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 This paper presents a new test method, including coated specimen, shear testing 
procedure, and algorithm for evaluation of critical intensity of singular stress 
for coating, for more accurate and complete characterization of adhesion 
strength. 
A procedure for determining the critical intensity of singular stress for coating 
is presented in this paper. In this paper, the coated specimen has been analysed 
in terms of the intensity of singular stress field. The adhesion strength of 
plasma-sprayed coatings was estimated in terms of the intensity of singular 
stresses in the vicinity of the free edge of the coating. The finite element analysis 
for normal and tensile stress distributions of the coated specimens are obtained 
by using different mesh sizes (fine, medium, and coarse size). Tensile testing of 
flat metal samples with plasma-sprayed coatings of Co-Cr alloy of various 
thicknesses (90, 100, 160 m) was performed. The results show that the 
adhesion strength of the tested coatings can be represented by a critical stress 
of 1.34, 0.94, 0.88 MPa m0.43 for thicknesses of 90, 100, 160 m, respectively. 
      
                                                                        © 2022 MIM Research Group. All rights reserved 
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1. Introduction 

Experimental studies of specimens with coatings indicate, that the delamination of the 
coating from the substrate initiates from the free edge of the coating even in absence of 
an initial crack in the interface [1-4]. The coating delamination of the item initiates from 
the free edge due to the singularity of stresses. The existing studies of the stress state in 
deformed coating are taking into account only the concentration of shear stresses in the 
nearby area of the free edge of the coating [5-7]. So, it is necessary to finally study the 
stress fields singularity dependency on the coated specimen geometric characteristics, 
as well as the substrate and coating elasticity characteristics. 

The study of the singularity of stress fields was initiated in [8], in which the singularity 
of stresses in plates of various configurations, from homogeneous as well as composite 
materials was determined. The distribution of stress in a body formed by dissimilar 
isotropic elastic materials was considered in the work [9]. The distribution of stress in 
systems of dissimilar materials was also investigated in the work [10]. The problem for 
an anisotropic material consisting of a system of anisotropic layers separated by 
isotropic layers was solved in the work [11]. The problem of determining the singularity 
of stress fields for wedges made of two different materials was considered in numerous 
works [12-16]. 
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Research of this field is well covered in reviews [17, 18]. There are various approaches 
to assessing the stress state in layered materials, both analytical methods [19-23], and 
numerical methods [23, 24]. The investigation of the stress fields singularity in case of 
thermal barrier coatings deduced that, if the angle of the free edge is decreases to an 
angle of 60 degree, the coating durability increases [25, 26]. The goal of this paper is to 
investigate the singular stress fields that cause the coating delamination. 

2. The Evaluation of Stress Fields Intensity in A Coated Sample 

The field of stress is determinate as [27, 28]: 

 

 

  (1) 

 

 

 

 

The equations for the normal  and shear  stresses in the coating from (1) can be 
written as: 
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Fig. 1. The detail of “coating”-“substrate” system [28] 
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Transform the equations (2) to look as: 

2
lg lg 1 lg

c

rθ
τ = K +(λ ) r−                                                                                                           (3) 

1
lg lg 1 lg

c

θ
σ = K +(λ ) r−  

From equations (3) it can be determined that there is a linear relationship between 

stresses and distance r if plotting graphs in logarithmic coordinates. If lg
c

θ
σ  is shown 

related to lgr , the graph-line has a slope λ – 1, the graph will intersects the ordinate axis 

at a point with a y-coordinate
1

lgK  Therefore, knowing the value, lg c

θ
σ  at lg 0r = , it is 

possible to determine the value of 
lg

1
10

c
σ
θK = . 

3. Methods and Materials 

The Co- Cr coating [29, 30] with thickness of 90, 100 and 160 µm has been plasma 
sprayed on stainless steel substrate (1Kh18N9 stainless steel, containing 0.9% C, 
16.7% Cr, 7.8% Ni, 0.37% Si, and 1.47% Mn) thickness 1.5 mm (Fig. 2). The coating was 
sprayed only partially on steel substrate so as to leave out free edge of the coating 
(Fig.1). The elastic characteristics of the substrate and the coating were determined 
under static tension of coated specimen following methodology described in [30]. 

The thickness of the coating is comparatively thick so it is measure using a micrometre. 
Delamination moment can be fixed through visual observation, as acoustic emission 
techniques have shown that the moment of coating delamination visually gives an error 
within 2% boundaries (Not explained further in this study as it is not the object of the 
research). 

The thickness of coating was chosen based on both its intended functionality- to 
increase wear and corrosion resistance and economic considerations- to not have 
wasted material. It was proven that coating thickness of 90 µm would start providing 
some functionality, while thicker coating, while increasing functionality, would increase 
expenditure in larger scale (Not explained further in this study as it is not the object of 
the research). 

4. Results and Discussion 

It should be noted, that the use of the Kcr value as a criterion is also possible for coatings 
in which the angle of the free edge is not equal to 90°. Such coatings are widely used and 
the deposition of coatings with a free edge angle θc < 90° is recommended by the 
technological process of plasma coating spraying [31]. The results show that the 
intensity of singular stresses for the tested metal coatings is dependent weakly on the 

 

Fig. 2. Specimen with the plasma sprayed coating (Co- Cr alloy coating; Left view) 
before the tensile test. 
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thickness of the coating. It can be seen, that the analytical method for determining the 
singularity factor  is more accurate than the method based on the approximation of 
stresses obtained using finite element modelling. The critical intensity of singular stress 
Кcr, measured using the proposed technique, can be used as a criterion to evaluate 
adhesion strength for coatings. 

To determine the critical singular stresses that would cause the failure of the coating, 
the specimen was subjected to tensile load. 

The delamination of the coating (sample with coating thickness 90 µm) occurs under 
stress that corresponds to the moment when the load on the uncoated substrate reach 
σsub = 752 MPa. 

 

Fig. 3. Coated specimen’s finite elements model. Minimal size of mesh 0.2 µm. 

 

 

Fig. 4. Part of the finite element mesh model near the free edge of coating and the 
stress singularity area 

The critical stress intensity factor Kcr was determined by Finite Element Method 
(FEM). Specimen’s finite element mesh is shown on (Fig.3). The mesh was constructed 
using half of the specimen. Numerical calculus for elastic solid was made using ANSYS. 
The finite element mesh in the area of the singularity was made finer. A fragment of 
the finite element mesh in the area of stress singularity is shown in (Fig.4); the tensile 
load was applied to the end face of sample. The minimal size of mesh in the area of 
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stress singularity is 0.2 µm (Fig. 4). The elasticity characteristics of both the coating, 
and the substrate, were calculated after the tension test as listed in [31], see Table 1. 

Table 1. Elasticity characteristics of the coating and its substrate. 

 Material 
Elastic modulus Е, 

GPа 
Poisson Ratio, 

 

Substrate 1Х18Н9 199 0.28 

Coating Co- Cr alloy 70 0.3 

 

The distribution of normal and shear stresses in the area of adhesive contact between 
the substrate and the coating at a distance r (0.07 ... 100 μm) from the free edge of the 
coating at = 752 MPa are shown in (Fig.5) (logarithmic coordinates). The distribution of 
stresses in the sample during the delamination of the coating can be seen in (Fig.6) to 
(Fig.8). 

 

Fig. 5. The distribution of normal and shear stresses in the area of adhesive contact 
between the substrate and the coating at a distance r (0.07 ... 100 μm) from the free 

edge of the coating at sub
 = 752 MPa  

 

Fig. 6. The distribution of normal stresses σz under coating of the specimen during 

delamination near free edge ( sub
σ = 752 МPа). 
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Deviations from linearity seen in Fig.5 are related to the method used to describe 
fracture mechanics and estimating the singularity of stresses in the vicinity of a singular 
point, in particular it is caused by the logarithmic scale  

(Fig.5) shows that the normal tensile stresses σz and shear stresses τ vary 
approximately linearly in the area corresponding to r = 0.7 µm (lg r = –3.15) to 
r ≈ 14.4 µm (lg r ≈ –1.84). This character of the distribution shows that the stress can be 
described by the formula given in (2). At r > 14.4 mm the character of these expressions 
ceases to be linear till eventually the singularity disappears. Normal stresses of the σy 
are linear in a much narrower range of r (0.7 µm < r < 4.8 µm). 

The stress σy near the free edge of the coating exceeds the shear stresses τ (Fig.5), 
meaning, in the area of the coating; the free edge delamination occurs due to the 
predominant action of normal shear stresses σy. Consequently, the investigation of how 
stress singularity affects the coating adhesion failure must be carried out as for normal 
delamination stresses σy. 

 

Fig. 7. Normal stresses σy distribution under specimen coating delamination near free 

edge ( sub
σ = 752 МPа) 

As a result of the singularity of the stress near coating free edge [28], the value of the 
stress might be dependent on how fine the finite element mesh is. To make sure that, 
the accuracy of Кcr does not depends on minimal size of finite element mesh (FEMesh), 
the simulation was made for three different FEMeshes: sizes; fine 0,2 μm (Fig.8); 
medium 0.7 μm (Fig. 9); and coarse 6.2 μm (Fig. 10). These simulations allowed to 

evaluate the area of stress singularity under load sub
  that causes the metal coating 

delamination. In (Fig.11) normal delamination stresses distribution is shown in three 
graphs of FEMeshes. Though in the area of the free edge of the coating the stress value 
depends on FEMeshes size, the curve slope λ–1, does not depend on FEMesh in graph’s 

linear part lg
y
σ  compared to lgr . The stresses change is linear in a wide range of r, 

regardless if fine, middle and coarse FEMeshes. The angle of curve slope for expression 

(3) can be found analytically [28] or by curve-fitting the linear graph part lg
y
σ to lgr

. Usually such approximation is made using The Least Square Method (LSM). The 
analytical approach is more accurate than LSM and also allows to determinate two 
factors of singularity order (the roots λ1 and λ2 for characteristic equation). 
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Fig. 8. The shear stresses τ area in a specimen during the coating delamination near 

its free edge ( sub
σ = 752 МPа) 

 

Fig. 9. The FEM of coated specimen (minimal mesh size is 0.7 µm) 

When comparing the singularity order calculated by the analytical method with the 
value obtained by linear approximation by the LSM, it can be concluded that the 
approximation has errors corresponding to the size of the FEMesh. 

 

 

Fig. 10. The FEM of coated specimen (minimal mesh size is 6.2 µm) 
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The σy values obtained by the FEM can be compared with the stresses in accordance 
with equations (1). The error associated with numerical calculations can be reduced by 
creating a finer mesh of finite elements. 

Table 2. The Results of Adhesion Properties of plasma-sprayed Coating (Co-Cr alloy) 
Investigation  

C
o

at
in

g 
th

ic
k

n
es

s 
h

, 
µ

m
 

Factors of stress singularity Ratio

num

λ

λ
 

Critical 
stress 

intensity 
Кcr 

Physical 
dimension 

Кcr 
[МPа.m1-λ] 

The analytical 
method [25] 

The LSM 
λnum 

90 
100 
160 

0.5687 
0.5517 
0.5033 
0.5429 

1.031 
1.130 
1.048 

1.34 
0.94 
0.88 

МPа·m0,43 

 

Plasma-sprayed coatings with a thickness of 100 µm and 160 µm delaminates under 
loads cause corresponding to stresses of 625 and 340 MPa in the substrate material’s 
uncoated area. A specimen with a coating with a thickness of 160 μm after tensile tests 
is shown in (Fig. 12). The indicators of the critical stress intensity Kcr, as well as the 
order of the stress singularity, calculated analytically and found using the 
approximation method, are given in Table. 2. The stress distribution σy near the free 
edge of the coating during delamination of coatings of various thicknesses is shown in 
(Fig.13). 

 

Fig. 11. Impact of FEMeshes size on stress distribution σy  
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Fig. 12. Plasma-coated (Co-Cr alloy, thickness 160 µm) Sample after tensile load test 

 

Fig. 13. Stress σy distribution during delamination of plasma-sprayed coating of 
various thicknesses. 

5. Conclusion 

Analysis of the test results shows that the value of Kcr for the tested metal coatings is 
weakly dependent on the thickness of the coating. Thus, the Kcr value can be used as a 
criterion for adhesive destruction of coatings. In addition, it should be noted, that the 
use of the Kcr value as a criterion is also possible for coatings in which the angle of the 
free edge is not equal to 90°. Such coatings are widely used and the deposition of 
coatings with a free edge angle θc < 90° is recommended by the technological process of 
plasma coating spraying. The results show that the intensity of singular stresses for the 
tested metal coatings is weakly dependent on the thickness of the coating. It can be seen, 
that the analytical method for determining the singularity factor is more accurate than 
the method based on the approximation of stresses obtained using finite element 
modelling. The critical intensity of singular stress, measured using the proposed 
technique, can be used as a criterion to evaluate adhesion strength for coatings. 
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Nomenclature 

E - elastic modulus (index с refers to coating, index s refers to substrate); 

K- stress intensity factor, 

Кcr - critical stress intensity factor; 

K1, K2 – mode 1 and mode 2 stress intensity factors; 

c

r
f
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s

r
f
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c

θ
f
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s

θ
f

, 

c

rθ
f

, 

s

rθ
f

 - correcting factor for stresses (index с refers to coating, 
index s refers to substrate); 

r, θ - local polar coordinates; 

λ - order of stress singularity. 

 - Poisson Ratio (index с refers to coating, index s refers to substrate); 

Qsub- the remote stress applying to the substrate in the z direction; 

Qr, Qθ, Qrθ - stress components (index с refers to coating, index s refers to substrate) 

σy - peeling stress; 

σz - normal tensile stress; 

τ - interfacial shear stress; 

FEM - Finite Element Method; 

FEMesh - finite element mesh; 

LSM - Least Square Method 
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