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 Glass fiber reinforced plastics (GFRP) are exposed to thermal aging in their 
widespread aerospace applications. Evaluating the effect of mechanical 
properties due to thermal aging has remained a challenge. An experimental 
investigation to characterize the thermal aging effects of glass fiber epoxy 
composites as well as the development of a predictive modeling is presented 
here. Tensile test samples have been thermally aged at 50°C, 100°C, 150°C and 
200°C for 30 mins, 60 mins, 90 mins and 120 mins. At higher temperatures, the 
samples have shown a gradually increasing brown color while emitting a 
burning smell. The tensile test shows that the UTS value decreases as the thermal 
aging temperature increases. The predictive model has been prepared by 
combining image processing, regression analysis and two cascaded artificial 
neural networks (ANNs). The model reads the photographic image of the sample 
and uses the color change as an identifier. Cascaded ANNs estimate the thermal 
aging temperature and time from the image processing program. Finally, the 
ANN’s output is forwarded to the developed regression equation to get the 
estimated UTS. The predictive model’s estimated UTS shows an average 
accuracy of 97% when compared to the experimental results. 

© 2024 MIM Research Group. All rights reserved. 
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1. Introduction 

Glass fiber-reinforced plastic (GFRP) composites have seen widespread applications in the 
Aerospace industry [1]. In aerospace applications, GFRP composites are subjected to 
thermal aging at elevated temperatures, especially in UAV operations, aircraft fuselage 
panels, aircraft wingtips, control surfaces, bleed air ducts and inlet fan blade casing [2]. In 
these aerospace components, the mechanical properties of GFRP is very important to 
ensure safe operation during flight. The mechanical behavior of a fiber-reinforced 
composite basically depends on the fiber strength and modulus, the chemical stability, 
matrix strength and the interface bonding between the fiber/matrix to enable stress 
transfer [3]. Scientists and engineers are well aware of the properties of fiber reinforced 
polymers, but there are still a lot of questions concerning their durability and performance 
under harsh environmental conditions.[4].  

A considerable amount of literature has been published regarding the thermal aging of 
GFRPs and its influence on mechanical properties. Bazli et al. [5] investigated the behavior 
of unidirectional, woven and chopped strand GFRP laminates subjected to impact and 
flexure loads at extreme temperatures. According to the findings, GFRP laminates' flexural 
and impact capabilities generally deteriorate as exposure time and temperature rise, and 
as laminate thickness decreases. Kun et al. [6] developed an epoxy glass fiber composite 
and performed wet and heat cycle aging tests. They found that the composites' mechanical 
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and dielectric properties deteriorated over time. Zuo et al. [7] performed an experiment in 
which the isothermal and non-isothermal crystallization behaviors of glass fiber-
reinforced polyphenylene sulfide were rigorously investigated and a broad variety of 
widely used models were applied to this material. It was discovered that the polymer 
crystallizes more slowly during crystallization when it has undergone extreme age and 
degeneration. According to Birger et al. [8], thermal aging influences the mechanical 
characteristics and failure processes of graphite-fabric epoxy composites exposed to 
flexural stress. The authors thermally aged the samples at 170 °C for 120, 240, and 626 
hours. For the longest exposure period, bare fibers were detectable due to the weakening 
of the fiber-matrix interface, and as thermal aging progresses, fracture transforms from 
ductile with more plastic deformations to brittle. Mouritz et al. [9] investigated the post-
fire residual flexure strength of glass, carbon, and Kevlar-reinforced polyester, epoxy, and 
phenolic-based laminates. They discovered that even a little amount of fire damage 
resulted in a significant decrease in strength qualities, and the model used to forecast the 
strength properties showed a strong connection with the experimental data. Dodds et al. 
[10] subjected the epoxy, phenolic, and polyester GFRP panels to a high-temperature fire 
and compared the behavior using thermal modeling. Phenolic-based GFRP laminates were 
shown to be more susceptible to delamination. In addition, the thickness of the composites 
had a significant effect in their fire resistance.   

Several researchers have also noted the color changes due to thermal aging. Zhenbo Lan et 
al. [11] studied the color changes and mechanical properties of glass fiber-reinforced 
polycarbonate (GF-PC) composites after aging at various temperatures. The experiment 
revealed that the brightness of the GF-PC composite is related to trends detected in their 
tensile strength and bending strength. Song et al. [12] investigated the impact of thermal 
aging on the mechanical properties of glass-reinforced PEI plate composites. They found 
that as the aging temperature increased from 80 to 145 C, both the tensile and flexural 
strengths of the GF/PEI composite samples dropped, which was also reflected in their color 
difference.  

The glass transition temperature (Tg) is an important consideration for the thermal aging 
study of all FRPs.  As such, several researchers have studied the effect of thermal aging at 
temperatures near Tg. In a study relevant to ours, Zavatta et al. [13] conducted research to 
determine how the strength of carbon fabric/epoxy composites changed as a result of 
thermal aging in air. For aging at temperatures below the glass transition temperature (Tg) 
of the resin, a considerable decline in strength was observed. In contrast, a fast drop in 
strength was found at aging temperatures exceeding Tg. Furthermore, it was determined 
that even brief exposure to operating temperatures over Tg might significantly reduce the 
load-bearing capacity of CFRP components.  

For developing predictive models, researchers have also experimented with using various 
techniques.  Gibson et al. [14] studied the raised temperature effect on the mechanical 
properties of woven glass fiber/polypropylene composites and suggested a 3-parameter 
model to define the tensile behavior and a 2-parameter model to define the compressive 
behavior to analyze the effects. Kim et al.[15] experimented with multiple regression 
analysis (MRA) and polynomial regression analysis (PRA) and ANNs, to analyze the factors 
affecting the tensile strength of basalt and glass fiber-reinforced polymers (FRPs). They 
found that ANNs could be the most efficient model for forecasting the durability of FRPs. 
Gayatri Vineela et al. [16] performed an experiment in which the ultimate tensile strength 
of hybrid short fiber composites comprised of glass fiber, carbon fiber, and epoxy resin is 
predicted using artificial neural network approaches. It was discovered that ANN can 
predict the values of tensile strength more precisely than the regression model. Mishra et 
al. [17] conducted an experiment to demonstrate a MATLAB-based artificial neural 
network (ANN)-based approach for forecasting the deflection behavior of three kinds of 
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beams: plain, steel-reinforced, and bamboo-reinforced beams. The findings demonstrate 
that the ANN is a potent and trustworthy technique for evaluating the deflection behavior 
of concrete beams under the studied loading circumstances. Doblies et al. [18] have 
developed a model to predict the mechanical properties, as well as the thermal exposure 
time and temperature of epoxy resin, using Fourier-transform infrared spectroscopy 
(FTIR)-spectroscopy, data processing, and artificial neural networks. Turco et al. [19] 
developed two Artificial Neural Networks (ANNs) in order to forecast the compressive 
(ANN1) and tensile (ANN2) strengths of natural fiber-reinforced CEBs. The correlation 
coefficients (R-values) for ANN1 and ANN2 were 0.97 and 0.91, respectively, 
demonstrating the great accuracy of their generated tools.  

Summarizing the literature survey shows that, there is significant literature on the 
mechanical property testing of thermally aged GFRP. Also, several predictive models using 
multi-parameter models, regression and ANN techniques have been developed with good 
accuracy. It is evident that on a macroscopic level, the physical and chemical mechanisms 
causing a change in GFRP properties are well understood. However, the mechanical 
property values reported by different researchers remain in a large scatter for thermally 
aged GFRP. The precise physical micro-phenomena and chemical reactions, as well as how 
they interact, are still being researched. Again, most of the predictive models in the 
literature depend on testing the material and predicting the output value based on the test 
input parameters. This is a time-consuming process that involves disassembly, sample 
preparation and destructive testing. It costs a lot of money for applications in aerospace, 
automobile, marine and similar industries. As such, a computational method to estimate 
the mechanical properties of thermally aged GFRP would be very beneficial for a highly 
competitive and operational industry like Aerospace. However, determining the current 
material state and retracing the mechanical and thermal histories continue to be difficult 
tasks [18]. Hence, there is a research gap in further mechanical property testing of 
thermally aged GFRP due to the variations in results reported by researchers. Moreover, a 
computational method to estimate the mechanical properties of thermally aged GFRP 
remains largely unaddressed.  

This research focuses on the characterization of mechanical properties of thermally aged 
glass fiber epoxy composite below and beyond the glass transition temperature (Tg). Also, 
a novel predictive model was developed for estimating the mechanical properties of 
thermally aged glass fiber reinforced plastic (GFRP) composites. The predictive model 
developed in this research and its exact design is completely novel and it has not been 
studied yet by researchers as per the literature review and best knowledge of the author. 
This model has the potential to save time and money by avoiding disassembly, sample 
preparation and destructive testing of GFRP components especially in aerospace line 
maintenance applications. 

2. Materials and Methods  

2.1. Materials Used 

Commercially available high silica (SiO2 ≥ 96%) woven Glass fiber cloth of 1100 grams per 
square meter (GSM) weight was selected as the reinforcing element for preparing the GFRP 
composite material. This glass fiber cloth was purchased from Jiangnan Company and 
originated in Jiangsu, China. The glass fiber fabric has a thickness of 1.2 mm and a thread 
count of 15 for WEFT and 20 for WARP. The tensile of the woven glass fiber cloth is 86.95 
MPa as per the manufacturer’s specification. To create one composite slab, two layers of 
glass fibers were sliced into 325mm x 325mm squares. As the matrix material, Araldite AW 
106 IN epoxy resin and HV 953 U hardener were used. According to the manufacturer's 
recommendations, a 100:80 weight ratio of resin and hardener was utilized. The viscosity 
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(cP) at 25°C is 50000 and 35000, respectively, while the specific gravities of the hardener 
and resin are 1.17 and 0.92, respectively. 

As this study involves thermal aging, the elevated temperature properties of the 
reinforcement and the matrix were very important considerations. The glass fiber cloth 
can reportedly withstand operating temperatures of up to 1100°C and has a melting point 
of 1700°C, according to the manufacturer. The glass transition temperature (Tg) of the 
resin-hardener is 63°C. The Glass Transition Temperature (Tg) is one of the most 
important properties of any epoxy and is the temperature region where the polymer 
transitions from hard, glassy material to a soft, rubbery material. It is the temperature of 
interest for our study as our selected thermal aging temperature ranges below (50°C) and 
beyond (100°C, 150°C and 200°C) this temperature. 

2.2. Methodology 

The methodology used for this study involved 10 interrelated steps. The first 5 steps were 
part of the experimental work which dealt with fabrication and characterization of the 
GFRP. The other 5 steps were part of the computational work which dealt with predictive 
modeling. The step-by-step graphical methodology is shown in Figure 1 as follows.  

 

Fig. 1. Graphical methodology of this research 

The details of the 10-step methodology are as follows: 

• GFRP Composites were fabricated using woven and random glass fibers by hand-
layup method. 

• Samples for mechanical testing were prepared as per ASTM standards by 
mechanical cutting and laser cutting. 

• These unaged samples underwent tensile test, flexural test, microhardness test and 
SEM imaging to find the effect of fiber orientation and machining on the mechanical 
properties. 

• Tensile test Samples were thermally aged at different temperatures and times. 
Their distinct color changes at elevated temperatures were identified and 
photographed.  

• Thermally aged Samples were mechanically tested as per ASTM standards and 
results including Ultimate Tensile Strength (UTS), Yield Strength, Maximum Strain, 
Elastic Modulus and Tangent Modulus were recorded. 
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• An image processing algorithm identified the color changes of the thermally aged 
samples (from the photos taken in step iv) and gave the most consistent Red, Green 
and Blue (RGB) color values as the output. 

• Two ANNs were trained which took input of the RGB values and predicted the 
thermal aging variables (aging temperature and time) the samples underwent. 

• A regression analysis was performed to correlate UTS and thermal aging variables 
(aging temperature and time). 

• The ANN-predicted aging temperature and time were used to predict the UTS value 
using the regression equation developed in step viii. This was the final output of the 
predictive model. 

• UTS from the experimental result (step v) and estimations of the predictive model 
(step ix) were analyzed and compared. 

3. Experimental Work 

3.1 Fabrication of GFRP Samples 

The GFRP composite material was fabricated using the hand layup technique. A plywood 
mold with the dimensions of 325 mm × 325 mm x 10 mm was employed. A clear plastic 
release sheet was positioned at the bottom and coated with wax to make the removal 
procedure easier after production. To prevent air entrapment, the resin-hardener mixture 
was first placed in one layer and spread uniformly with a spatula. Then, one layer of the 
resin-hardener combination was put between two layers of glass fiber. The topmost layer 
was then filled with the resin-hardener combination and protected by a transparent plastic 
release film. Using a roller, gentle pressure was applied above the release film to release 
any trapped air. As soon as the topmost layer of resin-hardener was placed, the joint parts 
were clamped. The composite was then allowed to cure for 12 hours at room temperature 
under the weight of a 17 kg plywood sheet. The constructed composite slab had a 3mm 
thickness.  

 

Fig 2. Arrangement of layers in fabricated GFRP composite 

 

Fig 3. Solidworks drawing of tensile test sample 

The configuration of the matrix and reinforcing layers of the manufactured glass fiber 
composite is depicted in Figure 2. Table 1 lists the components of the prepared composite 
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sample. The 325 mm × 325 mm x 3 mm composite slabs were mechanically cut and 
samples for mechanical testing were prepared. Bosch GWS 900-100 professional angle 
grinder with TJWELD 1.2 mm thickness cutting wheel was used to cut the samples. For 
tensile testing, samples were prepared as per ASTM D3039 standard. A total of 51 samples 
were prepared. The dimensions of the sample are shown in figure 3. 

Table 1. Composition of the prepared composite sample 

Material Weight (gm) Weight (%) 
Glass Fiber Cloth 206 45 

Epoxy Resin 138 30 
Hardener 111 25 

Total 456 100 

3.2 Thermal Aging 

Temperature and time were the two variables selected for the thermal aging of the 
samples. For thermal aging, specific temperatures and aging times were chosen 
considering the literature review and Tg of the epoxy. The selected thermal aging 
temperatures were 50°C, 100°C, 150°C and 200°C while the thermal aging time were 30 
mins, 60 mins, 90 mins and 120 mins. The range of temperatures and aging time was 
selected based on the expected thermal conditions in Aerospace applications. Such 
temperatures and exposure times are frequently encountered in case of UAV operations 
and Air-conditioning bleed ducts of commercial aircraft. 

Table 2. Sample group numbers and associated thermal aging variables 

Sample group 
number (SGN) 

Aging 
temperature 

Aging time Number of samples in 
the group 

1 Unaged Unaged 3 
2 50°C 30 mins 3 
3 50°C 60 mins 3 
4 50°C 90 mins 3 
5 50°C 120 mins 3 
6 100°C 30 mins 3 
7 100°C 60 mins 3 
8 100°C 90 mins 3 
9 100°C 120 mins 3 

10 150°C 30 mins 3 
11 150°C 60 mins 3 
12 150°C 90 mins 3 
13 150°C 120 mins 3 
14 200°C 30 mins 3 
15 200°C 60 mins 3 
16 200°C 90 mins 3 
17 200°C 120 mins 3 

Total number of samples 51 
 

Tensile testing samples were thermally aged in Carbolite Gero CWF 13/13 furnace. As per 
the manufacturer’s specifications, this furnace can reach the maximum temperature of 
1300°C in 121 minutes with a maximum continuous operating temperature of 1200°C. For 
each one of the thermal aging temperatures, samples were aged at all the above aging 
times. As such total 16 combinations of thermal aging were performed in the ovens. With 
the addition of the unaged samples, the total number of combinations was 17. These 17 
combinations are labeled as sample group numbers (SGN). Each of the sample groups had 
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3 samples making a total of 51 samples for 17 groups. The sample group numbers (SGN) 
and associated thermal aging variables are shown in table 2. 

3.3 Tensile Test 

In a tensile test, a sample is subjected to controlled tension till it reaches failure. The tensile 
test was done as per ASTM D3039 standard. The tensile test is performed in the universal 
testing machine (UTM) PLS100 with a crosshead speed of 5mm/min. The flat samples are 
fixed between the grips of each head of the testing machine. To have a better grip on the 
grips of the tensile testing machine, end tabs are provided at both ends of the samples. The 
grip is set up in such a way that the direction of force applied to the sample is coincident 
with the longitudinal axis of the sample.  

The Tensile test was performed for a total of 51 samples from 17 SGNs with 3 samples in 
each SGN. At first, 03 thermally unaged samples underwent tensile testing. From the tensile 
test data, max strain (%), UTS (MPa), yield strength (MPa), elastic modulus (MPa) and 
tangent modulus (MPa) were calculated. Afterward, 48 thermally aged samples underwent 
tensile testing. The average values of the 3 samples in each group were considered for the 
respective group. Finally, a total of 17 sets of tensile test data was obtained including UTS, 
Max Strain and Yield Strength. The tensile test dataset with thermal aging variables and 
corresponding mechanical properties is shown in table 3.  

Table 3. Tensile test dataset with thermal aging variables and corresponding mechanical 
properties 

SGN Temperature 
(°C) 

Time  
(mins) 

UTS  
(MPa) 

Max Strain  
(%) 

Yield 
Strength 

(MPa) 
1 Unaged Unaged 85.6 6.34 25.60 
2 50 30 79.33 5.52 23.83 
3 50 60 71.33 5.74 20.50 
4 50 90 70.00 6.30 21.47 
5 50 120 72.33 5.71 21.54 
6 100 30 64.00 5.64 19.33 
7 100 60 58.00 5.39 17.65 
8 100 90 69.00 5.59 20.67 
9 100 120 61.00 4.83 18.53 

10 150 30 70.33 4.37 17.00 
11 150 60 56.33 4.22 17.00 
12 150 90 80.67 5.02 19.00 
13 150 120 62.50 5.08 19.00 
14 200 30 47.00 3.71 11.90 
15 200 60 63.33 4.41 18.50 
16 200 90 64.67 4.06 18.50 
17 200 120 58.33 3.99 17.67 

4. Predictive Model 

This model uses image processing, regression analysis and cascaded artificial neural 
networks (ANN) which were developed earlier to predict the Ultimate Tensile Strength 
(UTS) value with a photographic image of the sample. The model can also be customized 
to predict any mechanical properties with visually distinguishable identifiers dependent 
on thermal aging. 
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This model uses the color changes due to thermal aging from the photographic image as 
an identifier. This identifier allows it to estimate the UTS value without destructive testing. 
Firstly, the Image processing program reads the photographic image of the thermally aged 
samples and calculates the RGB color values. Two cascaded ANNs are used to estimate the 
thermal aging variables from the RGB color values. ANNs are used because this estimation 
follows a data-driven approach rather than a mathematical formulation. It involves several 
variables like the lighting conditions of the photo, image noise and sample precleaning 
which can impact the data accuracy of RGB values. With such scattered data, ANNs are 
found to be useful. However, the larger the dataset, the better. The regression analysis 
develops a mathematical equation to estimate the UTS values from the thermal aging 
temperature and time. This dataset in table 3 from the experimental work is used for the 
regression analysis. To aid the visualization of data flow between the experimental work 
and the predictive model, a graphical methodology has been prepared and show in Figure 
4. 

 

Fig. 4. Graphical methodology of the predictive model 

The upper half of the figure shows the experimental work. The work process has been 
shown in 5 sequential steps starting from preparation of GFRP sample, thermal aging in 
the oven, color changes post thermal aging, tensile testing and results. Step no 2, 3 and 5 
has been shown in red, green and blue color respectively. This is done to better distinguish 
the flow of data from these steps to the predictive model. 

The lower half shows the predictive model. There are 7 sequential steps starting from the 
photo of the sample, image processing, ANN1, ANN2, regression, result and results 
comparison. 3 types of lines have been shown in the graphical methodology. Continuous 
lines indicate the operational phase of the predictive model. Dotted lines indicate the 
training phase of the predictive model. Step 1 is common for both the operational and 
training phase of the model. It is indicated by ‘long dash dot dot’ line. 

 

4.1 Image Processing 

After the thermal aging was done, it was noted that the samples were undergoing a color 
change at 150°C and 200°C. This started at 150°C with a very slight shade of brown color 
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which became more apparent at 200°C. Also, as the aging time increased, the shade of 
brown color became progressively darker. As such, this change of color could be used as 
an identifier to predict the thermal aging variables i.e., temperature and time. 

To meet this purpose, A MATLAB image processing program was developed which can 
read and identify the color changes of the samples. SGN 10-17 were exposed to thermal 
aging at 150°C and 200°C. The photos of these SGN 10-17 were uploaded to the MATLAB 
program. To minimize the issues of lighting conditions, image noise and sample 
precleaning, all the samples were photographed in controlled environment with the same 
camera and lighting conditions. The program performed calculations and gave the most 
consistent value of the Red, Green and Blue color (RGB) values in a matrix form for each of 
the samples. The code was optimized in such a way that even if there was some slight 
variation of color throughout different areas of the sample, the code was able to figure out 
the most consistent value. The MATLAB pseudocode for the image processing algorithm is 
shown in Figure 5. 

 

Fig. 5. MATLAB pseudocode of the image processing algorithm. 

4.2 Artificial Neural Networks 

Artificial Neural Networks (ANN) is a biologically-inspired computational method. It is one 
of many Artificial Intelligence algorithms and techniques. The ANN technique is based on 
a group of interconnected units or nodes called artificial neurons. The architecture of ANN 
consists of an input layer, one or several hidden layers and an output layer. As their name 
suggests, the input layer provides the input parameters to the ANN and the output layer 
provides the desired output. The calculations are performed by the hidden layers by means 
of weights and biases. The overall structure loosely models the neurons in a biological 
brain.  

Using MATLAB, two ANNs are used in series to predict the thermal aging temperature and 
time. ANN1 takes 3 inputs as the RGB values and outputs the thermal aging temperature 
𝑥1. ANN2 takes 4 inputs including the same 3 previous RGB values and the output of the 
first ANN, 𝑥1. The output of the second ANN is the thermal aging time 𝑥2. Both ANNs consist 
of two layers including one hidden layer and one output layer. The hidden layer has 10 
neurons and the output layer has 1 neuron. The transfer function of the hidden layer is 
chosen as tansigmoid while the transfer function of the output layer is chosen as purelin. 
Figure 6 shows the architecture of the two ANNs. 

Step 4: Export the results to an excel file. 

Step 3: Calculate the most consistent values of Red Green and Blue color value among 
all the pixels within each matrix.

Step 2: Seperate the Red, Green and Blue color values for every pixel of the image in 
seperate matrices.

Step 1: Read the uploaded photo of the sample.



Rahman and Rahman / Research on Engineering Structures & Materials 10(1) (2024) 305-330 

 

314 

 

(a) 

 

(b) 

Fig. 6. The architecture of the two ANNs: (a) ANN1 (b) ANN2 

Total 24 sets of thermal aging data were used for the training and testing of the two ANNs. 
Among the 24 sets, 19 set were used for the training and the remaining 5 sets were used 
for testing. Table 4 and Table 5 show the 19 sets of training data for ANN1 and ANN2 
respectively. 

Table 4. Training data for ANN1   

 Input (3) Output (1) 
 

Dataset No R G B Aging Temp 
(𝑥1) 

1 134 116 65 150 
2 132 116 65 150 
3 158 137 76 150 
4 154 135 74 150 
5 147 128 76 150 
9 154 135 76 150 
7 130 112 60 150 
8 162 142 82 150 
9 153 133 68 150 

10 144 92 21 200 
11 137 85 19 200 
12 133 73 16 200 
13 128 75 16 200 
14 123 63 11 200 
15 91 44 18 200 
16 109 51 14 200 
17 89 37 16 200 
18 99 41 21 200 
19 92 35 14 200 
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Table 5. Training data for ANN2 

 Input (4) Output (1) 
 

Dataset No R G B Temp (𝑥1) Aging Time 
(𝑥2) 

1 134 116 65 150 30 
2 132 116 65 150 30 
3 158 137 76 150 60 
4 154 135 74 150 60 
5 147 128 76 150 90 
9 154 135 76 150 90 
7 130 112 60 150 90 
8 162 142 82 150 120 
9 153 133 68 150 120 

10 144 92 21 200 30 
11 137 85 19 200 30 
12 133 73 16 200 60 
13 128 75 16 200 60 
14 123 63 11 200 60 
15 91 44 18 200 90 
16 109 51 14 200 90 
17 89 37 16 200 90 
18 99 41 21 200 120 
19 92 35 14 200 120 

The training performance of ANN1 and ANN2 are shown in figure 7 and figure 8 
respectively. 
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Fig. 7. Training performance of ANN1 
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Fig 8. Training performance of ANN2 

After the training of the ANNs are complete, they are tested with 5 sets of data. Table 6 and 
table 7 show the testing data for ANN1 and ANN2 respectively. 

Table 6. Testing data for ANN1   Table 7. Testing data for ANN2 

 Input (3) Output 
(1) 

  Input (4) Output 
(1) 

Dataset 
No 

R G B Temp 
(𝑥1) 

 Dataset 
No 

R G B Temp 
(𝑥1) 

Aging 
Time 
(𝑥2) 

1 149 130 68 150  1 149 130 68 150 30 
2 149 131 70 150  2 149 131 70 150 60 
3 142 121 59 150  3 142 121 59 150 120 
4 130 76 17 200  4 130 76 17 200 30 
5 98 34 10 200  5 98 34 10 200 120 

4.3 Regression Analysis for UTS and Max Strain 

A multi-regression analysis was performed in Minitab software. The regression analysis 
developed an equation to estimate the UTS values from the thermal aging variables. The 
thermal aging temperature and time were considered as the two independent variables. 
UTS was the dependent variable. The two cascaded ANNs estimated the thermal aging 
temperature and time, which were given as input to the developed regression equation. 

 The tensile testing dataset of SGN 1-17 shown in Table 3 was used to perform the 
regression. Figure 9 shows the regression model and its various parameters. 
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Fig.  9. The regression model and its various parameters 

From the above figures, it is observed that the p-value of the regression model was less 
than 0.10 which indicates a strong relationship between the 𝑦 and 𝑥 variables. The 𝑅2 value 
was 86.76% which means that 86.76% of the variation in 𝑦 can be explained by the 
regression model. The 𝑅2 adjusted value was found as 82.351% which indicates that most 
of the variables were useful in terms of generating the model. The incremental impact of 𝑥 
variables indicated that aging temperature had a 70.3987% impact on increasing 𝑅2 value 
compared to only 6.57032% for aging time. Also, there were no residual values nor any 
strong curvature or clusters which would have indicated problems with the regression 
model. All the data points fall randomly on both sides of zero indicating a good fit. 

The regression analysis found the relationship for UTS as: 

𝑦 = 95.63 − 0.4070 × 𝑥1 − 0.1099 × 𝑥2 + 0.000900 × 𝑥1
2 +

0.000998 × 𝑥1 × 𝑥2  
(1) 

Where, 𝑦 = UTS (MPa), 𝑥1 = Thermal aging temperature (°C) and 𝑥2 = Thermal aging time 
(mins).  

5. Results and Discussion 

Results from the experimental work were analyzed to obtain insights about the mechanical 
properties of the GFRP. Also, the data from the experimental work was used to develop the 
predictive model. The following subsections describe the results and discussion of the 
experimental work and predictive model separately. 
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5.1. Experimental Work 

Results and discussion of the experimental work are presented in this section. It is further 
divided into three subsections namely; Tensile Test of Unaged Samples, Thermal Aging and 
Tensile Test of Thermally Aged Samples. 

5.1.1. Tensile Test of Unaged Samples 

GFRP composites were fabricated and tensile testing samples were prepared as per ASTM 
D3039 standard. Figure 10 shows the mechanical properties of thermally aged GFRP 
samples. 

 

Fig. 10. Mechanical properties of thermally aged GFRP samples 

From the figure, it is found that tensile testing of thermally unaged samples revealed 
mechanical properties UTS 85.60 MPa, Max Strain 6.34%, Yield Strength 25.60 MPa, Elastic 
Modulus 19.34 MPa and Tangent Modulus 15.10 MPa. It is to be noted that the UTS value 
of 85.60 MPa found by the tensile test is very close the UTS value of 86.95 MPa reported by 
the manufacturer of the glass fibers. Hence, it is apparent that during the tensile test, the 
glass fibers were the ultimate load-bearing member upon which the tensile strength of the 
GFRP was dependent. 

5.1.2. Thermal Aging 

During the thermal aging process at 100°C (SGN 6,7,8 and 9), very mild smoke and a 
burning smell were noticed. This smoke and smell effect became more noticeable at 150°C 
(SGN 10,11,12 and 13). At 200°C (SGN 14,15,16 and 17) the smoke and burning smell were 
clearly noticeable. This was expected as the glass transition temperature (Tg) of the epoxy 
is 63°C.  

Also, at 150°C (SGN 10,11,12 and 13), the tensile test samples started to show color 
changes with the introduction of very slight shades of brown. At 200°C (SGN 14,15,16 and 
17) this color change effect became apparent. In SGN 14, the color was light brown. As the 
thermal aging time increased, the brown color became progressively darker in SGN 15, 16 
and 17. The color change effect due to thermal aging is shown in figure 11. 
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2, 3, 4 and 5 (SGN, Left to Right) 6, 7, 8 and 9 (SGN, Left to Right) 

 
 

10, 11, 12 and 13 (SGN, Left to Right) 14, 15, 16 and 17 (SGN, Left to Right) 

Fig 11. Color change effect due to thermal aging 

The burning smell and color changes are mainly related to the oxidation process. Most 
notably; the carbonyl formation in the epoxy backbone due to thermo-oxidation is the 
cause for the color change of the material [20]. These findings agree with the existing 
literature. According to the literature, a higher temperature and longer exposure time 
typically result in a darker color. [12]. Although, the details are not fully understood yet 
[20], [21].  

5.1.3. Tensile Test of Thermally Aged Samples. 

In the present work, Ultimate Tensile Strength (UTS) is the mechanical property of interest. 
As such, it is analyzed with much deliberation. Figure 12 shows the change in UTS due to 
thermal aging. The Figure is divided into 5 separate graphs to aid the visualization of the 
thermal aging effect due to a fixed temperature and increasing aging time. Finally, graph 
12 (e) shows the effect with all sample group numbers sequentially. The black bar in this 
graph represents the UTS value for unaged samples. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 12. Change of UTS due to thermal aging for different SGN  

(a) SGN 2-5, (b) SGN 6-9, (c) SGN 10-13, (d) SGN 14-17 and (e) SGN 1-17 

It is observed that for SGN 2-5 a decreasing UTS, a clear trend is observed. SGN 6-9 shows 
a more consistent rend with UTS values increase and decrease in an oscillating manner. 
For SGN 10-13 the UTS values slowly increase. For SGN 14-17, the UTS values increase 
initially but later reach a plateau. Finally, for graph 12(e) there is an overall trend of 
decreasing UTS is observed although there are noticeable variations as mentioned earlier. 
These variations in UTS due to different thermal aging are consistent with the literature. 
The initial decrease in UTS below and slightly over the Tg is expected due to the epoxy 
being rubbery and causing voids inside the material substrate. However, the increase in 
UTS at higher temperatures (SGN 11,12,13,15,16,17) is not fully understood by the author 
and requires further research.  
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Similar to UTS, Figure 13 shows the change of Max Strain due to thermal aging. The Figure 
is divided into 5 separate graphs to aid the visualization of the thermal aging effect due to 
a fixed temperature and increasing aging time. Finally, graph 13 (e) shows the effect with 
all sample group numbers sequentially. The black bar in this graph represents the Max 
Strain value for unaged samples. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 13. Change of max strain (%) due to thermal aging for different SGN  

(a) SGN 2-5, (b) SGN 6-9, (c) SGN 10-13, (d) SGN 14-17 and (e) SGN 1-17 
Also, Figure 14 shows the change in Yield Strength due to thermal aging. The Figure is 
divided into 5 separate graphs to aid the visualization of the thermal aging effect due to a 
fixed temperature and increasing aging time. Finally, graph 14 (e) shows the effect with all 
sample group numbers sequentially. The black bar in this graph represents the Yield 
Strength value for unaged samples. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 14.  Change of yield strength due to thermal aging for different SGN  

(a) SGN 2-5, (b) SGN 6-9, (c) SGN 10-13, (d) SGN 14-17 and (e) SGN 1-1 

As a general observation, from Figure 12 to 14, it is revealed that a gradual decrease in 
UTS, Max Strain and Yield strength values occurred as samples were exposed to 
increasingly higher temperatures during the thermal aging process. The highest value was 
obtained from the unaged samples while the lowest value was found from the thermally 
aged samples at 200°C 30 mins. The percentile decreases of UTS, Max Strain and Yield 
strength values were 43.34%, 41.48% and 53.52% respectively between the two extremes. 
The high amount of scattering in the mechanical properties after thermal aging is 
consistent with the literature [18]. 

Further analysis was performed to see variations in UTS of SGN 2 – 17, due to the variations 
in thermal aging temperature and time separately. Figure 15 shows the variation of UTS 
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due to thermal aging temperature and Figure 16 shows the variation of UTS due to thermal 
aging time. 

 

Fig. 15. Variation of UTS due to thermal aging temperature  

 

Fig 16. variation of UTS due to thermal aging time 

From Figure 15, although there are some scatter and randomness in the mechanical 
properties after thermal aging consistent with the literature; the UTS of the thermally aged 
samples decreases as the thermal aging temperature increases.  Generally, exposure to 
elevated temperatures and aging times causes the epoxy to be rubbery and develop voids 
inside the material substrate that lead to loss of strength [18]. However, from Figure 16, 
no specific trend is observed as the aging time increases for a specific temperature. In both 
cases, exposure to thermal aging always yields UTS values that are lower than the unaged 
UTS value. 

Additionally, a Contour Surface plot was generated to understand the combined 
dependency of UTS of SGN 2 – 17 on thermal aging temperature and time. Figure 17 shows 
the contour plot of UTS. 
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Fig 17. Contour plot of UTS 

The contour plot shows the mapping of UTS values at various combinations of aging 
temperatures and time. In the plot, the UTS values are shown in 5 ranges which are 
represented by 5 shades of color. Darker shades represent higher values and lighter shades 
represent lower values. From the plot, the UTS decreases as temperatures reach higher 
values on the x-axis. However, as the aging time increases for a specific temperature in the 
y-axis, no trend is observed. It also affirms the previous findings that the sensitivity of UTS 
reduction is more dependent on the change of thermal aging temperature rather than the 
thermal aging time between 30 mins and 120 mins. However, existing literature suggests 
that a reduction of UTS can result in case of longer thermal exposures in similar 
temperatures [18]. 

5.2 The Predictive Model 

Results and discussion of the predictive model are presented in this section. It is further 
divided into 4 subsections. In the first 3 subsections, the results and discussion of the 
Image processing, ANNs and Regression analysis have been presented. Finally, the 
performance and analysis of the complete predictive model have been presented in the 
fourth subsection.  

5.2.1 Image Processing 

The Image processing program calculated the most consistent Red Green and Blue color 
values of all 51 samples. Then the average of these values for 3 samples within each sample 
group was taken to obtain the Red Green and Blue color values for a particular sample 
group number. Figure 18 shows the Red Green and Blue color values for SGN 1-17.  

From the above figure, it is observed that the RGB color values progressively decrease from 
SGN 1 to SGN 13. However, at SGN 14, when the thermal aging temperature reaches 200°C, 
the RGB color values decrease drastically. The overall trend of decreasing RGB color values 
is denoted by dotted lines for each respective color. The trend of decreasing RGB color 
values physically indicates the gradual darkening of color. This aligns with the observed 
gradually increasing brown color of the samples. Ultimately, the color reaches deep brown 
at SGN 17. This color change and the associated trend of RGB values agree with the color 
changes during thermal aging reported in Figure 11. These RGB values are used as an 
identifier for the ANNs. 
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Fig. 18. Red Green and Blue color values for SGN 1-17 

5.2.2. Artificial Neural Networks (ANNs) 

The RGB values of the image processing program were given as input to the two cascaded 
ANNs to estimate the associated thermal aging temperature and time. The test 
performance of ANN1 and ANN2 are shown in Figure 19. 

 

(a) 

 

(b) 

 

Fig 19. Testing performance of ANNs: (a) ANN1 (b) ANN2 

From the above figure, it is noted that ANN1 made very accurate estimations compared to 
the experimental results. This is expected as per the findings and analysis of the 
experimental work in Figure 15. As there was a trend of declining UTS with increasing 
thermal aging time, ANN1 successfully followed the same. However, ANN2 predictions 
have high errors. This is also expected considering the experimental work in Figure 16. In 
this case, there were no clear trends which led to ANN2 making high errors. To achieve 
better results from ANN2, a much larger dataset is required, 
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5.2.3. Regression Analysis 

A comparison was made between the results of the experimental work and the results 
obtained using the regression equation (1). Figure 20 shows the comparative plot of UTS 
values of SGN 1-17 obtained from experimental work and the regression equation.   

 

Fig. 20. Comparison of experimental and regression results for UTS 

From the figure above it is seen that the UTS values obtained through the regression 
equation closely follow the experimental values. The average absolute error of all 17 SGN 
was calculated and found as 4%. 

5.2.4. Performance of the predictive model 

Combining the results from the Image Processing, Regression Analysis and Artificial 
Neural Networks; the predictive model predicted the UTS value of the thermally aged 
samples. The model was tested with 05 samples within SGN 10-17. Figure 21 graphically 
compares the experimental result and the predictive model predicted result. Table 8 shows 
the dataset of the experimental result and predictive model predicted result with 
associated errors. 

 

Fig. 21. Graphical comparison of experimental results and predictive model predicted 
results. 
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Table 8. The dataset of the experimental result and predictive model predicted results with 
associated errors. 

Sample 
No 

SGN 
Temp
eratur
e (°C) 

Time 
(mins) 

Experimen
tal UTS 
(MPa) 

Predictive 
Model 

predicted 
UTS (MPa) 

Error 
(%) 

Absolute 
Error (%) 

1 10 150 30 56.00 56.50 -1% 1% 

2 11 150 60 56.33 56.37 0% 0% 

3 13 150 120 56.33 55.75 1% 1% 

4 14 200 30 48.50 54.47 -12% 12% 

5 17 200 120 58.33 59.21 -2% 2% 

Average Absolute Error 3% 

From the figure, it is evident that the predictive model estimated the experimental results 
of samples no 1, 2 and 3 with 99%, 100% and 99% accuracy. In sample no 4, the predictive 
model successfully followed the declining trend of the experimental result. However, the 
estimation had a 12% error. Again, in sample no 5, the predictive model successfully 
followed the rising trend of the experimental result and made an estimation with 98% 
accuracy. The average absolute accuracy of the predictive model is calculated as 97%. 

The accuracy of the predictive model depends on the input image quality which influences 
the RGB values. Also, the accuracy largely depends on the regression equation as it is a 
best-fit equation by nature that inherently has some errors. Moreover, the predictive 
model is compared with experimental results which are also prone to scattering due to 
matrix rearrangement post-thermal aging, sample randomness and several other 
experimental factors. 

It is seen that only in the case of sample 3, the predictive model made a noticeable error. 
This error may be attributed to the causes discussed above. In general, the accuracy of the 
predictive model can be maximized by increasing the number of experimental work 
samples and the ANN training dataset. 

6. Conclusion 

This study investigated the mechanical properties of thermally aged GFRP composites. 
Also, a novel predictive model was also developed consisting of image processing, 
regression analysis and cascaded artificial neural networks. Within the limitations of the 
study, the following conclusions can be made: 

During thermal aging at 100°C, very mild smoke and a burning smell were noticed. This 
smoke and smell became more noticeable at higher temperatures. After thermal aging at 
150°C, samples showed a very slight shade of brown color. At 200°C the samples became 
progressively dark brown as aging times increased. This gradual change of color is 
attributed to the oxidation process that occurs during thermal aging. 

Tensile test results showed that compared to unaged samples, a general decreasing trend 
of UTS, Max Strain and Yield strength values were noted. However, when investigated for 
different ranges of temperatures separately, it became apparent that the different ranges 
of temperatures had fluctuations and scattering with different thermal aging times. This 
variation and scattering is consistent with the literature and may be attributed to several 
factors that require further study. 
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Further analysis of tensile test results reveals that, the UTS of the thermally aged samples 
gradually decreases as the thermal aging temperature increases up to 200°C. But no 
specific pattern is observed as the thermal aging time increases up to 120 mins. It is likely 
because the GFRP is tolerant of thermal aging time ranges selected for this study and hence 
did not produce any trend. A broader range of thermal aging time may be studied to 
explore this behavior further. However, in all cases, even the minimum exposure to 
thermal aging (50°C and 30 mins) reduced the UTS value below that of unaged samples. 
None of the thermally aged samples showed equal or higher UTS value than unaged 
samples. 

The predictive model was developed by combining image processing, regression analysis 
and cascaded ANNs. The model estimated the UTS of the thermally aged GFRP with only 
the photographic image of the sample. The predictive model showed an average accuracy 
of 97% when compared to experimental results. With a sufficient dataset, this model can 
also be modified to predict any mechanical property that has color change as an identifier. 
This model has potential applications for non-destructive field testing of GFRP composites 
and can reduce operational costs. 

Abbreviations 

The following abbreviations are used in this manuscript: 

ANN Artificial Neural network 

ASTM American Society for Testing and Materials, 

GFRP Glass fiber reinforced plastics 

RGB Red, Green, Blue 

SGN Sample group number 

UTS  Ultimate tensile strength 
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