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 The automotive industry heavily relies on forming limit diagrams (FLDs) as 
essential tools for ensuring the quality and manufacturability of sheet metal 
components. However, accurately determining FLDs can be complex and 
resource-intensive due to the numerous material properties and variables 
involved. To address this challenge, this research employs an artificial neural 
network (ANN) model to predict FLDs for sheet metals, explicitly focusing on the 
automotive sector. The study begins by gathering material properties, including 
sheet thickness, yield strength, ultimate tensile strength, uniform elongation, 
hardening exponent, and strength coefficient. These properties serve as crucial 
inputs for the ANN model. Sensitivity analysis is then conducted to discern how 
each parameter influences FLD predictions. The ANN model is meticulously 
constructed, with a 6-15-22-3 structure, and subsequently trained to predict 
FLDs. The results are promising, as the model achieves an exceptional R-value of 
0.99995, indicating high accuracy in its predictions. Comparative analysis is 
carried out by pitting the ANN-generated FLDs against experimental data. The 
findings reveal that the ANN model predicts FLDs with remarkable precision, 
exhibiting only a 3.4% difference for the FLD0 value. This level of accuracy is 
particularly significant in the context of automotive manufacturing, where even 
minor deviations can lead to substantial product defects or manufacturing 
inefficiencies. It offers a swift and reliable way of predicting FLDs, which can be 
instrumental in optimising manufacturing processes, reducing material waste, 
and ensuring product quality. In conclusion, this research contributes to the 
automotive manufacturing sector by providing a robust and efficient method for 
predicting FLDs.  

 
© 2023 MIM Research Group. All rights reserved. 
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1. Introduction 

The limits of that material should be determined to use the material in forming operations 
with maximum efficiency. These material limits are known as formability. Sheet metal 
formability is defined as the ability of the metal to deform into a desired shape without 
necking or fracture [1]. These limits for sheet metals in forming operations are expressed 
by the forming limit diagram (FLD). Keeler and Goodwin first introduced this concept in 
the 1960s [2,3]. Keeler studied the right side of the diagram while Goodwin examined the 
left side (Fig. 1). In Fig. 1, the vertical axis shows the major strain (1), and the horizontal 
axis shows the minor strain (2) on sheet metal. The forming limit as a function of the strain 
state can be presented as a curve in a 1-2 diagram. That kind of diagram is called the 
forming limit diagram (FLD), and the curve is called the forming limit curve (FLC) [4]. The 
FLC0 value is the major strain value at which the minor strain value is 0 in the FLC. This 
value is also known as the lowest point of the FLC. According to this diagram, the area 
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under the FLC shows the safe margin; the area above the curve shows where fracture will 
occur. In other words, as long as the major and minor deformations in the sheet metal fall 
below this curve, no necking or fracture will occur. If the deformations are higher than the 
limit strains of the FLC, the sheet metal will be necked or fractured. 

 

Fig. 1. Schematic forming limit diagram (FLD) found by Keeler and Goodwin [5] 

The deformations during the sheet metal forming process are determined using the finite 
element method and compared with the FLC. Successful products are obtained by changing 
the material or design in areas with high or critical deformation. There are many 
experimental and theoretical studies and models for determining FLCs. The FLC can be 
determined by various methods such as the uniaxial tensile test [6], the hydraulic dome 
test [7], the Keeler test [2], the Hecker test [8], the Marciniak test [9], the Nakajima test 
[10] and the Hasek test [11]. In these experimental methods, FLCs can be determined using 
different specimens and tools [12]. The most commonly used tests are the Nakajima and 
Marciniak tests. In these tests, the FLC's left and right parts are obtained using specimens 
of different widths and types. However, experimental methods are costly due to the need 
for special devices and tools, and the preparation and measurement of test specimens are 
also time-consuming. Therefore, many theoretical and numerical models have been 
developed for the calculation of the formability of sheet metals. 

Theoretical and numerical models are based on geometric imperfection theory, continuum 
mechanics and bifurcation theory. The most well-known of these models are the 
Marciniak–Kuczynski criterion [13], the Swift and Hill model [14,15] and the Gurson–
Tvergaard–Needleman [16] model. In these models, quadratic or linear equations are 
solved with the parameters of the materials and the FLC is obtained. All these models and 
other empirical methods are summarised by Zhang et al. [17]. 

Although there are many studies in the literature in which experimental methods and 
theoretical models determine FLC, statistical analyses on this subject are limited. However, 
these experimental and theoretical studies guide the researchers by giving information 
about the factors affecting the FLC. Subramani et al. [18] experimentally determined FLCs 
for three different thicknesses of three other aluminium alloys and modelled them with 
the Taguchi experimental design. They determined the mechanical properties, such as 
yield strength and hardening exponent, using tensile tests. They used this data as a variable 
in the Taguchi experimental design and used the forming limit strain values as outputs. As 
a result of the study, they showed that the data obtained from the tensile tests can be used 
in the estimation of the FLC. They also found that the most critical factors affecting the FLC 
are the strain hardening exponent and normal anisotropy. Paul [19] created a statistical 
model that predicts FLC0 point by processing data such as the tensile strength, elongation, 
strain hardening and thickness of steel materials collected from the literature. To estimate 
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this point, the author created a model by processing the data from 66 types of steel in total. 
With this model, forming limit stress diagrams (FLSDs) was predicted with a high success 
rate. Levy and Van Tyne [20] also developed a method for predicting FLSDs. They 
calculated the effective stress in the FLC0 value with a Z parameter created with tensile test 
data from the literature. They also computed FLSDs for the left side of the FLC. A more 
comprehensive investigation of the controlling factors of FLC can be found in [21]. 

Forming Limit Diagrams (FLDs) are of paramount significance in the automotive industry, 
acting as a linchpin in the manufacturing process of sheet metal components. These 
diagrams are critical guides ensuring automotive parts' quality and structural integrity. 
However, their accurate determination is a formidable challenge. With stringent quality 
standards and cost-efficiency imperatives, the automotive industry relies heavily on 
precise FLDs. Minor deviations in these diagrams can lead to defects in the final product, 
escalating production costs and causing delays. Traditional methods of FLD determination 
are often limited by empirical or theoretical models, which may not encompass the 
intricate variations introduced during the production process. As a result, there is an 
escalating need for predictive models that can bridge this gap and offer an accurate means 
of determining FLDs. In recent times, artificial neural networks (ANNs) have been used 
frequently in metal forming processes. These advanced models can potentially 
revolutionise how FLDs are predicted, offering an innovative solution to the challenges 
faced by the automotive industry and other sectors that rely on sheet metal forming. Many 
researchers have used system theoretical models to model the system and reduce their 
experimental work. The ANN method, which has recently become popular, is a modelling 
method that can be applied to almost any engineering system. Since ANNs have many 
different models and learning algorithms, they can be applied to other systems. An ANN is 
a modelling method that tries to learn and use the relationship between input and output 
variables without considering the underlying physical processes. The relationship 
between inputs and outputs can be formulated. The effects of the inputs can be seen 
through the outputs using an ANN. With all these superior aspects, ANNs have been the 
basis for many studies in sheet-metal forming processes. Kotkunde et al. [22] modelled the 
deep drawing process of Ti-6Al-4V alloy using an ANN method. They used parameters such 
as blank holder force (BHF), punch speed and temperature as inputs. They could predict 
the major and minor strains with an ANN by processing the simulation results as outputs. 
They also plotted the FLC with the Keeler formula using the major and minor strain values 
obtained from the simulation. Elangovan et al. [23] modelled the FLC of perforated pure 
aluminium sheets with an ANN. They experimentally determined major and minor strain 
values by forming perforated sheets of different widths. Using sheet widths and hole sizes 
as inputs, they trained the network and obtained major and minor strain values that agreed 
with the experimental data. Derogar and Djavanroodi [24] experimentally determined the 
FLCs of Ti6Al4V titanium alloy and Al6061-T6 aluminium alloy sheets using the Hecker 
test. They gave punch displacement, oil pressure and limit drawing ratios (LDR) to the ANN 
as inputs and obtained FLC values as outputs. They got a high similarity between the 
experimental and ANN data. They found that FLCs can be successfully predicted by an ANN. 
Forcellese et al. [25] tried to predict the yield curves and FLCs of AZ31 magnesium alloys 
with experimental measurements and an ANN. They used parameters such as 
temperature, minor strain, forming speed and rolling direction as inputs for predicting the 
FLCs. They showed that the ANN can predict FLCs accurately, although no information was 
provided about the complex mechanisms involved in microstructure during hot forming. 
Dehghani et al. [26] investigated the effect of thermomechanical properties of low-carbon 
steels on the FLC with an ANN. In their model, the carbon content, hot finishing 
temperature, strain hardening exponent, initial yield stress and ASTM grain size were 
inputs and used to predict the FLC as an output. They reported that the FLC indicated with 
these thermomechanical properties was highly compatible with the experimentally 
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obtained FLC. All of these studies found that the FLC can be predicted with an ANN 
successfully for a specific material in which experimental parameters or material 
properties are given as input. Although FLC can be successfully estimated for the sheet 
used in the study, creating a new ANN for different steel sheets is necessary. Therefore, 
there is a need for an ANN in which the FLCs of other steel sheets can be determined by 
simply giving their material properties. 

This article delves into the development and application of ANNs for predicting FLDs in the 
automotive sector. It explores the implications of accurate predictions on manufacturing 
processes, product quality, cost efficiency, and, most importantly, safety. As the industry 
navigates the ever-evolving landscape of materials and design, predictive models like 
ANNs offer a bridge between innovation and reliability, contributing to producing safer, 
more efficient, and environmentally responsible vehicles. In this study, an ANN model has 
been developed to predict the whole FLCs of different steel sheets. Mechanical properties 
found in any material database are given as input. In this context, the yield stress, tensile 
strength, strain hardening exponent, strength coefficient, uniform elongation and 
thickness values of steel materials collected from different studies and experimental 
studies are inputs to the ANN. The FLCs of the steel sheets were processed as the output 
with data from the uniaxial, plane strain and biaxial regions. This ANN model can obtain 
the FLC of the different steel sheets for which the mechanical properties are given as 
inputs. 

2. Materials and Methods  

2.1. Materials 

In this study, DC01 was used for experiments. The thickness of the sheet metals is 0.6 mm. 
The chemical contents of the selected material are given in Table 1. These chemical 
contents are based on the material standards. The tensile test was used to determine the 
mechanical properties of the material, and out-of-plane tests were used to determine the 
FLC. 

Table 1. Chemical composition of DC01 sheet metal [27] 

Material %C %P %S %Mn %Fe 

DC01 0.12 0.045 0.045 0.6 99.19 

2.2 Tensile Test 

Tensile test specimens were prepared following the ASTM E8 [28] standard to determine 
the mechanical properties of the steel sheet. Specimens that cut parallel, diagonal and 
perpendicular with respect to the rolling direction were tested using an Instron 5982, 
which has 100 kN loading capacity. All tests were performed at a constant head speed of 
10 mm/min until fracture occurred and were repeated a minimum of 3 times to minimise 
deviations in results. A standard mechanical extensometer with a length of 50 mm was 
used to measure the strain accurately. The material's strain hardening exponent and 
strength coefficient were determined by linear regression analysis on the true stress–true 
strain curves on a logarithmic scale. The yield stress, tensile stress, elongation and strain 
hardening exponent obtained as a result of tensile tests are given in Table 2. 
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Table 2. Mechanical properties of DC01 sheet metal 

Mechanical Properties DC01 

Elastic modulus, E (GPa) 194.7 
Yield stress, Rp0,2 (MPa) 204.3 
Tensile stress, Rm (MPa) 335.9 

Uniform elongation,  (mm/mm) 0.241 

Max. elongation, max (mm/mm) 0.406 
Strain hardening coefficient, n 0.212 
Strength coefficient, K (MPa) 576.3 

2.3 Out-of-plane Tests 

To determine the FLC of the material, it should be formed under different strain conditions. 
Therefore, specimens of various widths that are usually compressed between a die and a 
blank holder are stretched with a hemispherical punch until they are necked or fractured 
(Fig. 2a). The dimensions of the die are given in Fig. 2b. A double-acting hydraulic press 
with a loading capacity of 80 tonnes was used for the out-of-plane test. After closing the 
die and blank holder, a 90 kN clamping force was applied. Nylon film and mineral oil are 
used between the sheet metal and punch to prevent premature damage from friction. 

In this study, sheet metals of eight different widths, as shown in Fig. 3a, were formed by a 
hemispherical punch until they fractured. The specimen dimensions are given in detail by 
Ozturk and Lee [1]. Circular grids with a diameter of 2.5 mm were electrochemically etched 
onto the sheets before forming (Fig. 3a). Each sample represents one strain path from 
uniaxial to biaxial strain on the FLD. After the experiments, these grids changed shape from 
circular to elliptical, and optical grid measurements were used to determine the major and 
minor strains. The FLCs were obtained by plotting these values on a graph [29]. Fig. 3b 
shows the fractured specimens after the experiment. 
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Fig. 2. (a) Fractured sample in out-of-plane test (b) Technical drawing of the out-of-

plane test setup (c) Specimen dimensions (all dimensions are mm) 
 

 
(a) 

 

 
(b) 

 
Fig. 3. Out-of-plane test specimens (a) before and (b) after the test 
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After the samples were deformed, the deformations on the sheet surfaces were measured 
with camera-integrated image processing software (Fig. 4a). Each deformed ellipse where 
the damage occurred on the sheet surface was photographed with the camera. Later, these 
photographs were transferred to the image processing program, and the major and minor 
axes of the ellipses were measured (Fig. 4b). In the program, the circles etched on the sheet 
metal were displayed with the camera before deformation. The program is calibrated by 
measuring the diameter of the reference circle over these images. After deformation, the 
ellipses, whose axis lengths are measured, are proportional to the reference circle size and 
the true strains are calculated. Here, measuring the ellipses from the same distance each 
time while viewing is essential for the consistency of the measurements. 

 
(a) 

Measurement Area Black-White Maks 

  
Ellipse Recognition and Measurement Measurement Area Matching 

  
(b) 

Fig 4. Determination of major and minor strain (a) Taking a picture with a camera (b) 
Measurement with image processing 

The damaged area of each deformed sample was examined, and the ellipses to be measured 

were determined and photographed. As a result of the measurements, the major (𝜀1) and 

minor (𝜀2) true strains were calculated with the equations (1) and (2). The major true 
strain was calculated by measuring the long axes of the ellipses on the sheet, and minor 
true strains were calculated by measuring their short axes. In equations (1) and (2), the 
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diameter of the circle before deformation is d0, the major axis of the ellipse formed after 
deformation is d1, and the minor axis is d2. 

𝜀1 = 𝑙𝑛
𝑑1

𝑑0
 (1) 

𝜀2 = 𝑙𝑛
𝑑2

𝑑0
 (2) 

2.4 Training 

In order to train the ANN model, the data were collected from published literature and the 
experiment for DC01. The database comprises major and minor strain values for material 
thickness, yield stress, tensile strength, strength coefficient, strain hardening exponent, 
uniform elongation versus uniaxial strain, plane strain and biaxial strain values. In some 
articles, these values are given in table [30–32], but in others, they are given graphically 
[33–35] (stress–strain, FLC, etc.). In those studies, the graphics in the article were 
transferred to data collection software and the desired data were obtained this way. In this 
study, the data collected from the literature is given in Table 3 with respective references. 

An FLC consists of two regions: negative (𝜀2
𝑢) and positive (𝜀2

𝑏) minor strain. In the ANN 
model, material thickness (t), yield stress (YS), ultimate tensile strength (UTS), strength 
coefficient (K), strain hardening exponent (n), and uniform elongation were used as input 
data. In the data collected from the literature, major strain (𝜀1

𝑢, 𝜀1
𝑏) values were collected 

for different positive and negative minor strain (𝜀2
𝑢, 𝜀2

𝑏) values for each material. These 
values and the slope of the curve in the positive and negative minor strain regions were 
calculated according to Eqs. 3 and 4. With this arrangement, 𝛽−, 𝛽+ and FLC0 values are 
used as outputs from the ANN model. 

𝛽− = 𝑡𝑎𝑛−1 (
𝜀1

𝑢 − 𝐹𝐿𝐶0

|𝜀2
𝑢|

) (3) 

𝛽− = 𝑡𝑎𝑛−1 (
𝜀1

𝑢 − 𝐹𝐿𝐶0

|𝜀2
𝑢|

) (4) 

Table 3. Training data from different literature works 

No Mat. YS UTS 𝜀 K n t 𝜀2
𝑢/𝜀1

𝑢 FLC0 𝜀2
𝑏/𝜀1

𝑏 Ref. 

1 DC01 204.3 335.9 24.1 576.3 0.212 0.6 -0.220/0.440 0.281 
0.280/0.35

4 
Exp. 

2 
Q&P 
1180 

1000.0 1200.0 14.8 1300 0.042 1.25 -0.060/0.142 0.102 
0.170/0.18

5 
[36] 

3 DX54D 167.0 309.0 22.5 375.2 0.230 0.75 -0.302/0.671 0.351 
0.394/0.43

9 
[37] 

4 DP800 465.0 786.0 15.0 989.9 0.160 1.00 -0.070/0.291 0.169 
0.189/0.20

2 
[37] 

5 
DX54D

+Z 
163.0 297.0 22.1 323.6 0.220 

0.81
5 

-0.301/0.606 0.308 
0.411/0.45

4 
[38] 

6 DP590 396.8 761.1 19.7 1018 0.175 1.50 -0.150/0.387 0.293 
0.372/0.42

1 
[39] 

7 IN-718 523.0 1084 39.3 1960 0.404 1.25 -0.186/0.432 0.345 
0.376/0.37

2 
[40] 

8 
TRIP6

00 
350.0 835.8 26.0 1062.9 0.178 1.00 -0.173/0.478 0.270 

0.385/0.46
8 

[41] 

9 DP600 350.0 734.3 14.2 1030.4 0.173 1.00 -0.191/0.445 0.213 
0.280/0.36

1 
[41] 

10 
TWIP9

40 
457.2 960.1 68.9 2300 0.620 1.47 -0.251/0.566 0.380 

0.362/0.53
2 

[42] 

11 
TRIP7

80 
508.4 837.0 16.9 1351 0.169 1.20 -0.177/0.484 0.252 

0.324/0.44
9 

[43] 
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2.5 Artificial Neural Network Analysis 

A general ANN model consists of input, hidden, and output layers. Input and output layers 
are fixed layers in which data is requested for modelling. A consistent and large quantity 
of data will increase the consistency of the model. The network structure of the model can 
be constructed in different ways according to the number of hidden layers and neurons. 
There may be several hidden layers or only one. Although there is yet to be a 
straightforward method for determining the number of hidden layers, specific rules are 
considered. This number is increased according to the complexity of modelling between 
the input and output values of the study. For example, if the problem can be divided into 
stages, the number of hidden layers in the network should be increased. One, two or three 
hidden layers will provide sufficient results. 

The weights and bias values are continuously changed to obtain outputs corresponding to 
the inputs given to the ANN network. This process is called the training of the network. 
After the training of the ANN network, new inputs that have not previously been given to 
the network are supplied, and the outputs are tried to be obtained with an acceptable error. 
Although the training error is minimal, a high error between the actual results and the 
outputs of the ANN in response to the new inputs indicates that the network is memorising 
(over-fitting). 

The number of neurons in the hidden layer is one of the main parameters of the ANN 
model. Although there is no precise method for determining the number of neurons, it 
should be increased as the problem becomes more complex. The number of hidden layer 

12 IF steel 202.0 347.2 11.6 692 0.321 0.60 -0.165/0.541 0.309 
0.119/0.43

6 
[44] 

13 IF steel 224.0 344.3 12.8 706.0 0.350 1.60 -0.160/0.674 0.329 
0.156/0.53

0 
[44] 

14 
Ferriti

c SS 
428.0 561.0 16.9 870.4 0.184 1.00 -0.224/0.389 0.185 

0.296/0.47
7 

[30] 

15 TRIP 422.0 730.0 35.1 815.7 0.106 1.00 -0.177/0.471 0.260 
0.395/0.44

4 
[45] 

16 DP 269.0 496.0 27.2 583.2 0.124 1.50 -0.145/0.428 0.331 
0.404/0.47

6 
[45] 

17 IF 124.0 311.0 44.1 357.5 0.170 1.01 -0.323/0.699 0.396 
0.300/0.46

4 
[45] 

18 IF-HS 204.0 368.0 36.8 412.0 0.113 0.84 -0.265/0.578 0.325 
0.280/0.43

0 
[45] 

19 A0 290.0 598.0 38.6 681.65 0.137 0.82 -0.181/0.641 0.381 
0.183/0.42

0 
[45] 

20 A3 305.0 653.0 46.2 727.4 0.139 0.80 -0.182/0.553 0.363 
0.207/0.39

8 
[45] 

21 
ZStE 
180 
BH 

246.0 343.0 38.9 364.0 0.063 0.77 -0.271/0.599 0.294 
0.414/0.44

2 
[45] 

22 DP600 392.2 748.6 15.2 1067.2 0.192 1.20 -0.103/0.348 0.175 
0.290/0.36

3 
[31] 

23 DP800 450.7 866.7 12.7 1185.5 0.168 1.20 -0.097/0.290 0.145 
0.259/0.27

9 
[31] 

24 QP980 490.8 1173.4 16.1 1413.6 0.099 1.00 -0.121/0.384 0.224 
0.265/0.36

0 
[46] 

25 
JAY780

Y 
526.3 812.9 12.0 1226.4 0.136 1.00 -0.214/0.440 0.134 

0.279/0.29
0 

[47] 

26 QP980 828.0 1015.0 10.9 1420.0 0.106 1.60 -0.154/0.437 0.203 
0.358/0.40

2 
[48] 

27 
EDD 
steel 

202.0 337.0 44.0 677.0 0.304 1.00 -0.077/0.366 0.303 
0.099/0.37

7 
[49] 

28 DP980 654 1027 8.3 1401 0.09 1.4 -0.09/0.224 0.131 
0.282/0.36

4 
[50] 

29 DP600 340 587 19.2 963 0.184 1.5 -0.254/0.429 0.176 
0.342/0.37

6 
[51] 
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neurons in the network starts at a certain number and increases until the network 
provides sufficient generalisation. Too many neurons will reduce the network’s 
generalisation ability, and the network will begin to memorise. If the number of neurons is 
less than necessary, the ANN cannot accurately predict the output data. Therefore, the 
optimal number of neurons has to be found. 

In this study, an algorithm was developed in the ANN to determine the appropriate number 
of neurons. MATLAB 2017a was used for ANN modelling. In addition to the input and 
output data, the maximum and minimum numbers of neurons should be defined in the 
algorithm. After the normalisation of input and output data, the essential functions of the 
ANN network structure are determined. The following types of functions are used in the 
created network structures. 

• Network type: feed-forward and back-propagation 
• Training function: TRAINLM 
• Adoption learning function: LEARNGDM 
• Performance function: mean square error (MSE) 

In the algorithm developed, the maximum and minimum neuron numbers are entered 
according to the number of hidden layers selected. All the network structures that can be 
formed by the number of neurons in the network are trained. From the data set, 70%, 15% 
and 15% of the data were randomly selected for training, testing and validating, 
respectively, and then the network training began. Weights and bias values were randomly 
assigned for each network structure formed with different neuron numbers and trained 
for a determined number of iterations. Although the number of training iterations for the 
developed algorithm was 30, this number can be increased. This initial training is called 
the basic training of the network. Considering the MSE value from the primary network 
training, the optimum network structure was determined from the network structures 
formed between the maximum and minimum neuron numbers in the hidden layers. The 
network structure was created by selecting the number of neurons with the lowest MSE 
value among the trained networks. The algorithm gives the MSE values for all network 
trials and the regression (R) graphs of the optimum network structure. 

 

(a) 
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(b) 

Fig 5. ANN model (a) Flow chart of the algorithm, (b) Structure of the model 

The next step of the algorithm continues to train the network until it reaches the highest 
regression value in the specified network structure. During this training stage, the network 
structure is kept constant while training, testing, validation data pairs, weights and bias 
values are constantly changed. Thus, memorisation in the network is prevented. In the last 
step, the network structure with the highest regression value was recorded, and the 
training was terminated. The actual data and the outputs of the training results of the 
network are given graphically. Thus, the optimal network structure is determined by 
running a single algorithm for the number of layers and the neurons to be selected for each 
layer. The algorithm and network structure created for the ANN model is shown in Fig. 5a 
and 5b. 

All data used in this study were normalised. The activation functions used in an ANN could 
give false results if mixed negative and positive numbers or huge numbers are shown in 
the input and output layers. Normalisation is applied to the data to prevent these errors 
and increase the learning speed. The definition of normalisation is the limitation of data to 
a specific range, such as the range [-1,0] or [0,1]. The normalisation equation is; 

𝑋𝑛𝑒𝑤 =
(𝑋 − 𝑋𝑚𝑖𝑛)

(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)
(𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑 − 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑) + 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 (5) 

Xnew, Xmax and Xmin are the restricted, maximum, and smallest values, respectively. The 
upper and lower bound are the upper and lower values of the range to be restricted [52]. 
The mean square error was used as the performance function. This function gives the 
average square of the difference between the network results and its outputs [53]. The 
MSE function is; 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − 𝑧𝑖)

2

𝑁

𝑖=1

 
(6) 

Where yi is the ANN prediction, zi is the output value, and N is the number of outputs. 

System identification modelling was used to model the system with a MISO (multiple input, 
single output) model structure. Input and output parameters were arranged in the data 
sets and limited to [0.01–0.99] using Eq. 5. A total of 29 data pairs were used. In the 
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modelling process, 21 data sets were reserved for training, four for testing and four for 
verification. Each data sets have three outputs as 𝛽−, 𝛽+, FLC0. In this study, when the 
model selection is made, the regression value (R) of the network and the comparison 
graphs and MSE are taken into consideration because it is necessary to check the 
compatibility of the model with the system by using comparison graphs to determine 
whether the model is successful or not. The R values were calculated according to the 
formula in Eq. 7 [54]. 

𝑅 =
𝑛 ∑ 𝑥𝑖𝑦𝑖 − (∑ 𝑥𝑖)(∑ 𝑦𝑖)

√𝑛 ∑ 𝑥𝑖
2 − (∑ 𝑥𝑖)

2√𝑛 ∑ 𝑦𝑖
2 − (∑ 𝑦𝑖)

2
 (7) 

Here, xi is the targeted value found by experiments, and yi represents the output value of 
the network, in other words, the prediction. The R-value calculated with this formula 
depends on the number of specimens, the difference between the variables and the 
distribution of the variables. Another parameter for measuring network success is the 
percentage error. The formula used for percentage error is given in Eq. 8 [55]. Here, E is 
the percentage error, xi is the targeted value found by experiments, and yi represents the 
output value from the network. 

𝐸(%) =
1

𝑛
∑ (

|𝑥𝑖 − 𝑦𝑖|

𝑥𝑖
∙ 100)

𝑖

 (8) 

2.6 Sensitivity Analysis of the ANN 

Artificial neural networks (ANNs) are a powerful tool used in various engineering fields, 
especially for solving prediction, regression and classification problems. However, ANN is 
generally considered a black box where it is difficult to determine the effect of each input 
data on any output data [56]. Sensitivity analyses are performed to determine the model 
outputs' critical parameters and importance levels [57]. In the sensitivity analysis results, 
the network output changes according to the inputs and provides information about the 
more sensitive parameters that need to be measured more accurately [58].  

In the context of this research, understanding the influence of input parameters on the 
artificial neural network (ANN) model's outputs and the direction of correlations is 
paramount. Sensitivity analysis is a valuable tool that identifies the most influential 
parameters, offering several advantages. It allows for optimising predictions by 
emphasising precise data collection for critical parameters, ultimately enhancing the 
accuracy of predictions and decision-making. Additionally, sensitivity analysis streamlines 
experimentation efforts, conserving time and resources. Moreover, it enables potential 
model improvements, such as adjustments to the ANN architecture or incorporating 
additional data sources based on parameters showing strong correlations with the output. 

Comprehending the direction of correlations between input parameters and the model's 
output is equally significant. Positive correlations signify that increasing an input 
parameter leads to an increase in the output, emphasising the need to enhance or optimise 
such parameters. Conversely, negative correlations indicate that increasing an input 
parameter decreases output, suggesting the necessity to control or minimise the 
parameter for better predictions. Parameters with weak or no correlation may be re-
evaluated for inclusion in the model due to their limited impact on predictions. 

This understanding of correlation directions facilitates the interpretation of the system's 
behaviour, though it's crucial to remember that correlation does not imply causation. 
Establishing causal relationships may require additional analyses or domain expertise. In 
summary, sensitivity analysis and comprehending correlation directions empower the 
fine-tuning of the ANN model, inform efficient data collection, and enhance the precision 
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and reliability of predictions, particularly in predicting forming limit curves for sheet 
metals. 

A study on the results of comparisons of sensitivity analysis methods was made by Gevrey 
et al. [57]. The weight method, one of the methods examined in the study, can classify the 
inputs within itself and contribute to the output. This study examined the contributions of 
the input parameters to the FLC model created with ANN using the 'Weights' method 
sensitivity analysis. Garson [59] and Goh [60] proposed Weights' method. The percentages 
of influence of the input variable, Qik(%), on output value, indicating the importance of 
input variables, were determined by the following equation [61]: 

𝑄𝑖𝑘(%) =

∑ (
|𝑤𝑖𝑗|

∑ |𝑤𝑖𝑗|𝑚
𝑖=1

|𝑣𝑗𝑘|)𝑛
𝑗=1

∑ (∑ (
|𝑤𝑖𝑗|

∑ |𝑤𝑖𝑗|𝑚
𝑖=1

|𝑣𝑗𝑘|)𝑛
𝑗=1 )𝑚

𝑖=1

× 100 

(9) 

wij represents weights between the input neuron i (= 1, 2, …, m) and the hidden neuron j (= 
1, 2, …, n), and vjk represents the weights between the hidden neuron j and the output 
neuron k (= 1, 2, …, l). In this study, the input, hidden, and output neurons were 6, 15 and 
3, respectively. A more detailed example of this method can be found in Ref. [57]. 

2.7 Marciniak-Kuczynski (M-K) Model 

M-K model is another theoretical method to determine FLC. This model assumed that the 
material has an instability region which is rapidly deformed under load compared to the 
other areas of material (Fig. 6). The orientation of the instability region changes depending 
on the strain path assumed [62]. Force equilibrium for x and y direction, strain path, yield 
criteria and a constitutive relationship is assumed, and the strain increments in the safe 
and instability regions are predicted. If the strain increments of the instability region are 
ten times greater than the safe region, then it is assumed that the failure occurred.  

 

Fig. 6. Schematic sheet metal in Marciniak and Kuczynski model 

FLC can be created with different strain hardening rules in the M-K model. This study used 
the Hollomon strain-hardening rule (Eq. 10) and von Mises yield criterion (Eq. 11) to 
determine FLC theoretically. 

𝜎 = 𝐾 ∙ 𝜀𝑛 (10) 

𝜎̅ =
1

√2
√(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2 (11) 

The force equilibrium of regions A and B can be written in Eq. 12. Also, the strain 
increments in direction 2 are equal, as seen in Eq. 13.  
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Fig. 7 Flowchart of M-K model 

The force equilibrium can be written in terms of stress, strain and thickness as in Eq. 14. 
In this equation, f0 is the inhomogeneity coefficient; in other words, the ratio of tB to tA. Also, 
the thickness strain (3) can be calculated from the incompressibility principle. 

𝐹1𝐴 = 𝐹1𝐵 (12) 

𝑑𝜀2𝐴 = 𝑑𝜀2𝐵 (13) 

𝜎1𝐴 ∙ 𝑒𝑥𝑝(𝜀3𝐴) = 𝜎1𝐵 ∙ 𝑒𝑥𝑝(𝜀3𝐵) ∙ 𝑓0 (14) 

The ratio of effective stress to major stress is given in Eq. 15. As a result, Eq. 16 is obtained 
by substituting Eq. 11 and 15 in Eq. 14. 

𝜑 =
𝜎̅

𝜎1
 (15) 

1

𝜑𝐴
∙ 𝜀𝐴̅

𝑛 ∙ 𝑒𝑥𝑝(𝜀3𝐴) =
1

𝜑𝐵
∙ 𝜀𝐵̅

𝑛 ∙ 𝑒𝑥𝑝(𝜀3𝐵) ∙ 𝑓0 (16) 

No 
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No 
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In Eq. 16, although the left side can be calculated simply, the right side of the equilibrium 
should be calculated iteratively. The Newton-Raphson method was used to determine 
strain increment. At the beginning of the calculation, a constant stress ratio should be 
defined for the safe region. By the way, Eq. 16 is arranged iteratively to obtain Eq. 17. A 
flowchart of the algorithm to calculate FLC is given in Fig. 7. 

1

𝜑𝐴
∙ (𝜀𝑖̅𝐴 + ∆𝜀𝑖̅𝐴)𝑛 ∙ 𝑒𝑥𝑝(𝜀3𝐴) =

1

𝜑𝐵
∙ (𝜀𝑖̅𝐵 + ∆𝜀𝑖̅𝐵)𝑛 ∙ 𝑒𝑥𝑝(𝜀3𝐵) ∙ 𝑓0 (17) 

2.8 The Swift-Hill Model 

It has been proven that a good simulation of the forming limit strains can be given based 
on the Swift diffuse instability theory and the Hill localised instability theory [45,63]. In 
Swift-Hill theory, the FLC's left and right sides are calculated separately based on . The 
stress-strain relationship of sheets is expressed with Hollomon’s equation. For the left side 
of the FLC, 2 < 0, major and minor strain is given in Eq. 18 and Eq. 19 [45]. The strain 
hardening exponent, n and anisotropy coefficient, r, are constant material properties in 
these equations.  

𝜀1 =
1 + (1 − 𝛼) ∙ 𝑟

1 + 𝛼
∙ 𝑛 (18) 

𝜀2 =
𝛼 − (1 − 𝛼) ∙ 𝑟

1 + 𝛼
∙ 𝑛 (19) 

For the right side of FLC, 2 > 0, major and minor strains are calculated with Eq. 20 and 21. 

𝜀1 =
[1 + (1 − 𝛼) ∙ 𝑟] ∙ [1 −

2∙𝑟

1+𝑟
∙ 𝛼 + 𝛼2]

(1 + 𝛼) ∙ (1 + 𝑟) [1 −
1+4∙𝑟+2∙𝑟2

(1+𝑟)2 ∙ 𝛼 + 𝛼2]
∙ 𝑛 

(20) 

𝜀2 =
[(1 + 𝑟) ∙ 𝛼 − 𝑟] ∙ [1 −

2∙𝑟

1+𝑟
∙ 𝛼 + 𝛼2]

(1 + 𝛼) ∙ (1 + 𝑟) [1 −
1+4∙𝑟+2∙𝑟2

(1+𝑟)2 ∙ 𝛼 + 𝛼2]
∙ 𝑛 

(21) 

2.9 The NADDRG Model 

The North American Deep Drawing Research Group (NADDRG) suggests an empirical 
equation for predicting the FLC. The proposed formula enabled FLC to be quickly 
determined in press shops without complex experiments or theories such as M-K. 
According to this model, the FLC comprises two lines through the point 0 in the plane-
strain state. The slopes of the lines on the left and right sides of FLC are about 45° and 20° 
[63]. The thickness of the sheet should be thinner than the 3.175 mm. The equation for 
calculating the forming limit strain 0 in terms of engineering strain is given in Eq. 22. 

𝜀0 =
(23.3 + 14.13 ∙ 𝑡0) ∙ 𝑛

0.21
 (22) 

3. Results and Discussion 

3.1 Experimental FLD of steel sheet 

Major and minor strain measurements were taken from the fractured specimens. 
Measures taken from damaged ellipses are shown with a red dot in the graph and 
measurements taken from the undamaged ellipse closest to the damaged ellipse are shown 
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in green, as seen in Fig. 8. The left and right parts of the FLC were created separately. The 
lines are fitted to the left and right dots. The curve formed by connecting these two lines at 
the intersection points was accepted as the FLC. When the graph is examined, the FLC0 
value for DC01 was 0.294. Due to different friction conditions during the experiment, the 
FLC can shift to the right or the left. DC01 sheet reached 0.4 for uniaxial strain and 0.35 for 
biaxial strain. 

The FLCs of sheet metals may differ according to the metal type. In particular, the right side 
of the curve may exhibit a polynomial behaviour depending on the material type. For 
example, in the study of Wang et al. [64], the left side of the curve consists of a straight line, 
while the right side is polynomial. Another study by Mu et al. [65] similarly showed that 
the FLC exhibits a transition from necking to fracture in the biaxial stress region, so the 
curve in this region will be polynomial. The FLCs are valid for one particular material alloy, 
temper and gauge combination [12]. However, material properties vary from batch to 
batch due to production processes. Therefore, a single FLC cannot accurately describe the 
forming limit. Janssens et al. [66] have proposed a more general concept, the Forming Limit 
Band (FLB), as a region covering the entire dispersion of the Forming Limit Curves. This 
and similar studies show that forming limit diagrams for sheet metals with linear lines may 
not always give accurate results. 

On the other hand, it has also been accepted as two straight lines to simplify the FLC and 
enable its practical use [67,68]. In addition, FLCs obtained by the NDDRG empirical method 
consist of two lines on the left and right. This study assumes that the FLC consists of two 
lines to model the FLC with artificial neural networks. In this way, the FLC can be easily 
expressed by a point FLC0 and the slope of the two lines to the left and right of this point. 

 

Fig. 8. Forming limit diagram of DC01 

3.2 Artificial Neural Network Modelling Results 

Experimental studies in the literature for determining FLCs, critical in metal forming 
processes, were modelled with an ANN. The modelling results were compared with 
experimentally obtained FLC values. The FLCs were determined by performing out-of-
plane tests with the two steel sheets selected for the study. These FLCs were then 
compared with the ANN results. 

This ANN study, 29 data pairs were used, considering only steel materials. In the modelling 
process, six parameters were determined in the input layer, and three parameters were 
determined in the output layer (Fig. 5b). A minimum of 15 and a maximum of 25 neurons 
were selected in the model structure. A total of 121 combinations of neurons were tested 
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in the network. The optimum number of neurons was determined by considering the MSE 
values of the obtained network structures. In Fig. 9, MSE values obtained from the 
modelling results of the network structures created with all neuron combinations after 
basic network training are shown. The number of neurons in the network with the lowest 
MSE value was determined as 15-22, and this is marked with a red dot in Fig. 9. The R-
value obtained from the primary network training of the created network with the 
optimum neuron numbers is given in Fig. 10. The regression value, of approximately 
0.98603, is at an acceptable level. 

 

Fig. 9. MSE values of all combinations of neurons used in ANN layers 

 

Fig. 10. The R-value after basic network training in the network structure created with 
the optimum number of neurons 

The network structure was formed by determining the hidden layer and neuron numbers 
for ANN modelling. The next step of the algorithm is to re-train the network structure with 
optimal neuron numbers after basic network training to increase the generalisation of the 
network. After retraining the optimum network, the final R values were determined as 
0.99998 for training, 0.99994 for validation and 0.99976 for testing, as shown in Fig. 11. 
The overall R-value of the network was calculated as 0.99995.  
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Fig. 11. The R values of the algorithm in the final ANN modelling 

 

Fig. 12. Comparison of experimental results obtained from literature with ANN 
modelling outputs 

The proximity of the R values to 1 indicates the success of the network structure for the 
modelled system. Similarly, the proximity of the R values of randomly selected test and 
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verification data to 1 reveals the consistency of the network.One of the most critical 
problems in ANN modelling is misleading results from the network due to memorisation. 
To overcome this problem, the experimentally obtained output data should be compared 
with the predicted output values resulting from modelling. Fig. 12 shows a graph 
comparing the output data with the predicted output data. The input data number (tag) 
given to the ANN is shown on the horizontal axis, and the input data value is shown on the 
vertical axis. The outputs and ANN predictions are highly consistent. 

3.3 Contributions of input to the ANN predict 

In the study, most of the selected parameters can be determined by tensile testing. Sheet 
thickness can be easily measured with a calliper. It is possible to get more consistent 
results as the number of inputs in artificial neural networks increases [69]. For this reason, 
six different material properties that can introduce the material were selected as input. In 
this section, the Weights Method determined the effect of the selected inputs on the 
outputs. The effects of the input parameters on the output are given in Figure 13. 
Accordingly, the most effective parameters on the output are UTS and n parameters, 
respectively. An inverse correlation between UTS and FLC0 was reported by Belck et al. 
[45]. A linear correlation between FLC0 and n is reported by Keeler and Brazier [70]. The 
formability also improves with increasing n [12,71,72]. On the other hand, the strength 
coefficient has the most negligible effect on the outputs, with 11.16%. 

Paul grouped the material properties and estimated the FLC by choosing at least one 
element from each group [19]. Similar to this study, the inputs can be divided into three 
categories.  These categories can be called experimental properties (YS, UTS and 
elongation), theoretical model coefficients (K and n), and sheet thickness (t). When 
evaluated as a group, the experimental properties are affected by 53.11%, the theoretical 
model coefficients by 31.61%, and the sheet thickness by 15.28%, respectively. Here, 
further studies can be made on whether the network's success can be increased by 
removing weak parameters such as K. In addition, by using different methods, it can be 
revealed how the inputs affect the outputs. 

 

Fig. 13. The contributions of input on the ANN output 

3.4 Comparison of experimental FLC with ANN predict 

In this study, the network created was trained with the given data and success was 
achieved with R = 0.99995. The network was asked to predict the FLC from the mechanical 
properties of the steel sheet. The results of the trained network for DC01 are shown in Fig. 
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14 compared with experimental FLC. The network predicts only the FLC0 point of the FLC 
and the slopes of the right and left sides connected to this point. The error between the 
experimental and predicted FLC had been calculated using Eq. 23. 

𝑒𝑟𝑟𝑜𝑟 =
𝜀1,   𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 − 𝜀1,𝑒𝑥𝑝.

𝜀1,𝑒𝑥𝑝.
𝑥100% (23) 

 

Fig. 14. Comparison of experimental FLC and ANN predictions for DC01 

According to this equation, the difference in the FLC0 point between ANN and the 
experimental result is 3.4% for DC01. In Fig. 14, the predicted and experimental results 
differ by only 8.5% for the left side and 4.0% for the right side on average over the whole 
strain region. The FLC does not give an accurate result when expressed by a single curve 
because, after the experiments, variables such as the region where the deformation is 
measured (fractured, necking or near to the necking), the marker size, and the resolution 
of the measurement system can change the sensitivity of the FLC. In addition, the diameter 
and geometry of the punch used in the test and the friction during the test may cause the 
FLC to shift slightly up or down. Considering all of these factors, accepting the FLC as a 
band gives more accurate results in terms of application. Therefore, although there are 
some differences in the predictions made with the ANN, these differences remain 
acceptable. 

3.5 Comparison Between the Experimental, Empirical and Theoretical FLCs 

This section gives theoretical, empirical, and experimental FLC for the DC01 sheet (Fig. 15). 
When the graphs are examined, it is seen that the results obtained with the M-K and Swift-
Hill theoretical models are far from the experimental results. Although the curves obtained 
by NADDRG and ANN methods were slightly above the experimental curve, they were 
closer than the theoretical models. M-K and Swift-Hill theoretical models were below and 
further from the experimental curve. According to Eq. 23, when the average error between 
the theoretical and empirical curves is calculated along with all the minor strain values, it 
is seen that the ANN model gives the closest result with an average error of 10.28%. On the 
other hand, it is seen that the curve created with NADDRG makes a close estimation for the 
DC01 sheet with an average error of 15.63%. 

Closer results can be obtained using different strain-hardening models and assumptions 
within the theoretical model. The sheets are assumed to be isotropic in the theoretical 
models used in this study. In addition, it is assumed that the groove, accepted on the sheet 
in the M-K criterion, is always perpendicular to the major stress. However, considering the 
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theoretical and empirical models, the results obtained with the ANN are compatible with 
the experimental results.  

 

Fig. 15. The theoretical, empirical and experimental FLC of DC01 

The significant difference between the theoretical models is due to the strain-hardening 
models and yield criteria selected for the material. Theoretical FLC is significantly 
influenced by strain-hardening models and yield criteria [73]. A model that gives accurate 
results for one material may produce inconsistent results for a different material. On the 
other hand, although the flow rule can very well represent the stress-strain relationships 
in uniaxial tensile materials, the theoretical predictions show significant deviations from 
the experimental FLD. A suitable calculation method depends on understanding materials' 
flow behaviour, assumptions for instability criteria, and perhaps other material properties 
and experimental factors [63]. 

3.6 Comparison between the theoretical, empirical and experimental FLC0 
values 

A comparative bar graph of theoretical, empirical and experimental FLC0 values is given in 
Fig. 16. The FLC0 is the value that expresses the formability of the sheet in the case of plane 
strain and shows the lowest point of the FLC. The FLC0 value is vital since crack formation 
and damage to the material in cold-forming processes usually occur under a plane strain 
state. When Fig. 16 is examined, it is seen that ANN and the NADDRG estimate the FLC0 
value for DC01 steel with an error of 3.4% and 2.3%, respectively. It is known that the 
NADDRG empirical relation gives accurate results for sheets in the deep drawing group. 
Other close estimates belong to the M-K and Swift-Hill theoretical models, with 21.3% and 
29.2% errors, respectively. When evaluated in general, it is seen that the estimation made 
with ANN gives correct results like NADDRG. Compared to other methods, FLC estimation 
with ANN is simple and fast to be used practically in press shops if the database is 
expanded. 
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Fig. 16. Comparison between the theoretical, empirical and experimental FLC0 values 
for DC01 

4. Conclusions 

This study demonstrated the effectiveness of an artificial neural network (ANN) model in 
predicting forming limit diagrams (FLDs) for sheet metals, particularly in the automotive 
industry. Material properties essential for this study, including sheet thickness, yield 
strength, ultimate tensile strength, uniform elongation, hardening exponent, and strength 
coefficient, were gathered and employed as inputs for the ANN model. 

The key findings of this study encompass the following aspects: 

• An exact ANN model with a 6-15-22-3 structure was successfully developed, 
yielding an R-value of 0.99995. This level of predictive accuracy holds significant 
implications, particularly within the automotive manufacturing domain. 

• This research holds substantial practical implications, particularly for the 
automotive industry, which relies on accurate FLDs to ensure the quality and 
manufacturability of sheet metal components. With its rapid and reliable FLD 
predictions, the ANN model has the potential to optimise manufacturing 
processes, reduce material wastage, and enhance product quality. 

• The accuracy of FLD predictions directly impacts manufacturing efficiency. Minor 
deviations in FLDs can result in significant defects or inefficiencies during 
production. Notably, the ANN model's capability to predict FLDs with a mere 3.4% 
difference from the FLD0 value highlights its potential to enhance manufacturing 
efficiency within the automotive sector. The difference between ANN predictions 
and experimental results may be acceptable for some non-critical automotive 
components but may fall short of industry requirements for safety-critical parts. 
It underscores the importance of ongoing research and development to improve 
predictive models to ensure the safety and reliability of automotive products. 

• This study paves the way for future research and applications. While the current 
focus is on steel materials, the ANN model's applicability can be extended to 
various materials, widening its utility in the manufacturing sector. Subsequent 
research endeavours can explore the model's performance with different 
materials and further refine its capabilities. 
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• In summary, this research introduces a robust and efficient method for predicting 
FLDs, promising to revolutionise the automotive industry's quality control and 
manufacturing processes. The ANN model's exceptional accuracy in estimating 
FLDs opens avenues to enhance manufacturing efficiency and ensure product 
quality. As the model continues evolving and broadening its applicability to 
diverse materials, it will be pivotal in advancing automotive manufacturing 
processes. Beyond the automotive industry, the implications of this research 
extend to various sectors where sheet metal forming is a critical manufacturing 
process, heralding a new era of accuracy and efficiency in sheet metal forming and 
quality control. In future works, to improve the model accuracy, the input size can 
be widened, and ANN can estimate the polynomial curve of the FLD. 
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