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 Mold coating has a critical importance to adjust the microstructure of the cast 
and regulate the heat transfer during the solidification.  The phase change heat 
transfer problem during the solidification is solved numerically in the presence 
of the coating layer and finite thermal capacitances of materials. Previous studies 
have been expanded by considering the combined effects of the coating layer and 
specific heat capacities of the materials on growth instability. Also, the 
conditions are specified based on the process parameters for minimizing or 
eliminating the unstable growth of the shell. The complexness of the two-
dimensional thermal problem is reduced by perturbation analysis. After that, the 
governing equations are solved numerically by using the variable time step and 
grid size based Lagrangian finite difference scheme. The effects of the thermal 
properties of the materials, coating properties and the thermal contact 
resistances on the thermoelastic instability process are studied in detail. 
According to the results obtained that a thicker coating layer causes more 
regular growing and better quality in the shell. However, the specific heats of the 
solidified layer and coating materials have stabilizing effects but an increase in 
the mold specific heat leads to a destabilizing effect on the thermoelastic 
instability. Also, the thermal conductivities have great impact on growth of the 
shell. The solution of this study can be used as thermal part in uncoupled and 
coupled problems in which the thermomechanical problems are investigated. 

 

© 2022 MIM Research Group. All rights reserved. 
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1. Introduction 

Almost all metals and alloys, some ceramic and polymer materials are liquid at some stage 
of their production and start to solidify when they are cooled below the melting 
temperature. The control of thermo-mechanical events that occur during casting is of great 
importance to increase the quality of the casting. Studies, in which the solidification during 
casting is analyzed theoretically and experimentally, reveal that thermo-mechanical 
phenomena at the solid/liquid interface (moving interface) has significant effect on the 
thermoelastic unstable growth that occurs during solidification. When the experimental 
studies are examined, it is seen that some undulations occur at the moving interface during 
the solidification of metals as an inevitable result of cooling [1]. The experiments reveal 
that these undulations continue from the beginning of solidification to a certain stage and 
then disappear. This behavior is explained as the thermal and mechanical phenomena 
occurring at the mold/shell interface affects the thermo-mechanical conditions at the 
moving interface and this situation gradually disappears with the increase of the solidified 
shell thickness. These non-uniform undulations occur because of the uneven heat flux at 
the mold/shell interface. This unstable undulation causes important faults such as 
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micro/macro scaled cracks in the final casting [3]. This phenomenon during the 
solidification, which is called thermoelastic instability, is theoretically examined in two 
parts such as thermal and mechanical problems.  The thermal problem and its solution are 
discussed in this study in detail. 

The phase-change problems (moving interface problems) have great importance for the 
applications such as purification of metals, casting/welding processes and thermal energy 
storage systems [4]. The common property of phase change problems is a moving interface 
that occurs between the solid and liquid phases during the solidification or melting process 
and the location of this moving interface have to be determined with the solution. Stefan 
[5] dealt with the first theoretical work on solving the phase-change problem for the ice 
formation process. Evans [6] and Douglas [7] studied the existence and uniqueness of this 
problem’s solution, respectively. Since then, despite many phase change problems 
appeared in literature but exact solution to this problem has been limited to idealized cases 
containing semi-finite or infinite regions with simple boundary and initial conditions. The 
history and some classical solutions to the Stefan problems were collected in Crank [8] and 
Hill [9]. Due to the nonlinear behavior of this problem, the superposition principle is not 
applicable and all cases are evaluated separately.  

Barry and Caunce [10] solved Stefan type problem numerically and analytically by taking 
into the account of linear and nonlinear diffusivities. Song et al. [11] solved the Stefan 
problem by an underlying iso-geometric approximation with a sharp interface. For the 
solution of one-dimensional Stefan problems with moving boundaries, Reutskiy [12] 
developed a delta-shaped function based meshless numerical. Juric and Tryggvason [13] 
used the front tracking method and the fixed grid in space was used for determining the 
moving boundary’s location and the interface heat sources were calculated by using the 
moving grid on the interface. An adapted grid procedure is applied by Murray and Landis 
[14] and they found that the moving interface location is determined more accurately with 
the adapted grid method. Also, an adaptive grid method is used by Segal et al. [15] for the 
free boundary in the 2D phase change problem and the movement of the grid was 
introduced into the system equations by use of Arbitrarian Lagrangian-Eulerian (ALE) 
approach. Kutluay et al. [16] obtained a solution of Stefan problem by using boundary 
immobilization techniques with variable space grid. Caldwell et al. [17] solved 1D Stefan 
problem by using the nodal integral method with finite difference (FD) scheme. The 
methods for the numerical solution of one-dimensional Stefan problems for different 
geometries are compared in Caldwell and Kwan [18] in detail. A simple level set method 
was used to solve the Stefan problem in the dendritic solidification process by Chen et al. 
[19]. Font [20] solved the one-phase phase-change problem with size-dependent thermal 
conductivity. The boundary immobilization and finite difference scheme are used for 
numerical solution. Moreover, the phase-field modeled Stefan problems are investigated 
by Mackenzie and Robertson [21] and Sun and Beckermann [22]. Vynnycky and Mitchell 
[23] developed an algorithm for 1D time-dependent problem by use of the Keller box FD 
scheme and boundary immobilization technique. Myers and Mitchell [24] developed a 
solution method for solving Stefan problem based on the heat balance integral method that 
is called the combined integral method. This method breaks down like other integral 
methods when the boundary temperature approaches zero or oscillates.  

The problem of solidification of metals with phase-change heat transfer has been 
specifically addressed in this paper and some studies about heat transfer during 
solidification are summarized below. Zabaras and Mukherjee [25] solved the phase change 
problem during the pure metal solidification process by convolution integrals and Green’s 
functions based boundary element method. In Dursunkaya and Nair [26], the motion of a 
solidification front is analyzed by using a semi-analytical approach during the solidification 
of a finite one-dimensional medium with boundary temperature with oscillations. 
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Skrzypczak and Wergrzyn-Skrzypczak [27] studied the mathematical and numerical 
modeling of the heat transfer problem during the pure metal solidification process by using 
the finite element method and the front tracking method based on the level set method 
were used for determining the position of the moving interface. Another useful method for 
analyzing Stefan problems is the perturbation method. Caldwell and Kwan [28] solved 
Stefan problems, which have time-dependent boundary conditions, by using perturbation 
method. Yu et al. [29] obtained a perturbation solution to the planar solidification problem 
with time-dependent heat generation. Yigit [30] used the linear perturbation method for 
solving a 2D phase-change Stefan problem during the solidification process in which the 
planar mold’s outer surface has a periodic temperature boundary condition. Also, Yigit [31] 
used the same method to determine the heat transfer problem’s solution during pure metal 
solidification on a mold with sinusoidal surfaces, and the governing equations were 
discretized by using the finite difference approach. A linear perturbation solution was used 
to obtain approximate analytical and numerical solutions of the 2D heat conduction 
problem for solidification on a planar mold surface by Yigit [32] and the effects of thermal 
diffusivity of shell on the unstable growth were determined. The previous paper was 
extended by taking into account the thermal diffusivity of the mold in Yigit [33] and the 
linear perturbation and the finite difference methods are used for the solution. 

As it is mentioned above, the uneven shell growth leads to defects in the cast product 
because of the uneven heat transfer during the solidification. Mold coating is the one of the 
most used and effective techniques to control the heat transfer. It plays an effective role in 
ensuring controlled solidification by reducing the solidification rate of the liquid metal in 
the mold. Thus, the liquid proceeds without freezing in the metal mold and fills the entire 
mold. On the other hand, the mold coatings are used to prevent direct contact with the 
liquid metal with the mold steel and to increase the life of the mold by preventing corrosive 
effects and soldering. Another advantage of using mold coating is that it assists with casting 
release from the mold [34]. In the literature, there are many experimental studies in which 
the coating’s effects are investigated in detail. However, the number of theoretical studies 
are much less than the experimental ones. Jafari et al. [35] studied experimentally on the 
mold coating effects on the thin-wall ductile iron casting. The effects of coating thickness 
on porosity percentage and imperfection during the casting process of Al-Si-Cu alloy are 
studied experimentally by Karimian et al. [36]. Also, the effects of mold coating properties 
and alloy composition on the heat transfer during the casting of Al alloys are determined 
by Hamasaiid et al. [37]. Demir and Yigit solved the heat transfer problem for the pure 
metal solidification on a coated planar mold in [4,38-40] for coupled and uncoupled 
processes by neglecting the effects of thermal diffusivities. The same problem is modeled 
for a sinusoidal mold and coating in Demir and Yigit [41] and the linear perturbation 
method was used to solve it analytically. 

In this study, the numerical solution of the heat transfer problem for the early stages of the 
full solidification problem, in which the pure metal solidification occurs on the coated 
planar mold, is made by considering the finite thermal diffusivity of the materials. The 
previous studies are extended by investigating the combined effects of the properties of 
the coating layer and thermal diffusivities of the materials. The problem is modeled with 
the linear perturbation method for reducing the complexness of the problem and then, it 
is discretized by the variable time and grid size based Lagrangian finite difference scheme 
for numerical solution. After that, the effects of the coating properties are investigated 
theoretically and the key question is that how can be adjusted the coating layer’s 
properties depending on the other process parameters. Also, other system parameters 
associated with the presence of the coating layer such as thermal contact resistances, 
specific heats of the layers, and thermal conductivity ratios between the materials are 
investigated in detail. This problem has extended the dissertation work given in [4] by 
adding the heat capacities of the materials and the solution obtained as a result of this 
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problem will be used in the realization of the thermo-mechanic solution, in which the 
thermal problem affects the mechanical problem. 

This paper is organized as follows. The two-dimensional modeling and the perturbation 
analysis for simplifying the problem by reducing dimensionality are described in Sections 
2 and 3, respectively. Section 3 introduces the terminology used throughout this paper. In 
Section 4, dimensionless variables are introduced which are used to simplify the 
complexness of the problem and generalize the solution. Section 5 shows the numerical 
algorithm used to solve the problem and Section 6 includes the results and their 
discussions which indicate the reliability of the proposed numerical algorithm and the 
effects of the system parameters. The conclusions of the study are given in Section 7.  

2. Mathematical Formulation 

The geometry of the considered solidification process is shown in Fig. 1. The coating, shell 
and mold layers are denoted with superscripts 𝑏, 𝑐 and 𝑑 respectively. 
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Fig. 1 Geometry of the casting process 

 There is a moving surface between the liquid/solid phases of shell material and it has a 
sharp structure. The reason for this is that the phase change during the pure metal 
solidification process occurs at a distinct temperature. The materials’ properties don’t 
change depending on the time and temperature. The temperature fields in these solid 
layers (𝑇𝑖(𝑥, 𝑦, 𝑡), 𝑖 = 𝑐, 𝑏, 𝑑) and instantaneous location of the freezing front (𝑠(𝑥, 𝑡)) are 
determined as a result of the solution. The liquid shell’s temperature is assumed to be at 
the melting temperature 𝑇𝑚 during the process. For this reason, the thermal effects of the 
liquid phase of the metal are not taken into account. This assumption provides us that the 
moving interface’s temperature is always equal to 𝑇𝑚.   

Since the thermal diffusivities of the materials are taken into account in this study, the 
solution is obtained numerically due to the non-linearity. In this numerical solution, a 
limiting solution to the problem is used for initial conditions. The limiting solution is 
obtained analytically [38] by assuming the thermal diffusivities of the materials are 
infinite. This makes the thermal capacitance of the solid layers are zero and the general 
heat conduction equations are solved analytically with boundary and initial conditions. 
The solution procedure is explained in Appendix and Ref. [38].  
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In Figure 1, h and u symbolize thicknesses of the mold and its coating, respectively. As it is 
mentioned that the thermal diffusivities are assumed to be finite and therefore, the 
distribution of thermal fields in the solid layers varies parabolically. The temperature 
fields have to satisfy the equations in Eq. (1).  

𝜕2𝑇𝑐

𝜕𝑦2
(𝑥, 𝑦, 𝑡) =

1

𝛼𝑐
 
𝜕𝑇𝑐

𝜕𝑡
(𝑥, 𝑦, 𝑡) 

𝜕2𝑇𝑏

𝜕𝑦2
(𝑥, 𝑦, 𝑡) =

1

𝛼𝑏
 
𝜕𝑇𝑏

𝜕𝑡
(𝑥, 𝑦, 𝑡) 

𝜕2𝑇𝑑

𝜕𝑦2
(𝑥, 𝑦, 𝑡) =

1

𝛼𝑑
 
𝜕𝑇𝑐

𝜕𝑡
(𝑥, 𝑦, 𝑡) 

(1) 

where 𝛼𝑖  (𝑖 = 𝑏, 𝑐, 𝑑) denotes the thermal diffusivities of the materials. These equations 
are solved depending on the boundary conditions. The moving interface’s temperature, 
which is equal to 𝑇𝑚 is defined in Eq. (2). 

    𝑇𝑐(𝑥, 𝑠, 𝑡) = 𝑇𝑚 (2) 

The energy balance at the moving interface due to heat conduction and the latent heat is; 

𝐾𝑐
𝜕𝑇𝑐

𝜕𝑦
(𝑥, 𝑠, 𝑡) = 𝐿𝑐𝜌𝑐

𝑑𝑠

𝑑𝑡
(𝑥, 𝑡) (3) 

where 𝐿𝑐 and 𝜌𝑐denote latent heat and density of the shell, respectively. 𝐾𝑖 , ( 𝑖 = 𝑐, 𝑏, 𝑑) 
represents the thermal conductivities of the materials. Eqs. (4) and (5) show the heat flux 
continuity at the interfaces between the solid layers, respectively. 

𝐾𝑐
𝜕𝑇𝑐

𝜕𝑦
(𝑥, 0, 𝑡) = 𝐾𝑏

𝜕𝑇𝑏

𝜕𝑦
(𝑥, 0, 𝑡)         (4) 

𝐾𝑏
𝜕𝑇𝑏

𝜕𝑦
(𝑥, −𝑢, 𝑡) = 𝐾𝑑

𝜕𝑇𝑑

𝜕𝑦
(𝑥, −𝑢, 𝑡)        (5) 

In the model, there are thermal contact resistances at the interface between the solid layers 
due to contaminant films and roughness. 𝑅𝑠𝑐  and 𝑅𝑐𝑚 symbolize these constant thermal 
resistances at the interfaces. The subscript “sc” denotes the shell-coating interface and 
subscript “cm” indicates the coating-mold interface. These contact resistances are assumed 
to be independent of the contact pressure. This is true for the uncoupled process in which 
the thermal problem affects the mechanical problem but vice versa does not come true. 
The uncoupled model is applicable for the early stages of the process and this means that 
the solution of this full solidification problem is eligible for very early stages. Eq. (6) define 
this relation between heat flux and thermal contact resistances. 

𝐾𝑐
𝜕𝑇𝑐

𝜕𝑦
(𝑥, 0, 𝑡) =

1

𝑅𝑠𝑐

[𝑇𝑐(𝑥, 0, 𝑡) − 𝑇𝑏(𝑥, 0, 𝑡)] 

(6) 

𝐾𝑏
𝜕𝑇𝑏

𝜕𝑦
(𝑥, −𝑢, 𝑡) =

1

𝑅𝑐𝑚

[𝑇𝑏(𝑥, −𝑢, 𝑡) − 𝑇𝑑(𝑥, −𝑢, 𝑡)] 

At the mold’s lower surface, there is a heat flux, 𝑄(𝑥, 𝑡), and it has small spatial variation to 
perform the uneven heat transfer. The heat flux extracted from the mold is given in Eq. (7). 
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𝐾𝑑
𝜕𝑇𝑑

𝜕𝑦
(𝑥, −𝑢 − ℎ, 𝑡) = 𝑄(𝑥, 𝑡) (7) 

3. Perturbation Analysis 

The conditions at the interfaces between the solid layer control the resulting properties of 
the final cast and the solidification rate. In this method, it is assumed that an x-dependent 
perturbation grows on the unperturbed process. The parameters of the unperturbed 
process affect the development of this perturbation. The unperturbed and perturbed 
processes are called as zeroth-order and first-order processes, respectively. The 
amplitudes of the perturbed quantities are very smaller than the zeroth-order quantities 
and the perturbation is linear. So, this provides us to use Fourier transformation in x and 
the dimensionality and complexness of the problem are reduced.  

The new forms of the heat flux, the temperature fields, and the moving interface’s position 
are  

𝑄(𝑥, 𝑡) = 𝑄0(𝑡) + 𝑄1(𝑡)𝑐𝑜𝑠(𝑚𝑥) (8) 

𝑇(𝑥, 𝑦, 𝑡) = 𝑇0(𝑦, 𝑡) + 𝑇1(𝑦, 𝑡)𝑐𝑜𝑠(𝑚𝑥) (9) 

𝑠(𝑥, 𝑡) = 𝑠0(𝑡) + 𝑠1(𝑡)𝑐𝑜𝑠(𝑚𝑥) (10) 

Subscript 0 and 1 define the zeroth-order process and the first-order process, respectively. 
The constant 𝑚 and 𝜆 denote the wavenumber and the wavelength and they depend each 
other with 𝜆 =2𝜋/𝑚.  Also, the slope of the moving front, ∂s/∂x, is very much less than 
unity. If the readers need more information about the perturbation method, they refer to 
Yigit’s paper in Refs. [32] and [33].  

Accordingly, the perturbation added forms of temperature field in Eq. (9) substitutes into 
Eq. (1), and then the periodic and uniform terms are separated. The obtained uniform 
(zeroth-order) terms from heat conduction equations are; 

𝜕2𝑇0
𝑐

𝜕𝑦2
(𝑦, 𝑡) =

1

𝛼𝑐
 
𝜕𝑇0

𝑐

𝜕𝑡
(𝑦, 𝑡) 

    (11) 
𝜕2𝑇𝑏

𝑐

𝜕𝑦2
(𝑦, 𝑡) =

1

𝛼𝑏
 
𝜕𝑇𝑏

𝑐

𝜕𝑡
(𝑦, 𝑡) 

𝜕2𝑇0
𝑑

𝜕𝑦2
(𝑦, 𝑡) =

1

𝛼𝑑
 
𝜕𝑇0

𝑑

𝜕𝑡
(𝑦, 𝑡) 

The obtained periodic (first-order) terms from separating heat conduction equations are; 

𝜕2𝑇1
𝑐

𝜕𝑦2
(𝑦, 𝑡) − 𝑚2𝑇1

𝑐(𝑦, 𝑡) =
1

𝛼𝑐
 
𝜕𝑇1

𝑐

𝜕𝑡
(𝑦, 𝑡) 

                                                          (12) 
𝜕2𝑇1

𝑏

𝜕𝑦2
(𝑦, 𝑡) − 𝑚2𝑇1

𝑏(𝑦, 𝑡) =
1

𝛼𝑐
 
𝜕𝑇1

𝑏

𝜕𝑡
(𝑦, 𝑡) 

𝜕2𝑇1
𝑑

𝜕𝑦2
(𝑦, 𝑡) − 𝑚2𝑇1

𝑑(𝑦, 𝑡) =
1

𝛼𝑐
 
𝜕𝑇1

𝑑

𝜕𝑡
(𝑦, 𝑡) 
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Temperature fields are expanded in form of Taylor series at the vicinity of 𝑦 =  𝑠0(𝑡). The 
boundary conditions are rearranged similarly to heat equations and the second and 
higher-order terms are eliminated due to their negligible effects. The zeroth and first order 
boundary conditions to be used in the solution of the equations in Eqs. (11) and (12) are 
determined by using perturbed forms in Eqs (8)-(10). The procedure is described in detail 
in Ref [33]. See this reference for details. 

The zeroth-order boundary conditions are; 

𝑇0
𝑐(𝑠0, 𝑡) = 𝑇𝑚  (13) 

𝐾𝑐
𝜕𝑇0

𝑐

𝜕𝑦
(𝑠0, 𝑡) = 𝐿𝑐𝜌𝑐

𝑑𝑠0

𝑑𝑡
(𝑥, 𝑡) (14) 

𝐾𝑐
𝜕𝑇0

𝑐

𝜕𝑦
(0, 𝑡) = 𝐾𝑏

𝜕𝑇0
𝑏

𝜕𝑦
(0, 𝑡) (15) 

𝐾𝑏
𝜕𝑇0

𝑏

𝜕𝑦
(−𝑢, 𝑡) = 𝐾𝑑

𝜕𝑇0
𝑑

𝜕𝑦
(−𝑢, 𝑡) (16) 

𝐾𝑐
𝜕𝑇0

𝑐

𝜕𝑦
(0, 𝑡) =

1

𝑅𝑠𝑐

[𝑇0
𝑐(0, 𝑡) − 𝑇0

𝑏(0, 𝑡)] (17) 

𝐾𝑏
𝜕𝑇0

𝑏

𝜕𝑦
(−𝑢, 𝑡) =

1

𝑅𝑐𝑚

[𝑇0
𝑏(−𝑢, 𝑡) − 𝑇0

𝑑(−𝑢, 𝑡)] (18) 

𝐾𝑑
𝜕𝑇0

𝑑

𝜕𝑦
(−𝑢 − ℎ, 𝑡) = 𝑄0(𝑡) (19) 

The first order boundary conditions are; 

𝑠1(𝑡)
𝜕𝑇0

𝑐

𝜕𝑦
(𝑠0, 𝑡) + 𝑇1

𝑐(𝑠0, 𝑡) = 0 (20) 

𝐾𝑐[
𝜕𝑇1

𝑐

𝜕𝑦
(𝑠0, 𝑡) + 𝑠1(𝑡)

𝜕2𝑇0
𝑐

𝜕𝑦2
(𝑠0, 𝑡)] = 𝐿𝑐𝜌𝑐

𝑑𝑠1

𝑑𝑡
(𝑥, 𝑡) (21) 

𝐾𝑐
𝜕𝑇1

𝑐

𝜕𝑦
(0, 𝑡) = 𝐾𝑏

𝜕𝑇1
𝑏

𝜕𝑦
(0, 𝑡) (22) 

𝐾𝑏
𝜕𝑇1

𝑏

𝜕𝑦
(−𝑢, 𝑡) = 𝐾𝑑

𝜕𝑇1
𝑑

𝜕𝑦
(−𝑢, 𝑡) (23) 

𝐾𝑐
𝜕𝑇1

𝑐

𝜕𝑦
(0, 𝑡) =

1

𝑅𝑠𝑐

[𝑇1
𝑐(0, 𝑡) − 𝑇1

𝑏(0, 𝑡)] (24) 

𝐾𝑏
𝜕𝑇1

𝑏

𝜕𝑦
(−𝑢, 𝑡) =

1

𝑅𝑐𝑚

[𝑇1
𝑏(−𝑢, 𝑡) − 𝑇1

𝑑(−𝑢, 𝑡)] (25) 

𝐾𝑑
𝜕𝑇1

𝑑

𝜕𝑦
(−𝑢 − ℎ, 𝑡) = 𝑄1(𝑡) (26) 
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4. Dimensionless Presentation 

To reduce the complexness of the problem and generalize the solution, the dimensionless 
parameters are described as follows.   

𝑌 = 𝑚𝑦,          𝑆(𝛽) = 𝑚𝑠(𝑡),          𝐻 = 𝑚ℎ,          𝑈 = 𝑚𝑢,       𝛽 = 𝑚2
𝐾𝑐𝑇𝑚

𝜌𝑐𝐿𝑐
𝑡, (27) 

�̅�(𝑌, 𝛽) =
𝑇(𝑦, 𝑡)

𝑇𝑚

 ,      �̅� =
𝑄

𝑚𝐾𝑐𝑇𝑚

,    �̅�sc = 𝑚𝐾𝑐𝑅𝑠𝑐 ,    �̅�cm = 𝑚𝐾𝑐𝑅𝑐𝑚  (28) 

𝜁1 =
𝐾𝑐

𝐾𝑏
,     𝜁2 =

𝐾𝑏

𝐾𝑑
,      𝜁3 =

𝐾𝑐

𝐾𝑑
,   𝜖c =

𝐾𝑐𝑇𝑚

αc𝜌𝑐𝐿𝑐
,     𝜖b =

𝐾𝑐𝑇𝑚

αb𝜌𝑐𝐿𝑐
,     𝜖d =

𝐾𝑐𝑇𝑚

αd𝜌𝑐𝐿𝑐
, (29) 

The dimensionless forms of the zeroth order heat conduction equations are given below. 

𝜕2�̅�0
𝑐

𝜕𝑌2
(𝑌, 𝛽) = 𝜖𝑐  

𝜕�̅�0
𝑐

𝜕𝛽
(𝑌, 𝛽) 

(30) 
𝜕2�̅�0

𝑏

𝜕𝑌2
(𝑌, 𝛽) = 𝜖𝑏  

𝜕�̅�0
𝑏

𝜕𝛽
(𝑌, 𝛽) 

𝜕2�̅�0
𝑑

𝜕𝑌2
(𝑌, 𝛽) = 𝜖𝑑  

𝜕�̅�0
𝑑

𝜕𝛽
(𝑌, 𝛽) 

The dimensionless zeroth-order boundary conditions used to obtain zeroth-order 

temperature distributions (�̅�0
𝑖
(𝑥, 𝑦, 𝑡), 𝑖 = 𝑐, 𝑏, 𝑑) from these equations are; 

�̅�0
𝑐(𝑆0, 𝛽) = 1 (31) 

𝜕�̅�0
𝑐

𝜕𝑌
(𝑆0, 𝛽) =

𝑑𝑆0(𝛽)

𝑑𝛽
 (32) 

𝜕�̅�0
𝑐

𝜕𝑌
(0, 𝛽) = 𝜁1

𝜕�̅�0
𝑏

𝜕𝑌
(0, 𝛽) (33) 

𝜕�̅�0
𝑏

𝜕𝑌
(−𝑈, 𝛽) = 𝜁2

𝜕�̅�0
𝑑

𝜕𝑌
(−𝑈, 𝛽) (34) 

𝜕�̅�0
𝑐

𝜕𝑌
(0, 𝛽) =

1

�̅�𝑠𝑐

[�̅�0
𝑐(0, 𝛽) − �̅�0

𝑏(0, 𝛽)] (35) 

𝜕�̅�0
𝑏

𝜕𝑌
(−𝑈, 𝛽) =

𝜁1

�̅�𝑐𝑚

[�̅�0
𝑏(−𝑈, 𝛽) − �̅�0

𝑑(−𝑈, 𝛽)] (36) 

𝜕�̅�0
𝑑

𝜕𝑌
(−𝑈 − 𝐻, 𝛽) = 𝜁3�̅�0(𝛽) (37) 

The dimensionless forms of the first order heat conduction equations are given below. 

𝜕2�̅�1
𝑐(𝑌,𝛽)

𝜕𝑌2 − �̅�1
𝑐(𝑌, 𝛽) = 𝜖𝑐  

𝜕�̅�1
𝑐

𝜕𝛽
(𝑌, 𝛽)                                                                                            (38)                (38) 
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𝜕2�̅�1
𝑏(𝑌, 𝛽)

𝜕𝑌2
− �̅�1

𝑏(𝑌, 𝛽) = 𝜖𝑏  
𝜕�̅�1

𝑏

𝜕𝛽
(𝑌, 𝛽) 

𝜕2�̅�1
𝑐(𝑌, 𝛽)

𝜕𝑌2
− �̅�1

𝑐(𝑌, 𝛽) = 𝜖𝑐  
𝜕�̅�1

𝑐

𝜕𝛽
(𝑌, 𝛽) 

The dimensionless first-order boundary conditions used to obtain first-order temperature 

distributions (�̅�1
𝑖
(𝑥, 𝑦, 𝑡), 𝑖 = 𝑐, 𝑏, 𝑑) from these equations are; 

�̅�1
𝑐(𝑆0, 𝛽)

𝜕�̅�0
𝑐

𝜕𝑌
(𝑆0, 𝛽) + �̅�1

𝑐(𝑆0, 𝛽) = 0 (39) 

𝜕�̅�1
𝑐

𝜕𝑌
(𝑆0, 𝛽) + 𝑆1(𝛽)

𝜕2�̅�0
𝑐

𝜕𝑌2
(𝑆0, 𝛽) =

𝑑𝑆1(𝛽)

𝑑𝛽
 (40) 

𝜕�̅�1
𝑐

𝜕𝑌
(0, 𝛽) = 𝜁1

𝜕�̅�1
𝑏

𝜕𝑌
(0, 𝛽) (41) 

𝜕�̅�1
𝑏

𝜕𝑌
(−𝑈, 𝛽) = 𝜁2

𝜕�̅�1
𝑑

𝜕𝑌
(−𝑈, 𝛽) (42) 

𝜕�̅�1
𝑐

𝜕𝑌
(0, 𝛽) =

1

�̅�𝑠𝑐

[�̅�1
𝑐(0, 𝛽) − �̅�1

𝑏(0, 𝛽)] (43) 

𝜕�̅�1
𝑏

𝜕𝑌
(−𝑈, 𝛽) =

𝜁1

�̅�𝑐𝑚

[�̅�1
𝑏(−𝑈, 𝛽) − �̅�1

𝑑(−𝑈, 𝛽)] (44) 

𝜕�̅�1
𝑑

𝜕𝑌
(−𝑈 − 𝐻, 𝛽) = 𝜁3�̅�1(𝛽) (45) 

After obtaining dimensionless equations, the numerical solution procedure for the heat 
transfer problem has been obtained due to a non-available closed-form solution. 

5. Numerical Solution Procedure 

In the heat transfer problems, the exact solutions are generally obtained just for idealized 
cases in which semi-finite or infinite regions are considered with simple initial/boundary 
conditions. Since the nonlinear behavior of this problem, the superposition principle is not 
applicable and all cases are evaluated separately. When the exact solution of the full Stefan 
problem is not calculated analytically, the numerical methods are developed to solve these 
problems. In this study, zero and first-order heat conduction equations (Eq. (30) and Eq. 
(38)) do not exist in closed form with their respective boundary conditions. For this 
reason, the temperature distributions and the position of the moving interface have been 
obtained with a numerical solution. In the current study, the Lagrange scheme, which is an 
explicit finite difference method, was applied to obtain the solution to the heat transfer 
problem during the solidification.  

In the numerical solution algorithm, the shell’s thickness is divided into N elements at each 

step. Thus, the space step width at each time step becomes 𝛿 =
𝑆0(𝛽)

𝑁
 with the N + 1 number 

of nodes in the average solidified metal thickness (0 < 𝑌 < 𝑆0(𝛽)). In this case, the final 
node (𝑁 +  1𝑡ℎ) in the solidifying solid always corresponds to the position of the zero-
order solid-liquid moving surface. Due to the increase in the average solid thickness as time 
progresses, the nodal points change for each new time step, and space is recalculated for 
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the step width. The average solidified metal thickness in the next time step depending on 
the time increase (𝜏) is calculated by the backward finite difference formulation of Eq. (32). 

𝑆0
𝑗+1

= 𝑆0
𝑗

+
𝜏

2𝛿𝑐

(3�̅�0
𝑐

𝑁+1

𝑗
− 4�̅�0

𝑐
𝑁

𝑗
+ �̅�0

𝑐
𝑁−1

𝑗
) (46) 

In this equation, the temperature in the moving interface (�̅�0𝑁+1

𝑗
) is constant during the 

process according to Eq. (31). The temperature distributions in the solidified metal are 
obtained for the space variable values 𝑌 = (𝑖 − 1)𝛿, (𝑖 = 1,2, … 𝑁 + 1) for N+1 nodes. The 
temperatures in the nodes in the solidified metal (𝑖 =  2,3, …  𝑁 nodes) are found for each 
time step with Eq. (47) which is the central finite difference formulation of the general heat 
conduction equation in Eq. (30a). 

�̅�0
𝑐

𝑖

𝑗+1
= �̅�0

𝑐
𝑖

𝑗
+

𝜏

𝜖𝑐𝛿𝑐
2

(�̅�0
𝑐

𝑖+1

𝑗
− 2�̅�0

𝑐
𝑖

𝑗
+ �̅�0

𝑐
𝑖−1

𝑗
),     (𝑖 = 2,3, … , 𝑁) (47) 

Here the subscript “𝑖” refers to the 𝑖𝑡ℎ node location to derive the temperature in the 
solidified shell while the superscript “j” is the time step counter. 

In this problem, it is necessary to update with the inclusion of the convective terms in the 
algorithm to calculate the temperatures at the node points whose positions change 
depending on fixed elements number, as the thickness of the shell solidifies as time 
progresses. 

�̅�0
𝑐

𝑖

𝑗+1
= �̅�0

𝑐
𝑖

𝑗
+ (𝑖 − 1)

𝛿𝑐
𝑗+1

− 𝛿𝑐
𝑗

𝛿𝑐
𝑗

(�̅�0
𝑐

𝑖+1

𝑗+1
− �̅�0

𝑐
𝑖

𝑗+1
),     (𝑖 = 2,3, … , 𝑁) (48) 

Similarly, the coating layer and mold are divided into a fixed number of elements J and M, 
respectively. Therefore, 𝐽 +  1 and 𝑀 +  1 number of nodes are formed in the coating and 
mold for temperature distribution derivation. As time progresses, the locations of the 
nodes in these layers are fixed because there is no change in coating and mold thicknesses.  
The temperatures for nodes (𝑘 = 2,3, … , 𝐽 and 𝑝 = 2,3, … , 𝑀) in these layers are calculated 
by Eq. (49), which is the central finite difference formulation of Equation (30b) and Eq. 
(30c).  

�̅�0
𝑏

𝑘

𝑗+1
= �̅�0

𝑏
𝑘

𝑗
+

𝜏

𝜖𝑏𝛿𝑏
2 (�̅�0

𝑏
𝑘+1

𝑗
− 2�̅�0

𝑏
𝑘

𝑗
+ �̅�0

𝑏
𝑘−1

𝑗
),     (𝑘 = 2,3, … , 𝐽) 

�̅�0
𝑑

𝑝

𝑗+1
= �̅�0

𝑑
𝑝

𝑗
+

𝜏

𝜖𝑑𝛿𝑑
2 (�̅�0

𝑑
𝑝+1

𝑗
− 2�̅�0

𝑑
𝑝

𝑗
+ �̅�0

𝑑
𝑝−1

𝑗
),     (𝑝 = 2,3, … , 𝑀) 

(49) 

After determining the temperatures at the nodes in the solid layers, the temperatures at 
the interfaces and at the mold’s bottom surface are derived by using boundary conditions. 
For nodes, 𝑖 =  1 and 𝑘 =  𝐽 +  1 corresponding to the solidified shell/coating interface, 
the temperatures are found using Eqs. (33) and (35). Similarly, the temperatures at the 
𝑘 =  1 and 𝑝 =  𝑀 +  1 nodes at the coating and mold interface are obtained using finite 
difference formulations of boundary conditions in Eqs. (34) and (36). Finally, the 
temperature of the node at the mold’s lower surface (𝑝 = 1) is found by using Eq.(38). 

The first-order solution is made using the same method as the above zeroth-order solution 
and the first-order temperatures at the nodes in the solid layers are obtained with 𝑆1(𝛽). 
𝑆1(𝛽) is found by Eq. (50) which is derived through the backward finite difference 
formulation of Eq. (40). 
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𝑆1
𝑗+1

= 𝑆1
𝑗

(1 +
𝜏

𝛿𝑐
2

(2�̅�0
𝑐

𝑁+1

𝑗
− 5�̅�0

𝑐
𝑁

𝑗
+ 4�̅�0

𝑐
𝑁−1

𝑗
− �̅�0

𝑐
𝑁−2

𝑗
)) + 

             
𝜏

2𝛿𝑐

(3�̅�1
𝑐

𝑁+1

𝑗
− 4�̅�1

𝑐
𝑁

𝑗
+ �̅�1

𝑐
𝑁−1

𝑗
) 

(50) 

Similar to the zeroth degree solution, the first order node temperatures are calculated 
using the heat conduction equations in Eq. (38) and the first-order boundary conditions in 
Eq. (39) and Eqs. (41) - (45). 

Another important factor is the adjustment of the time increment variable (𝜏) in the 
algorithm. The discretization of both time and dimensional variables is of great importance 
for the reliability of the results obtained by the numerical solution. For this reason, when 
choosing the value of τ, attention should be paid to the acceptance of numerical 
convergence, to maintain stability and to provide calculation efficiency. The maximum time 
step for stability is proportional to 𝜖𝑐𝛿𝑐

2. Therefore, the stability condition imposes a 
restriction on τ when good spatial accuracy is required, which usually requires very small 
δ values. In this case, the numerical stability for this model occurs when the conditions in 
Eq. (51) are provided. 

𝜏

𝜖𝑐𝛿𝑐
2

< 0.5,     
𝜏

𝜖𝑏𝛿𝑏
2 < 0.5,     

𝜏

𝜖𝑑𝛿𝑑
2 < 0.5 (51) 

When solidification begins, 𝑆0(𝛽) and 𝛿 are of very small values. Hence, a very small time 
step is needed to fulfill the requirement in Eq.(51a). But choosing the time step so small 
causes the algorithm to be very slow. In the continuation of solidification, the time step is 
allowed to increase without loss of stability due to the increase in 𝑆0(𝛽) and 𝛿. However, 
the conditions in Eq.(51b) and Eq.(51c) significantly limit this increase in 𝑇 due to the 
constant 𝛿𝑏 and 𝛿𝑑  during solidification. Therefore, it is necessary to use a very small initial 
𝛿 value during the solidification process to keep both space and time steps under 
conditions and obtain a reliable result. 

Also, the nodes must not overlap for the algorithm used for the numerical solution. For this 
reason, solidification is not desired to start at 𝑆0(𝛽) = 0. To overcome this problem, an 
appropriate initial condition must be created and the solution of the limiting problem 
under certain assumptions is used for this purpose. In the early stages, the limited solution 
is of acceptable accuracy. Therefore, the numerical solution of the considered problem, in 
which the material thermal diffusivities are included, was started by using this limiting 
solution with a very small finite 𝑆0(𝛽). The solution to this limiting problem is presented 
by Demir and Yigit [38] and the expressions used as the initial condition for the numerical 
solution are given in the Appendix. 

6. Results and Discussion 

In this study, the numerical solution of the heat transfer problem, which is one of the sub-
parts of the thermoelasticity problem that occurs during solidification, was carried out, 
and especially the roles of the coating layer on the thermoelastic instability were dealt 
with. The theoretical model developed by Demir and Yigit [38], which examines the heat 
transfer problem at the early stages of the process, was used as the initial condition in the 
solution of the full heat transfer problem, in which the thermal capacities of the solidifying 
metal, coating layer and mold materials are not considered zero (the thermal diffusivities 
of the materials are assumed to have finite values).  

At the beginning of the analysis, obtained numerical results are compared with the 
previous results in Yigit [33] in which the heat transfer problem during the solidification 
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of pure metal on planar mold without a coating layer. Therefore, the coating layer’s effects 
on the process is neglected for proving the correctness of the solution by assuming 𝑈 +
𝐻 = 10, �̅�cm ≪ 1,  𝜁2 = 1, 𝜖2 = 𝜖3 = 10, 𝜁1 = 𝜁3 = 2, �̅�sc = �̅�0 when �̅�0 = 0.3, 𝜁1 = 2 for 
approaching the model in Yigit [33].  

 

Fig. 2  The comparison between the numerical solution and the limiting solution in 
Yigit [33] when 𝜖1 = 5 and 𝜖1 = 50 (𝑈 + 𝐻 = 10, �̅�cm ≪ 1,  𝜁2 = 1, 𝜖2 = 𝜖3 = 10, 𝜁1 =

𝜁3 = 2, �̅�sc = �̅�0 = 0.3) 

The mold and coating are assumed to make of the same material and �̅�𝑐𝑚 is considered 
very small. Thus, we converge to the solution given in Fig. 4 in Ref [33] where 𝐻 =  10, 𝜁 =
 2, �̅�0  =  0.3, 𝜖1  =  5 and 𝜖2  =  10. The comparison results are given in Fig. 2 for different 
values of 𝜖1. Fig. 2 shows the variation of 𝑆1(𝛽) as a function of 𝑆0(𝛽) for the numerical 
solution and Yigit’s problem solution when 𝜖1 = 5 and 𝜖1 = 50. The results of the present 
model go to limiting solutions due to Yigit [33] and it is indicated that these results are 
important in terms of proving the accuracy and reliability of the developed finite-
difference algorithm and the numerical solution procedure. Thus, it can be said that the 
results examining the effects on the problem of heat transfer during solidification in which 
the coating layer is included in the later stages are reliable and reflect the actual process 
within certain assumptions. After that, the influences of the coating’s thickness on the 
thermoelastic stability during the solidification are examined.  

 

Fig. 3 The variation of 𝑆1(𝛽) as a function of 𝑆0(𝛽), at selected values of 𝑈 when 𝐻 =
5, 𝜁1 = 𝜁2 = 0.5, 𝜖1 = 𝜖2 = 𝜖3 = 10 and �̅�𝑠𝑐 = �̅�𝑐𝑚 = 0.3 
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Fig. 3 shows the variation of 𝑆1(𝛽) for different coating thickness. Other parameters are 
assumed 𝐻 = 5, 𝜁1 = 𝜁2 = 0.5, 𝜖1 = 𝜖2 = 𝜖3 = 10 and �̅�𝑠𝑐 = �̅�𝑐𝑚 = 0.3. The results indicate 
that the coating layer controls the heat transfer during solidification and it leads to 
stabilizing effect. In other words, the thicker coating layer should be chosen as much as 
possible to achieve more stable growth and better quality final casting. It should also be 
mentioned here that increasing the coating thickness for all solidification parameter 
combinations creates a stability-enhancing effect. These effects of the coating layer are 
shown in the following figures in detail. Likewise, it is seen that the thickness of the mold 
has a similar effect and it is concluded that this supports the fact that increasing the layer 
thickness directly enables the heat transfer rate to be controlled.  

 

Fig. 4 The variation of 𝑆1(𝛽)𝑚𝑎𝑥  as a function of 𝑈 for four combinations of 𝜁1 and 𝜁2 
(𝐻 = 5, 𝜖1 = 2, 𝜖2 = 𝜖3 = 5, �̅�sc = �̅�cm = 0.3) 

Then, the effect of the thickness of the coating layer is focused depending on the other 
important process parameters such as conductivity ratios and thermal capacities. Fig. 4 
shows the variation of 𝑆1(𝛽)𝑚𝑎𝑥  as a function of coating thickness, 𝑈, for different values 
of thermal conductivity ratios between materials of the shell, mold and its coating when 
𝜖1 = 2, 𝜖2 = 𝜖3 = 5, �̅�sc = �̅�cm = 0.3. 𝑆1(𝛽)𝑚𝑎𝑥 denotes the maximum amplitude of the 
perturbed undulation on the mean shell thickness. The aim here is to establish the 
relationship between the choice of mold, coating, and casting materials and the coating 
thickness and to create clues for the most efficient casting. The results show that the 
thermal conductivity ratios have an important effect on growth instability and the 
sensitivity to coating thickness. It is indicated that the coating’s thickness has stabilizing 
impact for all combinations of 𝜁1 𝑎𝑛𝑑 𝜁2. However, it is seen that this effect varies 
considerably according to the values of these parameters. The 𝜁1 and 𝜁2 values selected in 
this figure represent various orders of material thermal conductivities relative to each 
other. 𝜁1 = 0.5 - 𝜁2 = 0.5, 𝜁1 = 3 - 𝜁2 = 0.5, 𝜁1 = 0.5 - 𝜁2 = 3 and 𝜁1 = 3 - 𝜁2 = 3 represent 
the cases in which the values of the thermal conductivities are ranked as 𝐾𝑑 > 𝐾𝑏 > 𝐾𝑐 , 
𝐾𝑐 > 𝐾𝑑 > 𝐾𝑏 , 𝐾𝑏 > 𝐾𝑐 > 𝐾𝑑  and 𝐾𝑐 > 𝐾𝑏 > 𝐾𝑑 , respectively. The results show that 𝜁1 =
0.5 - 𝜁2 = 0.5 case leads to more uniform growth than the other cases and the most 
unstable growth occurs when 𝜁1 and 𝜁2 are equal to 3. In other words, 𝐾𝑐 > 𝐾𝑏 > 𝐾𝑑  state 
causes the most unstable growth, while 𝐾𝑑 > 𝐾𝑏 > 𝐾𝑐  the condition causes the most 
stable growth. Also, much lower amplitude perturbations occur when 𝐾𝑑 > 𝐾𝑏 > 𝐾𝑐  and 
𝐾𝑐 > 𝐾𝑑 > 𝐾𝑏 . This means that if the coating material is chosen from a material whose 
thermal conductivity is smaller than that of the mold material, the growth instability is 
minimized to obtain the best quality casting piece, regardless of the shell’s thermal 
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conductivity. Besides, the smaller thermal conductivity of the casting material compared 
to that of both the mold and the coating material ensures the most efficient solidification. 
The most unstable growth occurs when the mold’s thermal conductivity is the smallest. In 
those cases, where the shell’s conductivity is greater than that of the mold, the coating’s 
thermal conductivity should be chosen higher than that of the material to be cast for quality 
solidification.  

Furthermore, it can be seen from this figure that the sensitivity to the change of coating 
thickness varies according to the thermal conductivities. For 𝜁1 = 3 - 𝜁2 = 3, it is seen that 
the change in x according to the change of the coating thickness of the process is the most 
and the sensitivity to the coating thickness is the most in this case. Following this case, 
coating thickness sensitivity for 𝜁1 = 0.5 - 𝜁2 = 3 is also higher than in other cases. Thus, it 
can be said that in the case where the mold’s thermal conductivity is the smallest, the 
sensitivity of the solidification process to the thickness increases. Relatively, for cases 
where 𝜁1 = 0.5 - 𝜁2 = 0.5, 𝜁1 = 3 - 𝜁2 = 0.5, it is seen that the sensitivity to the coating 
thickness decreases. Therefore, in cases where the sensitivity to coating thickness is to be 
lowered, the mold’s thermal conductivity should be chosen greater than that of the coating 
regardless of the thermal conductivity of the metal to be solidified. However, it should be 
studied where the coating’s thermal conductivity is greater than that of the other solid 
layers to minimize the sensitivity to the coating thickness. According to the results, the 
thermal conductivity ratios play an important role on the growth instability. Fig. 5 shows 
the variation of 𝑆1(𝛽)𝑚𝑎𝑥 depending on the thermal conductivity ratios (𝜁1 and 𝜁2) when 
𝑈 = 0.5, 𝐻 = 5, 𝜖1 = 𝜖2 = 𝜖3 = 5 and �̅�sc = �̅�cm = 0.3. The curves in the figure were 
obtained by keeping one of the thermal conductivity ratios constant and changing the other 
so that the effects of the change of thermal conductivity of the materials relative to each 
other on the growth instability were observed.  

 

Fig. 5 The variation of 𝑆1(𝛽)𝑚𝑎𝑥  as a function of 𝜁1 and 𝜁2 for the case where 𝑈 =
0.5, 𝐻 = 5, 𝜖1 = 𝜖2 = 𝜖3 = 5 and �̅�sc = �̅�cm = 0.3 

The results show that the increases in both 𝜁1 and 𝜁2 increase the amplitude of the 
perturbations at the moving interface and have negative effects on the growth instability. 
It can be also seen that it is seen that the change of 𝜁2 varies the amplitude of the 
perturbations least when 𝜁1 = 0.5. In this case, it appears that the solidification process 
has less sensitivity to 𝜁2, and changing the value of 𝐾𝑑  for 𝐾𝑏 > 𝐾𝑐  has less effect on growth 
instability. It is observed that an increase in 𝜁1 leads to increase in the sensitivity of the 
process to change of 𝜁2. This means that the variation of the mold’s thermal conductivity 
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affects the thermoelastic stability much more when the shell’s conductivity is higher than 
the coating’s conductivity. Similarly, for 𝜁2 = 0.5 and 𝜁2 = 3, the effect of changing 𝜁1 also 
appeared to increase instability. Again, according to the value of 𝜁2, the sensitivity of the 
process to 𝜁1 varies. It is seen that the sensitivity to 𝜁1 increases when 𝜁2 is greater than 1 
than the case where 𝜁2 is less than 1. This means that both growth instability and sensitivity 
to the coating’s and shell’s conductivities are increased when the coating thermal 
conductivity is greater than that of the mold, compared to the case where it is smaller than 
the mold’s conductivity.  

On the other hand, the specific heats of the materials vary the coating layer’s effects on the 
process. Fig. 6 shows the variation of  𝑆1(𝛽)𝑚𝑎𝑥  as a function of coating thickness for the 
different combinations of the specific heat values of the solid layer’s materials when 𝐻 =
5, 𝜁1 = 𝜁2 = 2 and �̅�sc = �̅�cm = 0.3.  All specific heat values are taken as 3, 10 and 50 and 
compared with the case where all specific heat values are equal to 10. As mentioned earlier, 
the stability-enhancing effect of the coating thickness is seen for all considered specific 
heats combinations and it is seen that the change of the specific heat values changes the 
sensitivity to the coating thickness. 

 

Fig. 6 The variation of 𝑆1(𝛽)𝑚𝑎𝑥  depending on 𝑈 for the different values of 𝜖1, 𝜖2 and 𝜖3 
(𝐻 = 5, 𝜁1 = 𝜁2 = 2 and �̅�sc = �̅�cm = 0.3) 

The results show that the increase in 𝜖3 appears to cause larger amplitude perturbation for 
a given coating thickness, while the increases in 𝜖1 and 𝜖2 cause lower amplitude 
perturbations. Therefore, the decrease in 𝑆1(𝛽)𝑚𝑎𝑥   due to the increase in coating thickness 
occurs when the value of 𝜖3 is large. Thus, it can be said that increasing the specific heat of 
the mold material increases the sensitivity to coating thickness. Considering the stability-
enhancing effects of 𝜖1 and 𝜖2, it is seen that the sensitivity to coating thickness is high 
when 𝜖1 and 𝜖2 are small, It is also observed that the sensitivity to the coating thickness is 
reduced for large values of 𝜖1 and 𝜖2 and for small values of 𝜖3. Physically, this result raises 
the requirement that certain temperatures of the solidified metal and the material of the 
coating layer should be low or the mold should be selected from the material with a certain 
temperature in order to reduce the dependence of the solidification process on the coating 
thickness. It can be also noted that the effects of the specific heat of the materials of the 
solid layers on the growth instability are opposite and these effects of the specific heats 
have been examined in Fig. 7.  

The variation of 𝑆1(𝛽)𝑚𝑎𝑥 depending on the specific heat values of materials (𝜖1, 𝜖2, 𝜖3) is 
shown in Fig. 7 when 𝑈 = 0.5, 𝐻 = 5, 𝜁1 = 0.5 and 𝜁2 = 3. The specific heats change from 



Demir / Research on Engineering Structures & Materials 8(4) (2022) 751-772 

 

766 

0.1 to 20 for each curve in the figure and the curves are drawn for the cases where each 
specific heat changes, whereas the other two specific heats are equal to 10. The results 
indicate that the specific heat of each solid layer has different effects on the unstable shell 
growth and the sensitivity of the solidification process to these specific heat variations is 
also different. It is seen that the specific heats of solidified shell and coating materials have 
stabilizing effects on the growth stability during the solidification. This means that they 
should be selected higher specific heats (lower thermal diffusivities) for more uniform 
growth and higher quality final cast.  However, the higher specific heat of mold material 
causes an increase in 𝑆1(𝛽)𝑚𝑎𝑥 , and hence, it reduces growth stability. As can be seen, while 
𝜖1 and 𝜖2 increase stability, 𝜖3 has an increasing effect on unstable shell growth for the 
considered case. When analyzes are made for all cases, it is seen that the specific heats of 
the materials have a similar effect on the process. Therefore, it can be said that the effects 
of the specific heat of the solidified metal and the coating layer (𝜖1 and 𝜖2) and the mold’s 
specific (𝜖3) on the perturbation growth neutralize each other. It can also be stated that 
the sensitivity of the growth instability to 𝜖2 variation during the solidification process is 
quite low, but the sensitivities to 𝜖1 and 𝜖3 variations are high.  

 

Fig. 7 The variation of 𝑆1(𝛽)𝑚𝑎𝑥  as a function of 𝜖1, 𝜖2 and 𝜖3 for the case where 𝑈 =
0.5, 𝐻 = 5, 𝜁1 = 0.5, 𝜁2 = 3 and �̅�sc = �̅�cm = 0.3 

 

Fig. 8 The variation of 𝑆1(𝛽)𝑚𝑎𝑥  as a function of �̅�sc for the different values of system 
parameters 
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The effects of the thermal contact resistances (�̅�sc, �̅�cm) are analyzed in Fig. 8 and Fig. 9, 
respectively. These figures show the variation of 𝑆1(𝛽)𝑚𝑎𝑥  as a function of thermal contact 
resistances. They are changed from 0.1 to 2 because the aforementioned effects were found 
to be unchanged for the values greater than 2. Additionally, it was observed how the effects 
of thermal resistances on growth instability changed for different values of other system 
parameters. Firstly, the variation of 𝑆1(𝛽)𝑚𝑎𝑥  is observed as a function of �̅�sc in Fig. 8. The 
straight line curve represents the case in which the other system parameters are assumed 
to be equal as 𝑈 = 0.5, 𝐻 = 5, 𝜁1 = 𝜁2 = 2, �̅�cm = 0.3 and 𝜖1 = 𝜖2 = 𝜖3 = 10.  

The result indicates that an increase in �̅�sc causes a decrease in the maximum amplitude 
of perturbation at the freezing front. This indicates that the thermal resistance at the 
shell/coating interface should be increased for more stable growth and better quality final 
cast. The other cases in the figure show the cases that occur by changing only one of the 
values of the system parameters given for the situation specified with the straight-line 
curve. It also appears that the same stabilizing effect applies to all cases in the figure. 
Although the variation of system parameters generally does not change the stability-
enhancing effect of �̅�sc, it has been observed that the sensitivity of the process to �̅�sc varies 
with the values of the system parameters. It is seen from the results that the decrease in 𝜁1 
and 𝜁2 has decreased sensitivity to �̅�sc. Similarly, it was found that the increase in 𝑈 and 𝐻 
decrease this sensitivity. Then, if the sensitivity to thermal contact resistance at this 
interface is to be reduced, it is necessary to increase the thickness of the coating and mold, 
to choose the thermal conductivity of the casting material smaller than the coating 
material, and to choose the coating material from the material with thermal conductivity 
less than the mold’s conductivity. When the specific heats of materials are examined, it is 
seen that the sensitivity to �̅�sc increases with the decrease of 𝜖1 but does not change 
significantly with the decrease of 𝜖2 and 𝜖3. From this situation, it is seen that the sensitivity 
to thermal contact resistance between this layer and the coating layer can be adjusted by 
changing the shell’s specific heat.  

 

Fig. 9 The variation of 𝑆1(𝛽)𝑚𝑎𝑥  with respect to �̅�cm for the different values of system 
parameters 

The effects of �̅�cm are investigated in Fig. 9 in which the variation of 𝑆1(𝛽)𝑚𝑎𝑥  as a function 
of �̅�cm for different values of other system parameters. Similar to Fig. 8, the straight-line 
curve is the main curve in which the system parameters are assumed to be equal as 𝑈 =
0.5, 𝐻 = 5, 𝜁1 = 𝜁2 = 0.5, �̅�sc = 0.3 and 𝜖1 = 𝜖2 = 𝜖3 = 10 and other cases represent the 
cases in which only one system parameter is changed.  The results show that 𝑆1(𝛽)𝑚𝑎𝑥  
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decreases when �̅�cm is increased. This means that both �̅�sc and �̅�cm have stabilizing effects 
on the shell’s growth. Physically, these thermal contact resistances should be increased for 
better quality final cast. It is also seen that the sensitivity of the process to �̅�cm is greater 
than the sensitivity to �̅�sc. Similar to the results in Fig. 9, the sensitivity of �̅�cm decreases 
when 𝜁1 and 𝜁2 decrease. Moreover, increases in 𝑈 and 𝐻 also decrease this sensitivity. It 
is also noteworthy that decreases in  𝜖1 and 𝜖2 cause an increase in the sensitivity of �̅�cm 
but on the contrary, the decrease in 𝜖3 decreases the sensitivity. Therefore, it can be said 
that the shell’s and coating’s specific heats should be selected higher and the mold’s specific 
heat should be selected lower for reducing dependence to �̅�cm. These results mean that 
thicker coating and mold lead to a decrease in the effect of �̅�cm on the proses and the 
coating’s thermal conductivity should be selected higher than the shell’s conductivity for 
reducing the dependence on changes of �̅�cm. Also, this dependence of the process can be 
reduced by the selection of the mold’s thermal conductivity greater than the coating’s 
conductivity.  

7. Conclusion 

A theoretical model is developed to study the effects of the coating layer on the growth 
instability mechanism during the solidification of pure metal on a coated mold of finite 
thickness. The phase change heat transfer problem, which is one of the two main sub-
problems of thermoelastic instability during solidification, is considered, modeled, and 
solved numerically in this study. This study extends previous studies by taking into 
account the combined effects of coating layer properties and thermal capacitances of solid 
layers. The spatial dimension of the modeled heat transfer problem was reduced from two 
to one dimensional with the linear perturbation method. The finite acceptance of thermal 
diffusivities provides that the obtained full solidification model has to be solved 
numerically due to the nonlinear behavior of phase change problems. Therefore, the 
governing equations are discretized by the Lagrangian finite difference scheme for 
numerical solution. In this numerical solution, a limiting solution is used as initial 
conditions, and this limiting solution is obtained analytically in [38] by assuming the 
thermal diffusivities of the materials are infinite. The key question is how the properties of 
the coating layer are selected according to the other parameters.  

The results show that an increase in the coating’s thickness causes a positive effect on the 
thermoelastic instability and the thicker coating layer should be chosen as much as 
possible to achieve more stable growth and better quality final casting. Also, a thicker 
coating layer creates a stability-enhancing effect for all solidification parameter 
combinations. But, it is observed that the stabilizing effect of this thickness varies 
considerably according to the values of other parameters.  

The sensitivity to coating thickness is to be lowered when the mold’s thermal conductivity 
should be chosen greater than that of the coating material regardless of the thermal 
conductivity of the metal to be solidified. However, it should be worked in the cases in 
which the coating’s thermal conductivity is greater than that of the other solid layers in 
order to minimize the coating thickness’s dependence of the process. When the effects of 
the specific heats on this coating thickness dependence of the process are investigated, it 
is also observed that the sensitivity to the coating thickness is reduced for large values of 
𝜖1 and 𝜖2 and for small values of 𝜖3. On the other hand, it is also stated that the increases in 
both 𝜁1 and 𝜁2 increase 𝑆1(β) and have negative effects on the thermoelastic stability. 
Moreover, 𝜖3 shows an increasing effect on growth instability while 𝜖1 and 𝜖2 increase the 
stability for all cases and this means that the effects of the shell’s and coating’s specific 
heats and the mold’s specific heat neutralize each other. Finally, the thermal contact 
resistances have stabilizing effects for all cases but the sensitivities of the process to these 
resistances vary according to other parameters.  
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The solution of this study can be used in uncoupled and coupled problems in which the 
thermos-mechanical problem is investigated for analyzing the full solidification process. 

Appendix 

In this section, the limiting solution of the heat transfer problem during the pure metal 
solidification process on a coated planar mold is given. The limiting solution is obtained 
when the thermal diffusivities of the materials are assumed to be infinite (𝜖𝑐 → 0, 𝜖𝑏 →
0 𝑎𝑛𝑑 𝜖𝑑 → 0 ). An analytical solution for the temperature fields in the solid layer and the 
position of the moving interface are derived for the limiting case in which the effects of the 
materials’ thermal capacity are negligible.  This model is valid for only the early stages and 
in the full problem, in which thermal diffusivities are finite, this limiting solution is used as 
initial conditions. The limiting solution is obtained in Demir and Yigit [38] and the readers 
refer to this study for more details. In summary, the expressions that are important for this 
study and give the average shell thickness and node temperatures in solid layers for a very 
small time interval are given below. 

Zeroth-order temperature fields are; 

�̅�0
𝑐(𝑌, 𝛽) = 1 + �̅�0(𝛽)(Y − 𝑆0(𝛽)) 

�̅�0
𝑏(𝑌, 𝛽) = 1 + �̅�0(𝛽)(ζ1Y − 𝑆0(𝛽) − �̅�sc) 

�̅�0
𝑑(𝑌, 𝛽) = 1 + �̅�0(𝛽)(ζ3Y − ζ1U − 𝑆0(𝛽) + ζ3U − �̅�sc − �̅�cm) 

(A.1) 

The mean shell thickness is;   

𝑆0(𝛽) = �̅�0(𝛽)𝛽  (A.2) 

First-order temperature fields are; 

�̅�1
𝑐(𝑌, 𝛽) = 𝐶1(𝛽) sinh(𝑌) + 𝐶2(𝛽) cosh(𝑌) 

�̅�1
𝑏(𝑌, 𝛽) = 𝐶3(𝛽)sinh(𝑌) + 𝐶4(𝛽)cosh(𝑌) 

�̅�1
𝑑(𝑌, 𝛽) = 𝐶5(𝛽)sinh(𝑌) + 𝐶6(𝛽)cosh(𝑌) 

(A.3) 

The perturbed undulation on the mean shell thickness is given in Eq. (A4) as follows.  

S1(𝑆0(𝛽)) =
𝐶7 𝑆0(𝛽)

𝐶8 cosh(𝑆0(𝛽)) + 𝐶9 sinh(𝑆0(𝛽))
 (A.4) 

The coefficients are; 

𝐶1̅ = 𝐴32 + 𝐴33𝑆1(𝛽),       𝐶2̅ = 𝐴34 + 𝐴35𝑆1(𝛽), 𝐶3̅ = 𝐴37 + 𝐴38𝑆1(𝛽) 

𝐶4̅ = 𝐴39 + 𝐴40𝑆1(𝛽)       𝐶5̅ = 𝐴44 + 𝐴45𝑆1(𝛽), 𝐶6̅ = 𝐴42 + 𝐴43𝑆1(𝛽) 

𝐶7̅ = 𝐴29,       𝐶8̅ = 𝐴27,      𝐶9̅ = 𝐴28 

(A.5) 

The coefficients 𝐴1…..45 are given in the Appendix part of Demir and Yigit [38] paper.  

 

References 

[1] Hanao M, Kawamoto M, Yamanaka, A. Growth of solidified shell just below the meniscus 
in continuous casting mold. ISIJ International, 2009; 49(3): 365-374. 
https://doi.org/10.2355/isijinternational.49.365  

https://doi.org/10.2355/isijinternational.49.365


Demir / Research on Engineering Structures & Materials 8(4) (2022) 751-772 

 

770 

[2] Yigit F, Barber J. Effect of Stefan number on thermoelastic instabilities in unidirectional 
solidification. International Journal of Mechanical Sciences, 1994; 36(8): 707-723. 
https://doi.org/10.1016/0020-7403(94)90087-6  

[3] Konishi J, Militzer M, Samarasekera IV, Brimacombe JK. Modeling the formation of 
longitudinal facial cracks during continuous casting of hypoperitectic steel. 
Metallurgical and Materials Transactions B, 2002; 33(3): 413-423. 
https://doi.org/10.1007/s11663-002-0053-y  

[4] Demir MH. (2016) Thermoelastic stability analysis of solidification of pure metals on a 
coated planar mold of finite thickness: effects of the coating layer. Ph. D. Dissertation, 
Yıldız Technical University, Istanbul. https://doi.org/10.1007/s11663-016-0876-6  

[5] Stefan J. Uber die Theorie Der Eisbildung, insbesondere Uber die Eisbildung im 
Polarmeere. Annalen der Physik, 1891; 278(2): 269-286. 
https://doi.org/10.1002/andp.18912780206  

[6] Evans GW. A note on the existence of a solution to a problem of Stefan. Quarterly of 
Applied Mathematics, 1951; 9(2): 185-193. https://doi.org/10.1090/qam/43330  

[7] Douglas J. A uniqueness theorem for the solution of a Stefan problem. Proceedings of 
the American Mathematical Society, 1957; 8(2): 402-402. 
https://doi.org/10.1090/S0002-9939-1957-0092086-6  

[8] Crank J. Free and moving boundary problems, Oxford University Press, UK, 1987. 
[9] Hill JM. One-dimensional Stefan problems: An introduction, Longman Sc & Tech., USA, 

1987. 
[10] Barry SI, Caunce J. Exact and numerical solutions to a Stefan problem with two moving 

boundaries. Applied Mathematical Modelling, 2008; 32(1): 83-98. 
https://doi.org/10.1016/j.apm.2006.11.004  

[11] Song T, Upreti K, Subbarayan G. A sharp interface isogeometric solution to the Stefan 
problem. Computer Methods in Applied Mechanics and Engineering, 2015; 284: 556-
582. https://doi.org/10.1016/j.cma.2014.10.013  

[12] Reutskiy S. A meshless method for one-dimensional Stefan problems. Applied 
Mathematics and Computation, 2011; 217(23): 9689-9701. 
https://doi.org/10.1016/j.amc.2011.04.053  

[13] Juric D, Tryggvason G. A front-tracking method for dendritic solidification. Journal of 
Computational Physics, 1996; 123(1): 127-148. 
https://doi.org/10.1006/jcph.1996.0011  

[14] Murray WD, Landis F. Numerical and machine solutions of transient heat-conduction 
problems involving melting or freezing: Part I-Method of analysis and sample solutions. 
Journal of Heat Transfer, 1959; 81(2): 106-112. https://doi.org/10.1115/1.4008149  

[15] Segal G, Vuik K, Vermolen F. A conserving Discretization for the free boundary in a 
two-dimensional Stefan problem. Journal of Computational Physics, 1998; 141(1): 1-
21. https://doi.org/10.1006/jcph.1998.5900  

[16] Kutluay S, Bahadir A, Özdeş A. The numerical solution of one-phase classical Stefan 
problem. Journal of Computational and Applied Mathematics, 1997; 81(1): 135-144. 
https://doi.org/10.1016/S0377-0427(97)00034-4  

[17] Caldwell J, Savovic' S, Kwan Y. Nodal integral and finite difference solution of one-
dimensional Stefan problem. Journal of Heat Transfer, 2003; 125(3): 523-527. 
https://doi.org/10.1115/1.1565091  

[18] Caldwell J, Kwan Y. Numerical methods for one-dimensional Stefan problems. 
Communications in Numerical Methods in Engineering, 2004; 20: 535-545. 
https://doi.org/10.1002/cnm.691  

[19] Chen S, Merriman B, Osher S, Smereka P. A simple level set method for solving Stefan 
problems. Journal of Computational Physics, 1997; 135(1): 8-29. 
https://doi.org/10.1006/jcph.1997.5721  

https://doi.org/10.1016/0020-7403(94)90087-6
https://doi.org/10.1007/s11663-002-0053-y
https://doi.org/10.1007/s11663-016-0876-6
https://doi.org/10.1002/andp.18912780206
https://doi.org/10.1090/qam/43330
https://doi.org/10.1090/S0002-9939-1957-0092086-6
https://doi.org/10.1016/j.apm.2006.11.004
https://doi.org/10.1016/j.cma.2014.10.013
https://doi.org/10.1016/j.amc.2011.04.053
https://doi.org/10.1006/jcph.1996.0011
https://doi.org/10.1115/1.4008149
https://doi.org/10.1006/jcph.1998.5900
https://doi.org/10.1016/S0377-0427(97)00034-4
https://doi.org/10.1115/1.1565091
https://doi.org/10.1002/cnm.691
https://doi.org/10.1006/jcph.1997.5721


Demir / Research on Engineering Structures & Materials 8(4) (2022) 751-772 

 

771 

[20] Font F. A one-phase Stefan problem with size-dependent thermal conductivity. 
Applied Mathematical Modelling, 2018; 63: 172-178. 
https://doi.org/10.1016/j.apm.2018.06.052  

[21] Mackenzie J, Robertson M. A moving mesh method for the solution of the one-
dimensional phase-field equations. Journal of Computational Physics, 2002; 181(2): 
526-544. https://doi.org/10.1006/jcph.2002.7140  

[22] Sun Y, Beckermann C. Sharp interface tracking using the phase-field equation. Journal 
of Computational Physics, 2007; 220(2): 626-653. 
https://doi.org/10.1016/j.jcp.2006.05.025  

[23] Vynnycky M, Mitchell S. On the numerical solution of a Stefan problem with finite 
extinction time. Journal of Computational and Applied Mathematics, 2015; 276: 98-109. 
https://doi.org/10.1016/j.cam.2014.08.023  

[24] Myers T, Mitchell S. Application of the combined integral method to Stefan problems. 
Applied Mathematical Modelling, 2011; 35(9): 4281-4294. 
https://doi.org/10.1016/j.apm.2011.02.049  

[25] Zabaras N, Mukherjee S. An analysis of solidification problem by the boundary 
element method. International Journal for Numerical Methods in Engineering, 1987; 
24: 1879-1900. https://doi.org/10.1002/nme.1620241006  

[26] Dursunkaya Z, Nair S. Solidification of a finite medium subject to a periodic variation 
of boundary temperature. Journal of Applied Mechanics, 2003; 70(5): 633-637. 
https://doi.org/10.1115/1.1604836  

[27] Skrzypczak T, Węgrzyn-Skrzypczak E. Mathematical and numerical model of 
solidification process of pure metals. International Journal of Heat and Mass Transfer, 
2012; 55(15-16): 4276-4284. 
https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.070  

[28] Caldwell J, Kwan Y. On the perturbation method for the Stefan problem with time-
dependent boundary conditions. International Journal of Heat and Mass Transfer, 
2003; 46(8): 1497-1501. https://doi.org/10.1016/S0017-9310(02)00415-5  

[29] Yu Z, Fan L, Hu Y, Cen K. Perturbation solution to heat conduction in melting or 
solidification with heat generation. Heat and Mass Transfer, 2010; 46(4): 479-483. 
https://doi.org/10.1007/s00231-010-0596-4  

[30] Yigit F. A simplified analytical solution of a two-dimensional Stefan problem with a 
periodic boundary condition. International Review of Mechanical Engineering, 2007; 1: 
703-714. 

[31] Yigit F. Perturbation solution for solidification of pure metals on a sinusoidal mold 
surface. International Journal of Heat and Mass Transfer, 2007; 50(13-14): 2624-2633. 
https://doi.org/10.1016/j.ijheatmasstransfer.2006.11.023  

[32] Yigit F. Approximate analytical and numerical solutions for a two-dimensional Stefan 
problem. Applied Mathematics and Computation, 2008; 202(2): 857-869. 
https://doi.org/10.1016/j.amc.2008.03.033  

[33] Yigit F. Sinusoidal perturbation solution for solidification of pure materials on a planar 
mold of finite thickness. International Journal of Thermal Sciences, 2008; 47: 25-34. 
https://doi.org/10.1016/j.ijthermalsci.2007.01.016  

[34] Sanz A. Tribological behavior of coatings for continuous casting of steel. Surface and 
Coating Technology, 2001; 146-147: 55-64. https://doi.org/10.1016/S0257-
8972(01)01475-X  

[35] Jafari H, Idris MH, Ourdjini A, Karimian M, Payganeh G. Influence of gating system, 
sand grain size, and mould coating on microstructure and mechanical properties of 
thin-wall ductile iron. Journal of Iron and Steel Research International, 2010; 17(12): 
38-45. https://doi.org/10.1016/S1006-706X(10)60195-1  

[36] Karimian M, Ourdjini A, Hasbullah Idris M, Jafari H. Effect of pattern coating thickness 
on characteristics of lost foam Al-SI-Cu alloy casting. Transactions of Nonferrous Metals 

https://doi.org/10.1016/j.apm.2018.06.052
https://doi.org/10.1006/jcph.2002.7140
https://doi.org/10.1016/j.jcp.2006.05.025
https://doi.org/10.1016/j.cam.2014.08.023
https://doi.org/10.1016/j.apm.2011.02.049
https://doi.org/10.1002/nme.1620241006
https://doi.org/10.1115/1.1604836
https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.070
https://doi.org/10.1016/S0017-9310(02)00415-5
https://doi.org/10.1007/s00231-010-0596-4
https://doi.org/10.1016/j.ijheatmasstransfer.2006.11.023
https://doi.org/10.1016/j.amc.2008.03.033
https://doi.org/10.1016/j.ijthermalsci.2007.01.016
https://doi.org/10.1016/S0257-8972(01)01475-X
https://doi.org/10.1016/S0257-8972(01)01475-X
https://doi.org/10.1016/S1006-706X(10)60195-1


Demir / Research on Engineering Structures & Materials 8(4) (2022) 751-772 

 

772 

Society of China, 2012; 22(9): 2092-2097. https://doi.org/10.1016/S1003-
6326(11)61433-7  

[37] Hamasaiid A, Dargusch M, Davidson C, Tovar S, Loulou T, Rezaï-Aria F, Dour G. Effect 
of mold coating materials and thickness on heat transfer in permanent mold casting of 
aluminum alloys. Metallurgical and Materials Transactions A, 2007; 38(6): 1303-1316. 
https://doi.org/10.1007/s11661-007-9145-2  

[38] Demir MH, Yigit F. Uncoupled modeling of the effects of coating layer on the growth 
instability in pure metal solidification. International Journal of Metalcasting, 2021; 15, 
326-337. https://doi.org/10.1007/s40962-020-00470-x  

[39] Demir MH, Yigit F. Effect of coating material on the growth instability in solidification 
of pure metals on a coated planar mold of finite thickness. International Journal of 
Solids and Structures, 2016; 99: 12-27. https://doi.org/10.1016/j.ijsolstr.2016.08.010  

[40] Demir MH, Yigit F. Thermoelastic stability analysis of solidification of pure metals on 
a coated planar mold of finite thickness, Metallurgical and Materials Transactions B, 
2017; 48 (2), 966-982. https://doi.org/10.1007/s11663-016-0876-6  

[41] Demir MH, Yigit F. A theoretical heat transfer model for unidirectional solidification 
of pure metals on a coated sinusoidal mold with constant boundary temperature. 
Arabian Journal for Science and Engineering, 2019; 44(6): 5825-5837. 
https://doi.org/10.1007/s13369-019-03736-7    

 

https://doi.org/10.1016/S1003-6326(11)61433-7
https://doi.org/10.1016/S1003-6326(11)61433-7
https://doi.org/10.1007/s11661-007-9145-2
https://doi.org/10.1007/s40962-020-00470-x
https://doi.org/10.1016/j.ijsolstr.2016.08.010
https://doi.org/10.1007/s11663-016-0876-6
https://doi.org/10.1007/s13369-019-03736-7

	resm2021.328en0805c
	resm2022.441me0602m

