝑝(𝐴, 𝐵, 𝜎2)  

 ∝ [(
1

√𝜎2
𝑒𝑥𝑝 (−

(𝑦1−(𝐴+𝐵𝑥1))
2

2𝜎2 )) × …×

(
1

√𝜎2
𝑒𝑥𝑝 (−

(𝑦𝑛−(𝐴+𝐵𝑥𝑛))
2

2𝜎2 ))] × (
1

𝜎2)  

 ∝
1

(𝜎2)(𝑛+2)/2 𝑒𝑥𝑝 (−
∑ (𝑦𝑖−(𝐴+𝐵𝑥𝑖))

2𝑛
𝑖=1

2𝜎2 )                                                                                   

(13) 

Considering 𝑆𝑥𝑥 = ∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1 , 𝑆𝑦𝑦 = ∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1 , 𝑆𝑥𝑦 = ∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛
𝑖=1 , 𝑆𝑆𝐸 =

∑ 𝜖�̂�
2𝑛

𝑖=1 , �̂� =
𝑆𝑥𝑦

𝑆𝑥𝑥
, �̂� = �̅� −

𝑆𝑥𝑦

𝑆𝑥𝑥
�̅�, and σ̂2 =

𝑆𝑆𝐸

𝑛−2
 where �̅� and �̅� are the average of y and x, 

respectively, and n is the number of observations, and after making some calculations and 
simplifications, the posterior joint distribution of A, B, σ2 can be simplified as: 

 𝑝(𝐴, 𝐵, 𝜎2|𝑦1, … , 𝑦𝑛) ∝

  
1

(𝜎2)
𝑛+2

2

𝑒𝑥𝑝 (−
𝑆𝑆𝐸+𝑛[(𝐴−𝐴)+(𝐵−�̂�)�̅�]2+(𝐵−�̂�)2𝑆𝑥𝑥

2𝜎2 ) (14) 

2.3.4 Marginal Posterior Distribution of B 

The marginal posterior distribution of B is obtained by integrating A and σ2 out from the 
joint posterior distribution. 

𝑝(𝐵|𝑦1, … , 𝑦𝑛) = ∫ (∫ 𝑃(𝐴, 𝐵, 𝜎2|𝑦1, … , 𝑦𝑛)
∞

−∞
𝑑𝐴)𝑑𝜎2∞

0
  

      =

∫ (∫
1

(𝜎2)
𝑛+2

2

𝑒𝑥𝑝 (−
𝑆𝑆𝐸+𝑛[(𝐴−�̂�)+(𝐵−�̂�)�̅�]2+(𝐵−�̂�)2𝑆𝑥𝑥

2𝜎2 )
∞

−∞
𝑑𝐴)𝑑𝜎2∞

0
  

       = ∫ 𝑝(𝐵, 𝜎2|𝑦1, … , 𝑦𝑛)𝑑𝜎2∞

0
                                                                                                  

𝑝(𝐵, 𝜎2|𝑦1, … , 𝑦𝑛) =

∫
1

(𝜎2)
𝑛+2

2

𝑒𝑥𝑝 (−
𝑆𝑆𝐸+𝑛[(𝐴−�̂�)+(𝐵−�̂�)�̅�]2+(𝐵−�̂�)2𝑆𝑥𝑥

2𝜎2 )
∞

−∞
𝑑𝐴                  =

1

(𝜎2)
𝑛+2

2

𝑒𝑥𝑝 (−
𝑆𝑆𝐸+(𝐵−�̂�)2 ∑ (𝑥𝑖−�̅�)2𝑛

𝑖=1

2𝜎2 ) ∫ 𝑒𝑥𝑝 (−
𝑛[𝐴−𝐴+(𝐵−�̂�)�̅�]2

2𝜎2 ) 𝑑𝐴
∞

−∞
                                                                     

(15) 
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  ∝
1

(𝜎2)
𝑛+1

2

𝑒𝑥𝑝 (−
𝑆𝑆𝐸+(𝐵−�̂�)2 ∑ (𝑥𝑖−�̅�)2𝑛

𝑖=1

2𝜎2 )                                                                                                                    (16) 

Considering ∅ =
1

𝜎2
, 

𝑝(𝐵|𝑦1, … , 𝑦𝑛) =  ∫
1

(𝜎2)
𝑛+1

2

𝑒𝑥𝑝 (−
𝑆𝑆𝐸+(𝐵−�̂�)2 ∑ (𝑥𝑖−�̅�)2𝑛

𝑖=1

2𝜎2 )𝑑𝜎2∞

0
                   

= ∫ ∅
𝑛−3

2 𝑒𝑥𝑝 (−
𝑆𝑆𝐸+(𝐵−�̂�)2 ∑ (𝑥𝑖−�̅�)2𝑛

𝑖=1

2∅
)𝑑∅ =

∞

0

 ∫  𝑝(𝐵, ∅|𝑦1, … , 𝑦𝑛)𝑑∅
∞

0
                                                                                

(17) 

After integrating Eq. (17), the following equation is obtained: 

 𝑝(𝐵|𝑦1, … , 𝑦𝑛) ∝ (1 +
1

𝑛−2
×

(𝐵−�̂�)2

�̂�2/∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1

)
−

(𝑛−2)+1

2
 (18) 

Finally, the marginal posterior distribution of B is the Student’s t-distribution with degrees 

of freedom (n-2), center �̂�, and scale parameter 
�̂�2

∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1

. 

𝐵|𝑦1, … , 𝑦𝑛 ~ 𝑡 (𝑛 − 2, �̂�,
�̂�2

𝑆𝑥𝑥
  )                                                                                                   (19) 

2.3.5 Marginal Posterior Distribution of A 

The marginal posterior distribution of A is obtained by integrating B and σ2 out from the 
joint posterior distribution. 

 𝑝(𝐴|𝑦1, … , 𝑦𝑛) = ∫ (∫ 𝑃(𝐴, 𝐵, 𝜎2|𝑦1, … , 𝑦𝑛)
∞

−∞
𝑑𝐵)𝑑𝜎2∞

0
 

      =

∫ (∫
1

(𝜎2)
𝑛+2

2

𝑒𝑥𝑝 (−
𝑆𝑆𝐸+𝑛[(𝐴−�̂�)+(𝐵−�̂�)�̅�]2+(𝐵−�̂�)2𝑆𝑥𝑥

2𝜎2 )
∞

−∞
𝑑𝐵) 𝑑𝜎2∞

0
  

       = ∫ 𝑝(𝐴, 𝜎2|𝑦1, … , 𝑦𝑛)𝑑𝜎2∞

0
      

(20) 

 

 𝑝(𝐴, 𝜎2|𝑦1, … , 𝑦𝑛) =

∫
1

(𝜎2)
𝑛+2

2

𝑒𝑥𝑝 (−
𝑆𝑆𝐸+𝑛[(𝐴−�̂�)+(𝐵−�̂�)�̅�]2+(𝐵−�̂�)2𝑆𝑥𝑥

2𝜎2 )𝑑𝐵
∞

−∞
 

        ∝
1

(𝜎2)
𝑛+1

2

𝑒𝑥𝑝

(

 
 

−

𝑆𝑆𝐸+
(𝐴−�̂�)

2

1
𝑛

+
�̅�2

∑ (𝑥𝑖−�̅�)
2𝑛

𝑖=1

2𝜎2

)

 
 

                                                                                                  

(21) 

Considering ∅ =
1

𝜎2, 
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𝑝(𝐴|𝑦1, … , 𝑦𝑛) =  ∫ 𝑝(𝐴, 𝜎2|𝑦1, … , 𝑦𝑛)𝑑𝜎2
∞

0

 

= ∫ ∅
𝑛−3

2 𝑒𝑥𝑝

(

 
 

−

𝑆𝑆𝐸+
(𝐴−�̂�)

2

1
𝑛

+
�̅�2

∑ (𝑥𝑖−�̅�)
2𝑛

𝑖=1

2
∅

)

 
 

𝑑∅ =
∞

0

∫  𝑝(𝐴, ∅|𝑦1, … , 𝑦𝑛)𝑑∅
∞

0
              

(22) 

After integrating Eq. (22), the following equation is obtained: 

𝑝(𝐴|𝑦1, … , 𝑦𝑛) ∝ (1 +
1

𝑛−2
×

(𝐴−�̂�)2

�̂�2(
1

𝑛
+

�̅�2

∑ (𝑥𝑖−�̅�)
2𝑛

𝑖=1

)

)

−
(𝑛−2)+1

2

      (23) 

Finally, the marginal posterior distribution of A is the Student’s t-distribution with degrees 

of freedom (n-2), center �̂�, and scale parameter �̂�2 (
1

𝑛
+

�̅�2

∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1

). 

𝐴|𝑦1, … , 𝑦𝑛 ~ 𝑡 (𝑛 − 2, �̂�, �̂�2 (
1

𝑛
+

�̅�2

∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1

)  )                                                         (24) 

 

2.3.6 Marginal Posterior Distribution of σ2 

If the prior distribution of σ2,𝑝(𝜎2), proportional to 
1

𝜎2 , then the prior distribution of the 

precision ϕ (∅ =
1

𝜎2), 𝑝(∅), is proportional to 
1

∅
 [36]. 

Therefore, the joint prior distribution is written as: 

𝑝(𝐴, 𝐵, ∅) ∝
1

∅
                                                                                                                                       (25) 

As shown in Eq.(17), the joint distribution 𝑝(𝐵, ∅|𝑦1, … , 𝑦𝑛) is written as: 

𝑝(𝐵, ∅|𝑦1, … , 𝑦𝑛)

∝ ∅
𝑛−3

2 exp (−
𝑆𝑆𝐸 + (𝐵 − �̂�)

2
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1

2
∅) 

(26) 

By integrating 𝑝(𝐵, ∅|𝑦1, … , 𝑦𝑛) over B, the following equation is obtained: 

𝑝(∅|𝑦1, … , 𝑦𝑛) ∝ ∅
𝑛−2

2
−1 exp (−

𝑆𝑆𝐸

2
∅)                                                                             (27) 

Finally, the marginal posterior distribution of ∅ is a Gamma distribution with a shape 

parameter 
𝑛−2

2
 and rate parameter 

𝑆𝑆𝐸

2
. 
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∅|𝑦1, … , 𝑦𝑛 ~ 𝐺𝑎𝑚𝑚𝑎 (
𝑛 − 2

2
,
𝑆𝑆𝐸

2
) (28) 

Therefore, the updated σ2 follows the inverse Gamma distribution. 

2.3.7 Joint posterior distribution 

Eq (26) can be reformulated as shown in Eq. (29). 

𝑝(𝐵, ∅|𝑦1, … , 𝑦𝑛)

∝ ∅
𝑛−3

2 exp (−
𝑆𝑆𝐸 + (𝐵 − �̂�)

2
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1

2
∅) 

∝ [∅
1

2 𝑒𝑥𝑝 (−
(𝐵−�̂�)2 ∑ (𝑥𝑖−�̅�)2𝑛

𝑖=1

2
∅)] [∅

𝑛−2

2
−1𝑒𝑥𝑝 (−

𝑆𝑆𝐸

2
∅)]                                  

(29) 

Therefore, the joint distribution 𝑝(𝐵, ∅|𝑦1, … , 𝑦𝑛) can be viewed as the product of the 
posterior distribution of B conditioning on ϕ and the posterior distribution of ϕ. The first 

term, ∅
1

2 exp (−
(𝐵−�̂�)2 ∑ (𝑥𝑖−�̅�)2𝑛

𝑖=1

2
∅), is the Normal distribution with mean �̂� and standard 

deviation 
𝜎2

∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1

=
𝜎2

𝑆𝑥𝑥
. The second term,  ∅

𝑛−2

2
−1exp (−

𝑆𝑆𝐸

2
∅), is the Gamma distribution 

of the precision ϕ, or the inverse Gamma distribution of the variance σ2. 

𝐵|𝜎2, 𝑑𝑎𝑡𝑎 ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (�̂�,
𝜎2

𝑆𝑥𝑥
)                                                                                             (30) 

1/𝜎2| 𝑑𝑎𝑡𝑎 ~ 𝐺𝑎𝑚𝑚𝑎(
𝑛−2

2
,
𝑆𝐸𝐸

2
)                                                                                        (31) 

Therefore, the joint distribution of B and σ2, under the reference prior, is a Normal-Gamma 
distribution on σ2. 

As shown in Eq. (22), the joint distribution 𝑝(𝐴, ∅|𝑦1, … , 𝑦𝑛) is written as: 

𝑝(𝐴, ∅|𝑦1, … , 𝑦𝑛) ∝ ∅
𝑛−3

2 𝑒𝑥𝑝

(

 
 

−

𝑆𝑆𝐸+
(𝐴−�̂�)

2

1
𝑛

+
�̅�2

∑ (𝑥𝑖−�̅�)
2𝑛

𝑖=1

2
∅

)

 
 

  

∝

[
 
 
 
 

∅
1

2 𝑒𝑥𝑝

(

 
 

−

(𝐴−�̂�)
2

1
𝑛

+
�̅�2

∑ (𝑥𝑖−�̅�)
2𝑛

𝑖=1

2
∅

)

 
 

]
 
 
 
 

[∅
𝑛−2

2
−1𝑒𝑥𝑝 (−

𝑆𝑆𝐸

2
∅)]                                             

(32) 

As shown in Eq. (32), the joint distribution 𝑝(𝐴, ∅|𝑦1, … , 𝑦𝑛) can be viewed as the product 
of the posterior distribution of A conditioning on ϕ and the posterior distribution of ϕ. The 

first term, ∅
1

2 exp

(

 
 

−

(𝐴−�̂�)
2

1
𝑛+

�̅�2

∑ (𝑥𝑖−�̅�)
2𝑛

𝑖=1

2
∅

)

 
 

, is the Normal distribution with mean �̂� and standard 
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deviation 𝜎2 (
1

𝑛
+

�̅�2

∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1

) = 𝜎2 (
1

𝑛
+

�̅�2

𝑆𝑥𝑥
). The second term,  ∅

𝑛−2

2
−1exp (−

𝑆𝑆𝐸

2
∅), is the 

Gamma distribution of the precision ϕ, or the inverse Gamma distribution of the variance 
σ2. 

𝐴|𝜎2, 𝑑𝑎𝑡𝑎 ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (�̂�, 𝜎2 (
1

𝑛
+

�̅�2

𝑆𝑥𝑥
))                                                                        (33) 

 1/𝜎2| 𝑑𝑎𝑡𝑎 ~ 𝐺𝑎𝑚𝑚𝑎(
𝑛−2

2
,
𝑆𝐸𝐸

2
)   (34) 

Therefore, the joint distribution of A and σ2, under the reference prior, is a Normal-Gamma 
distribution on σ2. 

2.4 Methods of evaluation 

One of the problems with the comparison of creep data with a model’s prediction is the 
increasing divergence and spread of data with time. Consequently, the divergence and 
spread are a measure of the limitation of the model’s capabilities and variability in the 
experimental data The calculation of a coefficient of variation or standard error of 
regression normalized by the data centroid are from the methods commonly used for 
determining the deviation of a model from the data [18]. Several methods have been used 
for the evaluation of the accuracy of models to predict experimental data. In this study, 
Bazant and Panula (BP) coefficient of variation [37], Comité Européen du Béton (CEB) 
coefficient of variation [38] and Gardner coefficient of variation [39] are used.  

2.4.1 BP coefficient of variation (�̅�𝑩𝑷 %) method 

A coefficient �̅�𝐵𝑃 is determined for the data set [37]. Data points in each logarithmic 
decade, 0 to 9.9 days, 10 to 99.9 days, and so on, are considered as one group. Weight is 
assigned to each data point based on the decade in which it falls and the number of data 
points in that particular decade.  

2.4.2 CEB coefficient of variation (VCEB ) 

The CEB statistical indicators were suggested by Muller and Hilsdorf [38]. The indicators 
are calculated in six-time ranges: 0 to 10 days, 11 to 100 days, 101 to 365 days, 366 to 730 
days, 731 to 1095 days, and above 1095. The final VCEB value is the root mean square (RMS) 
of the six interval values. 

2.4.3 The Gardner coefficient of variation (𝝎𝑮) 

The mean observed value and RMS of the difference between calculated and observed 
values are calculated in half-logarithmic time intervals: 3 to 9.9 days, 10 to 31.5 days, 31.6 
to 99 days, 100 to 315 days, 316 to 999 days, 1000 to 3159, and above 3160 days. Then, 
the average values and RMSs are calculated without regard to the number of observations 
in each half-decade. Finally, the Gardner coefficient of variation, 𝜔𝐺 , is obtained by dividing 
the average RMS normalized by the average value [39]. 

3. Results and discussion 

 179 experiments performed under various conditions with 1488 readings having loading 
age equal or greater to 700 days (t0 ≥ 700 days) are chosen from the NU database for this 
study. The creep coefficient is calculated according to the EC2 model [19] for each 
observation. Finally, the linear regression presented in Eq. (7) is applied for these 1488 
readings. 
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Fig. 2 shows the graph of the residuals obtained for the EC2 model plotted against the creep 
coefficient. Positive residuals mean that the model underestimates the creep coefficient 
while negative values indicate that the model overestimates the creep coefficient. An 
accurate creep coefficient prediction is illustrated by residuals close to zero.  As shown in 
Fig. 2, the EC2 model may underestimate or overestimate the creep coefficient for a creep 
coefficient value less than 4; however, for higher values of the creep coefficient, the EC2 
model underestimates the creep coefficient, and the residual magnitude is very high 
underlining the inadequacy of the EC2 in creep coefficient prediction.  

 

Fig. 2 Plot of creep coefficient residuals for the 1488 readings 

As the EC2 model calculates the creep coefficient based on the value of the compressive 
strength (i.e. less or greater than 35 MPa), the data is first divided into two categories: 
group1 and group 2. Group 1 includes observations with compressive strength less or 
equal to 35 MPa. Group 2 is formed from observations having a compressive strength 
greater than 35 MPa. The goal is to find out in which combination of parameters the EC2 
model underestimates or overestimates the creep coefficient. Further investigation and 
exploration of the data are made to obtain more precise results for the correction 
coefficients values and led to the division of the data into six groups (see Table 1) based on 
the underestimation and overestimation of the EC2 model.  

Table 1. Properties of each group 

Group a  fcm ≤ 35 MPa and 
𝜎

𝑓𝑐𝑚(𝑡0)
 < 0.3 

Group b fcm ≤ 33 MPa and 
𝜎

𝑓𝑐𝑚(𝑡0)
 ≥ 0.3 

Group c 33 MPa < fcm ≤ 35 MPa and 
𝜎

𝑓𝑐𝑚(𝑡0)
 ≥ 0.3 

Group d 35 MPa < fcm < 45 MPa and RH <  80% 
Group e fcm ≥ 45 MPa and RH <  80% 
Group f fcm ≥ 35 MPa and RH ≥  80% 
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Table 1 shows the properties of each of the six groups. Group 1 is mainly divided according 

to the value of the ratio of sustained load to compressive strength at loading age (
𝜎

𝑓𝑐𝑚(𝑡0)
 ).  

Group a includes the observations of group 1 with 
𝜎

𝑓𝑐𝑚(𝑡0)
 less than 0.3. Observations where 

𝜎

𝑓𝑐𝑚(𝑡0)
 equal to or greater than 0.3 are divided into group b and group c depending on the 

value of compressive strength (i.e. less or greater than 33 MPa). For group 2, observations 
are primarily divided according to the relative humidity (RH). For RH value less than 80%, 
the observations of group 2 with compressive strength less than 45 MPa and equal to or 
greater than 45 MPa are found in groups d and e, respectively. Group f includes 
observations from group 2 having relative humidity equal to or greater than 80%. The 
division is thus made according to the compressive strength (fcm), ratio of sustained load 

to compressive strength at loading age (
𝜎

𝑓𝑐𝑚(𝑡0)
 ) and relative humidity (RH). The effect of 

loading age (t0) is implicitly considered in the ratio of sustained load to compressive 

strength at loading age (
𝜎

𝑓𝑐𝑚(𝑡0)
 ) as the loading age greatly influences the compressive 

strength. Indeed, this division fits the results of studies found in the literature according to 
the most important factors affecting creep [12,40], where compressive strength, relative 
humidity, sustained load and loading age were the highest factors affecting creep. 

Based on the data division shown in Table 1, Fig. 3 clearly shows that the EC2 model 
underestimates the creep coefficient in the case of groups b, d and e, while it overestimates 
the creep coefficient in the case of groups a and c. 

In order to apply the BLR, the error 𝜖𝑖 should be normally distributed with zero mean and 
constant variance σ2. Fig. 4 shows the histogram of the error 𝜖𝑖 , which is the difference 
between the observed value and the predicted value, for the six groups. The Shapiro-Wilk 
test is applied and the p-value for the six groups is greater than 0.05; thus, the normality 
of the error 𝜖𝑖 is verified and Bayesian linear regression can be applied. Therefore, the 
random variable of each response yi, conditioning on the observed data xi and the 
parameters A, B and σ2, is also normally distributed. 

By considering the likelihood distribution (see Eq. (9)) and the reference prior (see Eq. 
(12)), the marginal distributions of A, B and σ2 are calculated as mentioned in section 2. 
The correction coefficients, A and B, and their 95% credible interval (CI) are calculated and 
listed in Table 2. For a 95% CI, the value of interest (i.e. A or B) lies with a 95% probability 
in the interval. For example, there is a 95% chance that the correction coefficient B will 
increase by 1.09% up to 1.26% for each additional increase in the EC2 creep coefficient in 
group a. In groups a and c where the EC2 model overestimates the creep coefficient (Fig. 
3), the values of A are 0.67 and 0.58 for groups a and c, respectively, and the values of B are 
1.18 and 1.02, respectively. The values of A and B in groups b, d and e are greater than one 
as the EC2 model underestimates the creep coefficient in these groups. The values of A and 
B in group f are 1.03 and 0.87, respectively. Fig. 5 shows the residuals plots of the six groups 
after the implementation of the correction coefficients into the EC2 creep model. Fig. 6 
shows the x-y scatter plots of the six groups with the fitted line. The x-axis represents the 
natural logarithm of the EC2 creep coefficient and the y-axis represents the natural 
logarithm of the actual creep coefficient in the Northwestern University database. 
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Table 2. Values of the correction coefficients A and B and their 95% credible intervals 

 Group a Group b Group c Group d Group e Group f 
A 0.67 1.43 0.58 1.13 1.20 1.03 

95%CI of A [0.63;0.72] [1.34;1.55] [0.50;0.68] [1.01;1.28] [1.06;1.36] [0.87;1.22] 
B 1.18 1.02 1.28 1.14 1.36 0.54 

95%CI of B [1.09;1.26] [0.95;1.08] [1.09;1.47] [1.01;1.26] [1.18;1.55] [-0.09;1.16] 

 

Table 3 shows the values of the statistical indicators before and after the implementation 
of the correction coefficient in the EC2 model (Eq. 2). These statistical indicators are 
calculated to verify the accuracy and effectiveness of the proposed improvement and 
modification of the EC2 model. As indicated in Table 3, the implementation of the 
correction coefficients, A and B, provides a significant improvement of the results 
where �̅�𝐵𝑃 , VCEB, and 𝜔𝐺  decreased by 24%, 24%, and 26%, respectively; therefore, the 
updated model proves to be an effective solution to improve the prediction of creep 
coefficient. 

Table 3. Statistical indicators of the EC2 model and the updated EC2 model 

            �̅�𝐵𝑃 VCEB 𝜔𝐺  

Target value 0 0 0 

EC2 model 0.58 0.50 0.57 
Updated EC2 model 0.44 0.38 0.42 
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Fig. 3 Plot of creep coefficient residuals for the six groups (according to the EC2 model) 
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Fig. 4 Histogram of the error ϵi for the six groups with the p-value of the Shapiro-Wilk 
test 
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Fig. 5 Plot of creep coefficient residuals for the six groups (according to the updated 
EC2 creep model) 
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Fig. 6 Plots of the natural logarithm of the EC2 creep coefficient versus the natural 

logarithm of the actual creep coefficient for the six group 
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4. Conclusion 

Creep can affect the structural behavior by violating the service limit states, losing the 
prestressing forces, or redistributing the stress in concrete members. For that, engineers 
should accurately predict creep. Therefore, this paper aims to update the EC2 creep 
coefficient prediction by implementing correction coefficients into the model. The 
Northwestern University dataset was used in this study, which contains a large number of 
creep tests that are performed using different concrete mix compositions and under 
various environmental conditions such as aggregate-cement ratio, water-cement ratio, 
concrete compressive strength, cement type, effective thickness, loading age, sustained 
stress over the compressive strength at loading age, temperature, and relative humidity.  

Since Bayesian-type inferences are considered as suitable tools to revise and update design 
codes, the correction coefficients were calculated using Bayesian linear regression. An 
approach based on Bayesian linear regression was developed in this study to define a 
methodology for updating the EC2 model. This methodology allows determining the 
correction coefficients that must be introduced into the EC2 creep coefficient model.  

A total of 1488 readings of creep coefficient, with loading age greater than 700 days, were 
extracted from the NU database. The data was then explored and divided into six groups 
according to the compressive strength, sustained stress over the compressive strength at 
loading age and relative humidity. Next, the normality of the data in the six groups was 
checked using the Shapiro-Wilk test. Finally, the correction coefficients were calculated for 
the different groups. 

Statistical indicators (BP coefficient of variation, CEB coefficient of variation and Gardner 
coefficient of variation) have decreased by 24%, 24%, and 26%, respectively, after the 
implementation of the correction coefficients in the EC2 model. Therefore, the presented 
approach has proven to be an effective solution for improving the creep coefficient 
prediction. The adoption of the updated model would improve the long-term serviceability 
of structures subjected to time-dependent creep strains. 
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