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 This review article explores the use of carbon nanotubes (CNTs) as material 
enhancers in construction and their advantages. It emphasizes ongoing research 
to gather accurate data on CNT-enhanced material properties and their role in 
creating more efficient and stronger building materials. The various methods of 
obtaining and incorporating CNTs into building materials, including chemical 
vapor deposition and electric arc synthesis, are discussed. A comparative 
analysis of building materials with and without CNTs is presented to examine 
their characteristics. The article also discusses future prospects for CNTs in 
various industries. The study aims to investigate experimental methods for 
obtaining CNTs, their properties, and their introduction into building materials. 
The research methodology involves studying literature sources, analyzing 
experimental results, and examining the structural, mechanical, and electronic 
properties of CNTs. Analytical methods based on scientific articles and 
publications related to CNTs in construction were used to ensure the article's 
reliability, validity, completeness, and objectivity. The research highlights CNTs' 
potential as material enhancers in construction, owing to their unique 
mechanical properties, such as high strength, stiffness, and corrosion resistance. 
Specific studies demonstrating the use of CNTs to increase the strength of 
concrete and other construction materials are provided, indicating the 
promising application of CNTs in future construction projects. However, 
technical challenges must be addressed, and appropriate standards and 
regulations should be developed before practical implementation. 
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1. Introduction 

The global construction industry is undergoing a paradigm shift as sustainability takes center 
stage in the pursuit of a greener and more environmentally conscious future [1]. Traditional 
construction materials like concrete and steel have long been essential for infrastructure 
development but contribute to environmental issues due to their carbon emissions and 
resource depletion [2,3]. To address sustainability concerns, carbon nanotubes (CNTs) have 
emerged as a groundbreaking alternative [4]. CNTs are microscopic cylindrical structures 
composed of carbon atoms, offering extraordinary mechanical, electrical, and thermal 
properties [5]. They are exceptionally strong yet lightweight, allowing for efficient load 
distribution and enhanced durability [6]. Integrating CNTs in construction materials provides 
several advantages. Their use significantly reduces the carbon footprint, as they enhance 
structural integrity and require less material, lowering energy consumption and greenhouse 
gas emissions during production and transportation [7,8]. CNTs also enable the development 
of self-sensing and self-healing materials, allowing real-time monitoring of structural health 
and microcrack repair, extending material lifespan, and reducing maintenance needs [9]. 
Furthermore, CNTs offer opportunities for energy-efficient infrastructure through enhanced 
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electrical conductivity for energy storage systems and smart grid technologies, and thermal 
conductivity for insulation materials, optimizing energy consumption in buildings [10,11]. 

While CNTs show immense promise, challenges like large-scale production, cost-
effectiveness, and environmental risks must be addressed [12]. Continued research and 
collaboration between academia, industry, and policymakers are essential to unlock their full 
potential and pave the way for a sustainable future. 

The unique properties of CNTs extend beyond construction, finding applications in various 
industries to improve material strength, deformability, and durability [13,14]. Their 
integration into construction materials creates new composites with enhanced 
characteristics, such as increased strength and reduced shrinkage in concrete. Functional 
coatings with properties like waterproofing, fire resistance, and corrosion protection can 
improve the quality and lifespan of construction materials [15,16]. The literature highlights 
the extensive research into CNTs in construction, showcasing their potential to revolutionize 
the field and create materials and structures with improved properties and efficiency. 
Nanotechnology, including CNTs, has opened exciting possibilities for the construction 
industry, enabling the development of innovative materials and structures [17,18]. Numerous 
review articles delve deeply into specific directions. For instance, Norizan et al. [19] provides 
a comprehensive review of existing research and introduces novel findings on the 
functionalization of carbon nanotubes to enhance their sensitivity and selectivity in detecting 
various chemical compounds. This advancement holds potential applications in diverse fields, 
including medicine, environment, and industry. The article highlights the significant role of 
carbon nanotubes as chemical sensors, emphasizing that functionalization can significantly 
enhance their performance and detection efficiency. 

Garg et al. [20] explores the utilization of carbon nanotubes as strengthening agents in 
composite materials. The authors examine various methods for obtaining and evaluating 
carbon nanotubes, as well as their application in composite materials to enhance mechanical 
properties. The article discusses the potential advantages and limitations of integrating 
carbon nanotubes into composite materials. 

Similarly, Anzar et al. [21] offers an overview of the diverse applications of carbon nanotubes 
in biomedicine. This encompasses their use as nanovectors for drug delivery, materials for 
tissue engineering, biomarkers, and various other applications. Fiyadh et al. [22] review 
different adsorption methods, investigate the mechanisms of interaction between carbon 
nanotubes and heavy metals, and provide an overview of parameters influencing adsorption 
efficiency, such as nanotube size, shape, pH of the medium and metal concentration. They 
further explore the application of carbon nanotubes in removing heavy metals from water 
solutions, soil, and wastewater. 

Sajid et al. [23] present an overview of various applications of carbon nanotube-based 
adsorbents in water purification, including the removal of organic and inorganic pollutants, 
heavy metals, pharmaceuticals, and other harmful substances. The article discusses the 
interaction mechanisms between carbon nanotubes and water pollutants, encompassing 
adsorption and ion exchange processes. 

The impact of carbon nanotubes on concrete properties is also examined in [24]. The review 
summarizes existing research on the use of carbon nanotubes in concrete and their influence 
on its mechanical and physicochemical properties. Various methods of incorporating carbon 
nanotubes into the concrete matrix, such as mixing, spraying, and modified nanotube 
application, are discussed, along with the effects on strength, elasticity, fracture resistance, 
and other mechanical properties of concrete. 

Franklin et al. [25] primarily focuses on the assembly and modification techniques of carbon 
nanotube transistors, as well as the underlying principles of their electronic performance. The 
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authors also address issues related to enhancing the efficiency and stability of carbon 
nanotube transistors. Additionally, the article presents examples of their applications in 
diverse fields, including electronics.  

Alsubaie et al. [26] explores the vibration response of functionally graded carbon nanotube-
reinforced composite (CNTRC) beams using a higher-order shear deformation beam theory. 
The beams are reinforced with single-walled carbon nanotubes in a polymer matrix and 
supported by a viscoelastic foundation. Various reinforcement distribution patterns and 
porosity distributions are considered. The study incorporates damping coefficient, Winkler's, 
and Pasternak's parameters to analyze viscosity effects on the foundation. Results indicate 
that adding a damping coefficient enhances vibration performance, especially with increased 
spring constant factors. The fundamental frequency rises with higher porosity coefficients, 
suggesting a significant impact of porosity on beam vibrational characteristics [26]. 

Madenci et al. [27] investigates the application of carbon nanotubes (CNTs) in strengthening 
polymer matrix composites through experimental tensile testing and fabrication of carbon 
nanotube reinforced composite (CNTRC) beams. The study explores various micromechanical 
models to optimize the mechanical properties of CNTRC materials. The research concludes 
that the optimal CNT amount for reinforcing composite beams is 0.3%, as higher 
concentrations lead to reduced tensile capacity. A comparison between experimental results 
and Finite Element Models using ABAQUS demonstrates good conformance. The study also 
evaluates Young's Moduli using the prediction models Halpin-Tsai and Mixture-Rule, 
revealing accurate predictions by Halpin-Tsai and significantly lower accuracy with Mixture-
Rule [27]. 

Zhang et al. [28] investigates the wave propagation behavior of carbon nanotube reinforced 
composite (CNTRC) beams on an elastic foundation, employing various higher order shear 
deformation beam theories such as Euler and Timoshenko theories. Wave equations for 
CNTRC beams are derived using the Euler-Lagrange principle, and the relationship between 
wave number and circular frequency is established through the eigenvalue method. Phase and 
group velocities are determined as functions of wave number, and material properties of 
CNTRC beams are estimated using the mixture rule. Comparative analysis with Euler and 
Timoshenko beam theories is conducted to validate findings. The mathematical model is 
numerically verified against existing results, and the study explores the impact of CNT 
enhancement modes, volume fraction, spring factor, and other factors on CNTRC beam wave 
propagation behaviors [28]. 

Mangalasseri et al. [29] delves into the energy harvesting properties of a magneto-electro-
elastic cantilever beam enhanced with carbon nanotubes (CNT) during transverse vibration. 
Employing a lumped parameter model to mathematically represent the coupled multiphysics 
problem, the study explores the impact of factors like CNT distribution, substrate material, 
and length-to-thickness ratio on energy harvesting behavior. The research aims to enhance 
comprehension of smart material-based energy harvesting systems, specifically those 
reinforced with CNT, offering potential implications for the design and analysis of CNT-based 
smart structures [29]. 

Arshid et al. [30] explores the vibration analysis of functionally graded microplates with 
polymeric nanocomposite patches, incorporating porosity and hygrothermal effects. The 
microplates feature three layers, including an FG porous core and piezoelectric 
nanocomposite face sheets with stiffness-enhancing CNTs. Using a quasi-3D shear 
deformation theory and modified couple stress theory, the equations of motion are derived. 
Figure-presented results allow assessment of material properties, geometry, foundation 
moduli, and hygrothermal effects on vibrational behavior. Findings indicate that increasing 
CNT volume fraction improves mechanical properties, subsequently raising natural 
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frequency. Notably, the study emphasizes the substantial impact of accounting for the 
hygrothermal environment in analyzing these structures [30]. 

Huang et al. [31] introduces a size-dependent model for analyzing the static stability of doubly 
curved micro-panels made of advanced composites reinforced with carbon-based materials. 
The research combines a seven-unknown shear deformation theory in curvilinear coordinates 
with a non-classical approach to assess the mechanical performance of micro-size shells 
accurately. Utilizing a virtual work of Hamilton statement and an analytical technique based 
on double-Fourier series, the study analyzes micro shells with fully simply supported 
conditions at edges. Results show that CNTs reinforced composite curved shells exhibit a 
hardening response under buckling, with the critical buckling load highest for spherical 
panels, followed by elliptical, cylindrical, and hyperbolic panels. Moreover, changes in CNTs 
weight fraction significantly impact the static stability characteristics of CNTs reinforced 
composite curved size-dependent shells [31]. 

Heidari et al. [32] addresses the need to enhance the realism of engineering models for 
nanocomposites, critiquing past studies that assumed idealized properties of carbon 
nanotubes (CNTs). The study focuses on incorporating real-world complexities like nanotube 
waviness, defects, and aggregation observed in experiments. It introduces size effects into 
nanocomposite models, validating their accuracy through comparisons with experimental 
data and theoretical models. The article presents numerical examples illustrating buckling 
behaviors of nanocomposites, emphasizing the application of nonlocal theory to account for 
size effects. Overall, it is the first comprehensive exploration of these aspects, providing a 
crucial reference for future research in nanocomposite materials [32]. 

Undertaking a comprehensive review in the field of carbon nanotube applications within 
building materials is justified by several compelling reasons. First, it offers a methodical 
framework for gathering and comparing data from a myriad of sources. This systematic 
approach enhances comprehension by researchers and engineers as they navigate the wealth 
of available information. Second, the review serves as a spotlight on the pivotal challenges 
confronted by those working with carbon nanotubes in building materials. Through this 
scrutiny, critical obstacles come to the fore, pinpointing areas ripe for further exploration and 
unveiling the realm's untapped potential. 

Furthermore, this review becomes a tapestry that weaves together diverse data from research 
articles, patents, and technical reports. This comprehensive mosaic fosters a panoramic 
understanding while circumventing potential distortions from cherry-picked examples. 

Despite the extensive research into carbon nanotubes, there are a number of gaps in this area. 
The first shortcoming is the lack of wider comparative research comparing the properties of 
many building materials with and without CNTs. This limits the ability to make an objective 
comparison and identify clear benefits of using CNTs in construction. Therefore, more detailed 
studies based on comparative analysis can be a valuable contribution to the field. In addition, 
a more detailed discussion of the technical issues and challenges associated with the 
industrial scaling up of CNT production and its economic feasibility is essential for the 
practical introduction of CNTs in the construction industry and requires further research and 
development. In light of the above, this study also aims to fill knowledge gaps and present new 
results related to the use of CNTs in construction. This review can also provide 
recommendations on how to overcome current technical and environmental challenges to 
ensure a more sustainable and efficient use of CNTs in the construction industry. 

This review also covers all aspects of CNT properties and their impact on construction 
materials, allowing us to assess the full potential of CNTs and their applicability in various 
construction industries. Additionally, previous studies may be limited in their methodology 
and scope. Some may be based on a small sample of data or use outdated data analysis 
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methods and tools. This paper improves the methodological approach using modern data 
analysis tools and a wide range of literature sources to obtain more comprehensive and 
reliable results. 

The practical significance of this review article lies in its ability to systematically inform 
interested industries and to move towards a more sustainable future by exploring the 
potential use of CNTs as material amplifiers. The article highlights the problems that need to 
be solved before practical implementation and gives an idea of current research in this area. 

2. Methodology 

This section provides a comprehensive outline of the study's methodology. It begins with the 
careful formulation of research goals and objectives. A thorough search of scientific literature 
is conducted using Scopus and Google Scholar databases to gather a wide range of relevant 
works. The collected data undergo meticulous analysis using Python and VOSviewer software. 
Python is employed for data processing, statistical analyses, and result visualization, while 
VOSviewer aids in creating a visual representation of the literature landscape, highlighting 
key themes and authors. The study then delves into diverse methods for carbon nanotube 
production, including CVD, electrochemical deposition, and mechanical stretching, alongside 
insights from illustrative studies. Catalysts for CVD are scrutinized for their impact on 
nanotube formation. Strategies for integrating carbon nanotubes into building materials are 
explored, covering blending, coating, and functionalized nanotube incorporation, with a focus 
on enhanced properties. The research tasks encompass defining goals, selecting methods, 
investigating nanotube properties, and processing results. This culminates in drawing 
meaningful conclusions from the accumulated data and comparative analyses. The following 
steps outline the methodological process (Fig 1) : 

2.1. Literature Search  

A thorough literature search was conducted using two primary databases : the Scopus 
bibliographic and abstract database and the Google Scholar search engine. The search was 
performed by employing a combination of relevant keywords and phrases related to the 
research topic. The selected keywords were carefully chosen to ensure a comprehensive 
coverage of the relevant literature. 

2.2. Data Extraction  

After obtaining the search results, data from the Scopus database was downloaded in the RIS 
format (Research Information Systems) to facilitate further analysis. The RIS format is widely 
used for bibliographic data exchange and is compatible with various data analysis tools. 

2.3. Data Analysis in Python  

Data analysis was performed using the Python programming language, leveraging its 
powerful libraries for data manipulation and analysis. The bibliographic data downloaded in 
the RIS format was processed and cleaned to ensure the accuracy and consistency of the 
dataset. Python's data analysis libraries, such as Pandas and NumPy, were utilized for data 
cleaning, transformation, and preparation. 

2.4. VOSviewer Analysis 

In addition to the Python-based data analysis, the data was also imported into VOSviewer, a 
powerful bibliometric analysis software. VOSviewer allowed us to create visual 
representations of the co-occurrence of keywords, authors, and publications within the 
dataset. This analysis provided valuable insights into the most prominent research themes, 
patterns, and interconnections among different concepts. 
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2.5. Integration of Results 

The findings from both the Python-based data analysis and the VOSviewer analysis were 
integrated to create a comprehensive picture of the literature landscape related to the 
research topic. The combined results enabled us to identify key research trends, influential 
authors, and significant clusters of related publications. 

2.6. Interpretation and Discussion 

The interpreted results from the data analysis were discussed in the context of the research 
objectives and existing literature. The implications of the findings were critically analyzed to 
draw meaningful conclusions and identify potential areas for future research. 

By adopting this methodological approach, the study aimed to ensure a robust and systematic 
exploration of the existing literature and provide a solid foundation for the subsequent stages 
of analysis and discussion. 

Setting goals and 
objectives

Literature search

Scopus database
Google Scholar 
search engine

Data
Data Analysis in 

Python

Data analysis in 
VOSviewer

Methods of CNT 
production

Catalysts for CVD

Methods of 
introducing CNT 

into building 
materials

Properties of 
building materials 

reinforced with CNT

 
Fig. 1. Methodology flowcharte 

3. Results and Discussion 

3.1 CNTs Analysis in Research Literature: 2019-2023 

To gather relevant information, a literature search was conducted using the Scopus 
bibliographic and abstract database, as well as the Google Scholar search engine. The search 
results were visualized using the VOSviewer software, which facilitated the analysis of 
keywords found in the publications. The data covered a significant number of articles for 
2019-2023: a total of 57,633 articles were found. Of these, 11,816 articles for 2019 were used 
in visualization and analytics, 20,000 articles (due to the fact that Scopus database allows you 
to upload no more than 20,000 results to one file at a time) for 2020 (a total of 23,520 articles 
were found in 2020), 20,000 articles for 2021 year (23,580 articles were found), 20,000 

        Flow of operations 
         Stream of messages 
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articles for 2022 (24,490 articles were found) and 20,000 articles for 2023 (22,237 articles 
were found). This comprehensive study of research articles highlights the growing interest 
and importance of carbon nanotubes in various fields, including construction. 

Figure 2 illustrates the distribution of frequently encountered keywords in publications over 
time. These keywords include nanocomposites, single-walled CNTs, polymers, 
supercapacitors, heat resistance, tensile strength, and other relevant terms. On the other 
hand, Figure 3 presents the clustering results of the same search query. 

 

Fig. 2. Search results for "carbon nanotubes" in Scopus 

 

Fig. 3. Results of the "carbon nanotubes" search query in Scopus by cluster 
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A set of articles published between 2019 and 2023 related to the query "carbon nanotubes" 
was extracted. Subsequently, an analysis was conducted using Python scripts, and the Pandas 
and Matplotlib libraries were employed to process and visualize the data. 

 

Fig. 4. Results of keyword analysis by articles 

Figure 4 depicts the distribution of the 25 most frequent keywords in the articles, categorized 
by year (Fig 4). The results presented in Figure 4 were generated by excluding certain words 
from the search, namely "Review", "Article", "Priority journal", "Controlled study", 
"Graphene”, “Carbon nanotubes",  "Nanotechnology", and "Nanoparticle". These words were 
excluded due to their high frequency and tendency to appear in nearly all articles. Conversely, 
Figure 6 showcases a histogram containing all keywords, including the highly frequent ones, 
presenting the grouping of the 15 most frequent keywords by publication year. 

 

Fig. 5. Number of articles by year 

Figure 5 shows a histogram of the total number of publications for the query "carbon 
nanotubes" in the Scopus database. As can be seen in Figure 5, the number of articles for this 
query peaks in 2022. The number of articles shows a decrease in 2023. This decrease in 2023 
can be explained by the fact that the data only cover the period up to September 2023, which 
is not the full year of data collection.  
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Fig. 6. The most high-frequency keywords 

Using the Jupyter Notebook web development tool and the Word Cloud library, word clouds 
were generated to visualize the search results. The word cloud of frequently encountered 
words in the abstracts of review articles is displayed in Figure 7a, while Figure 7b presents 
the word cloud of high-frequency keywords. A cloud of words frequently found in the 
abstracts of all reviewed articles is shown in Figure 8a, and a cloud of high-frequency 
keywords is shown in Figure 8b. These visual representations offer an intuitive means to 
observe the prominence and relevance of various words within the search results. 

  

Fig. 7. Word cloud (a) abstracts of review articles, (b) keywords 

  

Fig. 7. Word cloud (a) abstracts of all articles, (b) keywords 

3.2 Methods of CNT production 

CNT production methods encompass various techniques used to create carbon-based 
nanotubes. Among them, the most common methods include hydrocarbon pyrolysis, laser 
ablation of graphite, electric arc synthesis, and chemical vapor deposition (CVD).  

A B 

A B 
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Hydrocarbon pyrolysis involves decomposing hydrocarbons into carbon and other 
byproducts to produce CNTs [33, 34]. This method is extensively utilized for large-scale CNT 
production. Pyrolysis of hydrocarbons, also known as pyrogenic synthesis, entails the 
decomposition of organic compounds into carbon, hydrogen, and oxygen at high 
temperatures. It is a widely employed approach for producing carbon nanomaterials like 
carbon nanotubes, fullerenes, and graphene. 

Special equipment called a pyrolysis unit (Fig.8) is employed for the pyrolytic synthesis of 
hydrocarbons. The unit consists of a reaction chamber where the synthesis occurs and a gas 
supply system. To prevent contamination of nanomaterials, the reaction chamber is typically 
made of stainless steel or ceramics. The pyrolytic synthesis process initiates by heating the 
hydrocarbons to temperatures exceeding 700°C. At this temperature, the hydrocarbons 
decompose into carbon, hydrogen, and various gases. The carbon remains in the form of 
nanoparticles that subsequently aggregate. 

One notable advantage of pyrolytic synthesis is its capability to produce carbon nanomaterials 
with high purity and uniformity. Furthermore, this method allows for control over the size 
and shape of the resulting nanomaterials. However, pyrolytic synthesis does have some 
drawbacks, such as high equipment costs and energy consumption. Additionally, the 
hydrocarbon pyrolysis method may not be suitable for producing all types of CNTs and may 
be limited in cases where specific properties are desired (e.g. high electrical conductivity or 
resistance to oxidation). 

 

Fig. 8. Schematic diagram of a horizontal batch rector for pyrolysis of carbon-bearing 
gases [35] 

Laser ablation of graphite involves the use of powerful laser radiation to evaporate and 
subsequently condense graphite in a vacuum (Figure 9). This process breaks down graphite 
crystals into individual carbon atoms, which then assemble into nanoparticles [36, 37]. 

Laser ablation of graphite is capable of producing ultra-dispersed carbon nanostructures, 
including carbon nanotubes, carbon nanofibers, carbon nanoribbons, and more. These 
nanomaterials possess unique properties such as high electrical conductivity and mechanical 
strength, making them highly promising for diverse applications. Additionally, laser ablation 
of graphite is an environmentally friendly method as it does not require the use of chemicals 
or high temperatures, thus making it attractive for industries like automotive, aviation, and 
space. 

However, one of the main challenges associated with laser ablation is the difficulty in 
controlling the process of obtaining carbon nanostructures. The high temperature and 
pressure generated during ablation make it challenging to precisely control the size and shape 
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of the resulting nanoparticles. This variability can impact the properties and application of the 
nanotubes. Another drawback is the high cost of laser ablation equipment and materials. This 
method necessitates expensive laser equipment and specialized materials like graphite. 
Moreover, the ablation process itself is time-consuming and energy-intensive. Low 
productivity can also be considered a disadvantage of laser ablation. While this method 
produces carbon nanostructures with a high degree of purity and uniformity, it may be less 
efficient compared to other nanoparticle production methods. 

 

Fig. 9. Schematic diagram of a machine for CNT production by laser ablation [35] 

In a study conducted by the authors [38], they successfully synthesized graphene sheets in 
two stages at room temperature and normal pressure. The process involved laser ablation of 
graphite, followed by repeated irradiation of suspensions after removing the graphite target. 
X-ray analysis confirmed the production of different carbon materials. 

Several factors influence the synthesis of carbon nanotubes through laser ablation, including 
temperature, catalyst selection, choice of inert gas, laser power, wavelength, pressure, and 
fluid dynamics near the carbon target [39]. These parameters must be carefully controlled 
during the synthesis of CNTs. 

Electric arc synthesis is another method utilized for producing CNTs. This technique involves 
the use of an electric arc to heat and melt a metal catalyst such as graphite or nickel (Fig.10). 
The molten metal is then cooled and crystallized, resulting in the formation of nanotubes. 
During the synthesis process, the nanotubes emerge from the catalyst and are collected in 
bundles, which can be subsequently cleaned and shaped to the desired size and form. The 
main advantages of electric arc synthesis for CNTs are its simplicity, speed, and controllability. 
Additionally, this method does not require the use of expensive catalysts, thereby reducing 
production costs. 

Electric arc synthesis offers a versatile approach for producing various carbon nanomaterials, 
including carbon nanotubes and carbon nanoparticles, with diverse sizes and shapes. Despite 
its drawbacks such as high energy consumption and low yield, it remains a widely employed 
method in scientific and industrial fields involved in the synthesis and application of carbon 
nanomaterials [40, 41]. 

Chemical vapor deposition (CVD) is one of the most prevalent methods for producing carbon 
nanotubes [43, 43]. It enables the synthesis of large-diameter and high-purity CNTs. CVD 
involves the decomposition and condensation of organic compounds in the gas phase onto a 
catalyst surface at high temperatures. 
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Fig. 10Schematic diagram of a plant for producing CNT by electric arc synthesis [35] 

In CVD, specialized reactors are employed where high temperatures (typically ranging from 
700 to 1,000 degrees Celsius) and pressures are maintained (Figure 11). The reactor is filled 
with a gas mixture comprising a reagent (e.g., benzene or acetylene) and a catalyst (commonly 
graphite or nickel). At elevated temperatures, the reagent decomposes into gaseous products, 
which subsequently condense on the catalyst's surface. This process leads to the formation of 
nanotubes that accumulate on the surface and continue to grow until they reach a specific 
diameter. 

 

Fig. 11 Chemical vapor deposition (CVD) method [44] 

Chemical vapor deposition (CVD) is not only utilized for producing carbon nanotubes but also 
for other types of carbon nanomaterials, including amorphous carbon and carbon 
nanoparticles. The method offers the advantage of controlling the size and shape of the 
resulting structures by adjusting process parameters such as temperature, pressure, and gas 
mixture composition. CVD is capable of generating nanotubes with varying diameters and 
shapes, making it a versatile technique for numerous applications. 

CVD finds applications in various fields, including microelectronics. In microelectronics, CVD 
is employed for producing integrated circuits and other electronic devices. The method of CVD 
offers several advantages: 

Precise control: CVD allows for meticulous control over the size and shape of nanomaterials 
through precise adjustment of process parameters. 

High purity: CVD produces nanomaterials with high purity and low impurity concentrations 
due to its robust process control. 
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Convenience and efficiency: The CVD process are easily automated, enabling precise 
adjustment of process parameters. Moreover, the method is highly efficient, yielding 
significant volumes of nanomaterials. 

Unique properties: CVD-derived nanomaterials often exhibit distinctive physical and chemical 
properties that are not typically observed in materials produced through other methods. 

Thus, chemical vapor deposition is a powerful and effective approach for producing carbon 
nanomaterials with exceptional properties, making it a popular choice in scientific research 
[45, 46]. For instance, a study [47] compared single-walled carbon nanotubes produced via 
CVD with those obtained using an improved electric arc synthesis method. The results 
revealed that CVD-produced nanotubes exhibited superior dispersion into thin fibers, even at 
the monolayer level. 

In another work [48], mechanical properties and corrosion resistance of composites 
reinforced with CVD-produced carbon nanotubes at varying mass fractions (0.1%, 0.2%, and 
0.5%) were investigated. The study determined that the most corrosion-resistant structure 
was achieved in composites reinforced with 0.2% CNTs. 

Chemical Mechanical Exfoliation (CME) is a method for producing high-purity carbon 
nanotubes (CNTs) through a combination of chemical and mechanical processes. The process 
involves the preparation of graphite as a starting material, followed by chemical 
functionalization to facilitate subsequent processing. Mechanical exfoliation, which can be 
achieved through various methods, separates graphite layers and forms CNTs. Purification 
and characterization complete the process, providing high-quality CNTs with controlled 
properties [49–52]. 

The Floating Catalyst Method utilizes catalyst nanoparticles suspended in a gaseous carbon 
source to produce high-quality CNTs. The process involves catalyst preparation, reactor 
installation, catalyst suspension in a carrier gas, introducing the carbon source, catalytic 
growth, nanotube recovery, and post-treatment. This method offers controlled CNT 
production with various properties but requires careful control of catalyst parameters and 
addressing potential impurities [53–55]. 

The Template-Assisted Growth method directs CNT growth using templates with defined 
nanopores. Steps include template preparation, catalyst deposition, introducing a carbon 
source, nanotube growth within the template's nanopores, template removal, and post-
treatment [56–59]. This method provides precise control over CNT diameter, length, and 
alignment and is compatible with various substrates [60]. 

Plasma Enhanced Chemical Vapour Deposition (PECVD) is a technique for creating Uniform 
Nanotube Arrays (UNAs) via plasma-assisted chemical reactions [61–65]. It involves 
substrate preparation, precursor gas introduction, plasma discharge, thin film deposition, and 
post-processing. PECVD offers controlled UNA production, uniform characteristics, and 
versatility across different substrates for applications in various industries [66–68]. 

Electrochemical Deposition (ECD) is another method for producing UNAs on a conductive 
substrate through an electrochemical cell [69–71]. It involves substrate preparation, 
immersion in an electrolyte solution, application of an electric potential, nanotube growth, 
and post-processing [72–74]. ECD allows precise control over nanotube dimensions and 
produces uniform arrays for applications in energy storage, catalysis, sensors, and electronics 
[75–79].  

Solvothermal Method: This method involves a hydrothermal reaction in a solvent at high 
temperatures and pressures to synthesize CNTs with controlled properties and structures 
[80–84]. The process includes precursor preparation, reactor setup, sealing, reaction and 
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growth, cooling, product recovery, and post-treatment [85–88]. It shows promise for CNT 
synthesis but has limitations such as cost, complexity, and environmental impact [89–96]. 

Mechano-thermal Synthesis: This approach combines mechanical activation and thermal 
treatment to produce highly ordered and crystalline CNTs [97–99]. Mechanical forces are 
used to break down precursor carbon materials, creating amorphous carbonaceous 
precursors [100–102]. Subsequent thermal treatment at high temperatures transforms these 
precursors into well-aligned CNTs [103,104]. Challenges include the need for precise control 
of mechanical activation and high-temperature processing [105,106]. 

Flame Synthesis: This technique uses a controlled combustion process to generate CNTs by 
decomposing precursor solutions in a high-temperature flame [97,106,107]. It offers 
continuous and scalable production, allowing adjustments in CNT size, diameter, and 
structure. Challenges include controlling CNT growth and dealing with unwanted byproducts 
[106,108,109]. 

Chemical Vapor Infiltration (CVI): CVI involves the deposition of carbon atoms onto a 
substrate through the controlled decomposition of gaseous precursors [110–112]. It allows 
for versatile, large-scale production, and the ability to tailor CNT properties. Deposition 
conditions impact growth rate, structural characteristics, and alignment [113–116]. 

Electrolysis: The Electrolysis method applies an electric current to a carbonaceous electrode 
immersed in an electrolyte solution [117,118]. This process leads to the direct synthesis of 
CNTs, providing control over their growth conditions and properties[119,120]. Challenges 
include low yield, slow growth rates, and the need to control CNT morphology and purity 
[121–123]. 

Understanding the advantages and disadvantages of various CNT production methods is 
crucial for selecting the most suitable approach for specific tasks. Table 1 provides an 
overview of CNT production methods, offering brief descriptions of their principles of action 
along with their advantages and disadvantages. The benefits and disadvantages mentioned in 
this table are not exhaustive and may vary depending on specific process parameters and 
conditions. 

Table 1. Methods of CNT production 

The method 
Principle of 
operation 

Benefits Disadvantages 

Pyrolysis of 
hydrocarbons 

[124–132] 

Decomposition 
of organic 

compounds at 
high 

temperature 

Low cost, high 
performance, scalability, 

good controllability of 
process parameters 

CNTs may contain impurities, 
which can reduce their quality 
and properties; small diameter 

of CNTs; CNTs may be less 
resistant to oxidation than 

nanotubes produced by other 
methods 

Laser ablation 
of graphite 

[106,133–138] 

Effects of laser 
radiation on 

carbon materials 

Possibility to produce 
single- and multi-layer 

CNTs of different shapes, 
high purity 

High equipment costs, limited 
product volume, difficulty in 

controlling process parameters 

Electric arc 
fusion 

[139–145] 

Heating of 
carbon materials 
in an electric arc 

Production of various 
sizes of CNTs, high 

synthesis rate 

Limited size, need for inert 
gases, high cost, risk of CNT 

damage 

Chemical vapor 
deposition 

(CVD) 
[146–154] 

Reaction 
between a 

carbon source 
and other 

reagents in the 
gas phase 

Ability to produce CNTs 
on different substrates, 

control of size and shape 
of nanostructures, high 
productivity, scalability 

Risk of reaction byproducts that 
can adversely affect the quality 
of the resulting tubes, difficulty 

in setting up the process 
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The method 
Principle of 
operation 

Benefits Disadvantages 

Chemical 
Mechanical 
Exfoliation 

(CME) 
[155–160] 

Mechanical 
exfoliation of 

layered carbon 
materials 

Simple and low-cost 
method, production of 
high-quality CNTs with 

good crystallinity 

Limited scalability, difficulty in 
achieving uniformity in CNT 

properties 

Floating 
Catalyst 
Method 

[55,161–168] 

Suspension of 
catalyst 

nanoparticles in 
a gaseous carbon 

source 

Production of single- and 
multi-walled CNTs, high 

purity, control over 
diameter and alignment 

High equipment costs, limited 
product volume, difficulty in 

controlling process parameters 

Template-
Assisted 
Growth 

[58,59,169–
175] 

Utilization of 
templates or 
nanopores to 

direct CNT 
growth 

Precise control over 
diameter, length, and 

alignment of CNTs, 
scalability 

Template removal can be 
challenging, limited choice of 

template materials 

Plasma 
Enhanced 

Chemical Vapor 
Deposition 

(PECVD) 
[63,65,176–

179] 

Chemical 
reaction in a 

plasma 
environment 

High deposition rate, 
good control over CNT 

properties, compatibility 
with various substrates 

Plasma-induced damage to 
CNTs, requirement for 
specialized equipment 

Electrochemical 
Deposition 
[180–185] 

Electrochemical 
reaction for CNT 

growth on a 
conductive 
substrate 

Controlled growth of 
CNTs, precise control 
over dimensions and 

alignment 

Limited scalability, potential for 
electrode contamination 

Solvothermal 
Method 

[84,186–192] 

Hydrothermal 
reaction in a 

solvent at high 
temperatures 
and pressures 

Synthesis of CNTs with 
regulated properties and 

structures 

Limited scalability, high 
temperature and pressure 

requirements 

Mechano-
thermal 

Synthesis 
[97,193–198] 

Combination of 
mechanical 

activation and 
thermal 

treatment 

Production of highly 
ordered and crystalline 

CNTs, scalability 

Potential for impurities, careful 
control of mechanical activation 

parameters required 

Flame 
Synthesis 

[199–205] 

Controlled 
combustion of 

hydrocarbon or 
carbon-

containing 
precursors 

Continuous production, 
control over CNT size and 

structure, in situ 
functionalization 

Challenges in controlling CNT 
growth and uniformity, potential 

formation of unwanted 
byproducts 

The characteristics of nanotubes obtained can vary based on the method used and process 
conditions. In conclusion, each of these methods possesses its own advantages and 
disadvantages, and the selection of a specific method depends on the particular requirements 
and production conditions. 

For instance, pyrolysis of hydrocarbons is the most commonly employed method; however, it 
may result in the formation of impurities and structural defects in the nanotubes. Laser 
ablation of graphite yields nanotubes with high purity but necessitates costly equipment. 
Electric arc synthesis produces nanotubes with larger diameters but incurs high energy costs. 
Chemical vapor deposition allows for precise control over the structure and properties of 
nanotubes. 
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Therefore, the choice of CNT production method should be justified and based on a 
compromise between quality requirements and economic efficiency. 

3.3. Catalysts for CVD 

Chemical vapor deposition (CVD) is a widely employed and cost-effective technique for 
manufacturing carbon nanotubes (CNTs). During CVD, CNTs are synthesized by depositing the 
dissociation products of hydrocarbons onto a metal catalyst that serves as a "seed," followed 
by the growth of nanotubes on the catalyst surface. 

The selection of a suitable catalyst plays a crucial role in achieving efficient CNT generation 
through the CVD method. An ideal catalyst should possess a high surface area, acting as the 
active center for chemical reactions, and offer a sufficiently high temperature for carbide 
decomposition. These catalysts can also be employed in the synthesis of other carbon 
nanostructures like graphene or fullerenes. The choice of catalyst depends on the desired 
structure and properties of the nanoparticles. 

Chemical vapor deposition catalysts are primarily composed of metals or their oxides and are 
instrumental in expediting the formation of carbon nanostructures. Nickel is one of the most 
commonly used catalysts for CVD, enabling the synthesis of CNTs with high purity and 
uniform structure. Other metals such as copper, chromium, and molybdenum are also utilized 
as catalysts. Additionally, carbon precursors like graphite or CNTs can function as catalysts 
for CNT synthesis. 

For instance, a copper-based catalyst can be employed in CNT synthesis. When a carbon-
containing gas such as acetylene is heated, nanotubes form on the copper surface, which can 
then be separated from the catalyst for various applications. 

Numerous catalysts are employed for CNT production via CVD under diverse conditions. 
These catalysts include metals like iron (Fe), nickel (Ni), cobalt (Co), their alloys, as well as 
surface-modified metals and their oxides. 

While iron and nickel were initially the most prevalent catalysts for CNT production through 
CVD, researchers have been exploring more effective catalysts in recent years to achieve high-
quality CNTs [206–208]. Studies indicate that iron alloys with other metals such as copper 
(CuFe) or cobalt (FeCo) can enhance productivity and purity during the CVD process. In CVD, 
carbon nanomaterials are formed by the interaction between carbon and various gases, 
typically hydrogen, carbon monoxide, or acetylene. Catalysts can comprise metals, oxides, 
hydroxides, or other substances, accelerating the decomposition of carbon-containing gases 
into carbon atoms and molecules, which subsequently combine into nanostructures. 

The choice of catalyst depends on the desired properties of the resulting nanomaterials and 
the specific synthesis conditions. Ongoing advancements in catalyst research for CNT 
production via chemical vapor deposition allow for continual updates and improvements to 
this method [209–218]. It is important to select the most appropriate catalyst for specific 
process conditions and the desired properties of the nanotubes. 

Table 2 below presents catalysts and their properties for CVD. However, it is worth noting 
that the size and quality of CNTs may slightly vary depending on process conditions such as 
temperature, pressure, and gas mixture composition. The first column of Table 2 denotes the 
catalyst (or elemental basis for combined catalysts) with corresponding references to studies 
utilizing them for CNT production. The subsequent columns in Table 2 provides general 
information and characteristics of each catalyst, independent of the referenced studies in the 
first column. This is because catalyst properties can differ based on the process conditions of 
vapor deposition, including temperature and pressure. Therefore, selecting the most suitable 
catalyst for specific process conditions and desired nanotube properties is crucial. 
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Table 2. CVD catalysts 

Catalyst 
Diameter of 
nanotubes 

Quality of 
nanotubes 

Features 

Ferrocene [219-
221] 

~ 10-20 nm Low 

Ferrocene-based nanotubes are not only of 
low quality, but also heterogeneous in 

width. | It is quite unstable and can form a 
heterogeneous film. 

Ni [222-224] ~ 10-100 nm High 

Ni-based nanotubes are of high quality and 
have a single-wall structure. Quite cheap 
and widespread catalyst. Provides high 

quality nanotubes and very few defects in 
the structure. 

Co [225,226] 
 

~ 5-50 nm Very high 

Co-derived nanotubes are of very high 
quality and have a single-wall structure, 

which makes them possible for use in 
electronics. It is also a cheap catalyst. 

Fe [227-230] 
 

~ 10-100 nm Average 

Fe-based nanotubes are of average quality 
and may contain additional defects in the 

structure. It is chemically stable but forms a 
lower quality film than Ni, Co. 

Al [231,232] 
 

~ 10-60 nm Average 

Al-based nanotubes are of average quality 
and may contain additional defects in the 

structure. It is not the best catalyst, but can 
be used to produce nanotubes of a certain 

type. 
Pt [233,234] 

 
~5-50 nm Very high 

One of the best sparse catalysts: provides 
very high quality and purity of nanotubes. 

Pd [235,236] ~5-50 nm Very high 
Similar to Pt in its characteristics, but 

cheaper. 

Ti [237] 
 

~5-100 nm Average 
Provides good quality nanotubes and a 

structure different from that obtained with 
other catalysts. 

Mo [238] ~5-50 nm Average 
It can be used to produce multiwalled 

nanotubes. 

Cu [239-242] 
 

~5-50 nm High 
It has high catalytic activity for CVD 
reaction. It can be used to produce 
nanotubes of different materials. 

Au [243,244] 
 

~5-50 nm Low 
It is not the best catalyst for the CVD 
reaction and is not normally used for 

producing nanotubes. 

Co Ni Au [235] Various sizes Miscellaneous 

Combinations of catalysts can combine the 
advantages of different materials. For 
example, the combination of Co and Ni 

gives very good nanotube quality, and the 
combination of Ni and Au gives good charge 

transfer properties. 
 

The table 2 clearly illustrates the substantial variation in cost, nanotube quality, and 
defectiveness among catalysts. The selection of a specific catalyst depends on numerous 
factors, including availability and cost. For instance, Fe serves as an inexpensive catalyst, 
enabling the production of nanotubes at low temperatures and pressures. However, the 
resulting nanotubes exhibit lower quality and often contain numerous defects. On the other 
hand, Pt is highly expensive but yields high-quality nanotubes with a low defect rate. 
Moreover, catalysts can be combined to enhance results [246-249]. For example, the 
combination of Ni and Co yields nanotubes of the highest quality and low defect levels, 
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whereas the combination of Cu and Ni enables the production of nanotubes with diverse 
materials. 

This section provides a concise overview of catalysts utilized in the CVD method, underscoring 
their significant influence on the properties of carbon nanotubes. Consequently, selecting an 
appropriate catalyst becomes crucial in achieving desired carbon nanotube properties, such 
as size and structure, and should align with specific requirements. 

3.4. Methods of Introducing CNT Into Building Materials 

The incorporation of carbon nanotubes (CNTs) into building materials has emerged as a novel 
and increasingly popular strategy for enhancing their mechanical and physical properties. 
Recent years have witnessed numerous studies exploring the utilization of CNTs in diverse 
building materials, including concrete and reinforced polymers [250,251]. 

Mechanical introduction stands out as one of the primary approaches for integrating CNTs 
into building materials. This method involves simply adding nanotubes to the material during 
its preparation in the form of dust, powder, or liquid. To ensure a more uniform dispersion of 
CNTs within the material, techniques such as ultrasonic or magnetic treatment can be 
employed [252–254]. Ultrasonic processing facilitates the pulverization of CNT particles, 
leading to their more even distribution throughout the material. Similarly, magnetic 
treatment can be utilized to fractionate CNT particles into smaller sizes, thereby enhancing 
their dispersion within the material [255,256]. 

In addition to mechanical introduction, other processing techniques can be employed to 
enhance the efficacy and quality of the CNT incorporation process. Surfactant 
functionalization is one such method, where surfactants are used to improve the wettability 
of CNTs, allowing for better dispersion within the matrix [257–261]. Sonication, which utilizes 
high-frequency sound waves, can also be used to break up CNT agglomerates and ensure 
better dispersion [262–265]. 

The specific method of incorporating CNTs into building materials depends on the desired 
properties and operating conditions. For example, in the case of concrete, CNTs can be added 
as nano powders or through the creation of functional coatings [266–268]. This helps improve 
the strength, corrosion resistance, and shrinkage reduction of the concrete. For materials like 
bricks and glass, functional coatings and nano powder addition can enhance properties such 
as fire resistance, thermal insulation, transparency, and scratch resistance [269,270]. 

In the case of metals, including steel and aluminum, CNTs can be introduced through the 
addition of nano powders or by creating functional coatings [271,272]. This improves the 
durability and corrosion resistance of the metals [273–275]. Plastic materials can also benefit 
from the addition of CNTs in the form of a liquid additive, which enhances wear resistance and 
durability [276,277]. Similarly, the addition of CNT powder to rubber materials improves 
wear resistance and elasticity [278–280]. 

These examples highlight the versatility of CNT incorporation, as different materials can be 
enhanced by utilizing CNTs in various ways. The selection of materials and the specific method 
of introducing CNTs depend on the desired improvements and the specific requirements of 
each application. Continued research and collaboration among material scientists, engineers, 
and industry professionals will drive further advancements in this field, opening up new 
possibilities for the construction industry. 

In essence, the mechanical introduction of CNTs represents one of the most commonly 
employed methods for their incorporation into building materials, with additional processing 
techniques employed to enhance the efficacy and quality of the process. Table 3 provides a 
concise overview of exemplary building materials exhibiting improved properties, along with 
the prevalent methods employed for incorporating CNTs into their structural composition. 
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Table 3. Construction materials with improved CNT properties 

Construction 
materials 

Improved properties 
Methods of introducing CNT into building 

materials 
Concrete 

[281–286] 
Strength, corrosion resistance, 

shrinkage reduction 
Adding nanopowders, creating functional 

coatings 
Brick 

[287–291] 
Resistance to fire, improved thermal 

insulation 
Creating functional coatings, adding 

nanopowders 
Glass 

[292–296] 
Transparency, scratch resistance 

Adding nanopowders, creating functional 
coatings 

Metal 
[297–302] 

Durability, corrosion resistance 
Adding nanopowders, creating functional 

coatings 
Plastic 

[303–307] 
Resistance to wear and tear, 

durability 
CNT liquid additive 

Rubber 
[308–315] 

Wear resistance, elasticity Addition of CNT powder 

These examples provide a glimpse into the diverse range of materials that can be enhanced 
by incorporating Carbon Nanotubes (CNTs). The selection of materials and the method of 
introducing CNTs depend on specific requirements and operating conditions governing each 
case. 

CNTs offer tremendous potential in strengthening building materials by augmenting their 
mechanical properties, including increased strength, stiffness, impact resistance, and 
abrasion resistance. Furthermore, CNTs can impart electrical or thermal properties to 
materials, thereby expanding their functionality. However, the practical utilization of CNTs 
beyond the confines of laboratory settings is still constrained. One of the primary challenges 
involves achieving a uniform dispersion of CNTs within the material while preventing their 
aggregation, as such clustering can substantially compromise the material's quality [316–317]. 

Presently, nanotechnology finds active application across various industries. One significant 
application area involves the modification of building materials to enhance their properties. 
This section elucidates the methods employed for introducing CNTs into building materials 
and explores their potential application in creating efficient and secure building structures. 

3.4.1. Mechanical Methods 

One approach for incorporating carbon nanotubes (CNTs) into building materials is through 
mechanical methods. These methods rely on simple mechanical processes to introduce CNTs 
into the structure of the material. 

Ultrasonic dispersion is a technique where CNTs are dispersed within a material using 
ultrasonic waves. The waves create cyclic compression and tension zones in the material, 
resulting in the dispersion of nanoparticles. This method is highly efficient and produces 
nanometer-sized particles, enabling the production of materials with enhanced strength and 
durability. For instance, researchers [318] investigated the impact of multi-walled carbon 
nanotubes (MWNTs) with varying internal diameters on the mechanical properties and 
microstructure of cement-based materials. Ultrasonic dispersion was employed to uniformly 
distribute MWNTs within the cement-based materials. Experimental results demonstrated 
that increasing the diameter of MWNTs modified the flexural and compressive strength of 
cement-based materials. 

Ultrasonic dispersion is a widely used method for incorporating carbon nanotubes (CNTs) 
into building materials. This process involves subjecting CNTs to high-frequency sound waves 
(typically in the range of 20-100 kHz) to break up agglomerates and disperse individual CNTs 
throughout the material matrix. The equipment used includes a sonicator, which generates 
the sound waves, and a vessel containing the material to be dispersed. The power output and 
frequency depend on the application and material properties[319,320]. 
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Ultrasonic dispersion not only breaks up agglomerates but can also functionalize CNTs by 
introducing chemical groups onto their surfaces. This enhances their compatibility with the 
matrix and improves mechanical properties. The smaller size of dispersed CNTs (typically 
tens of nanometers) leads to a more homogeneous distribution within the matrix. 

One advantage of ultrasonic dispersion is its ability to achieve a more uniform dispersion of 
CNTs, enhancing the mechanical properties of the material. It also reduces agglomeration of 
CNTs, preventing the formation of large clusters that could negatively impact the material's 
properties. 

Furthermore, ultrasonic dispersion enhances the interfacial bonding between CNTs and the 
material matrix, improving load transfer and the overall integrity of the composite material. 

Mechanical activation is another method where the material is mechanically loaded to 
activate the surface and create defects. These defects, including dislocations, voids, and 
microcracks, facilitate strong bonding between CNTs and the building material, resulting in a 
composite material with improved strength and durability [321,322]. Researchers [323] 
investigated various modified cement composites produced through mechanical activation. 
They utilized superplasticizers and CNTs with different structures and functionalities as 
modifiers. The study revealed that the bio resistance coefficient values of cement composite 
samples obtained by mechanically activating the binder and incorporating superplasticizers 
were 13% higher than those of the control composition. 

Mechanical exposure involves saturating the material with CNTs using moving parts such as 
mills or mixers. This method generates high mechanical energy, breaking down the CNTs into 
nanometer-sized particles that then penetrate the material. By employing this approach, it is 
possible to produce materials with enhanced strength and durability while minimizing the 
quantity of CNTs required [324–326]. 

Overall, the utilization of mechanical methods for introducing CNTs into building materials 
enables the creation of materials with nanoparticle reinforcement, resulting in improved 
strength and durability. However, achieving the maximum effect requires careful selection of 
the optimal component ratios and material processing techniques. 

3.4.2. Electrochemical Methods 

Electrochemical techniques offer highly effective means of incorporating carbon nanotubes 
(CNTs) into various building materials, including concrete, asphalt, and polymer composites. 
One such technique is the electrochemical deposition of thin carbon films onto the material 
surface. This process involves depositing carbon nanoparticles onto the material surface by 
applying an electric current in a solution containing suitable reagents [327–329]. The method 
finds wide application in diverse fields, including electronics, catalysis, cosmetics, as well as 
scientific research in nanotechnology and materials science. 

Electrochemical carbon deposition has proven beneficial in several areas. Firstly, it can be 
used to coat electrodes, thereby enhancing their conductivity in different devices and systems 
[330,331]. Secondly, carbon coatings serve as catalysts on material surfaces, improving the 
efficiency of processes such as electrolysis or gas synthesis. Additionally, carbon coatings find 
application in the production of electronic components like supercapacitors and solar cells. 

The advantages of electrochemical carbon deposition include precise control over the 
deposition process, the ability to create thin, uniform, and high-quality carbon films, cost-
effectiveness compared to other coating methods, and the potential to modify the properties 
of carbon coatings to suit specific needs [332–334]. However, there are also certain 
limitations associated with this technique. It requires careful adjustment of the deposition 
process to achieve the desired surface properties, and there may be defects in the film 
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structure that could impact its properties. Furthermore, there are limitations on the types of 
materials onto which the coating can be applied. 

Kim et al. demonstrated the use of a chemical deposition method to enhance the performance 
of a fuel cell electrode by employing CNTs and a Pt catalyst as the foundation. Their results 
indicated that the number of catalytic centers in Pt/CNTs obtained through electrochemical 
deposition was approximately three times higher [335]. Another study by Lee et al. proposed 
an efficient and practical approach for creating a new composite comprising ultrathin 
nanowire films by combining an assembly process with cost-effective electrochemical 
deposition technology [336]. 

Electrodeposition, another method for introducing CNTs into building materials, involves 
embedding CNTs into the material surface through an electrochemical reaction. The process 
utilizes an electric field to deposit CNTs onto the material surface. CNTs, serving as 
nanoparticles, enhance the properties of building materials that typically consist of metallic 
or polymeric components. The electrodeposition process begins with the preparation of a 
solution containing CNTs, which is then placed in an electrolytic bath. The material is 
immersed in the bath and connected to an electrode, while another electrode connected to an 
electric current source is positioned adjacent to the material. Subsequently, the 
electrodeposition process initiates, resulting in the deposition of CNTs onto the material 
surface. 

This method offers advantages such as simplicity and the ability to control material 
conductivity by adjusting the CNT concentration in the solution. Additionally, materials 
obtained through CNT electrodeposition exhibit good shape and size matching, reducing the 
likelihood of defects [337,338]. However, this method has drawbacks, including a relatively 
low CNT concentration compared to other CNT introduction methods and the requirement 
for specialized equipment, making it a relatively complex process. 

3.4.3. Chemical Methods 

Chemical techniques offer a range of possibilities for incorporating Carbon Nanotubes (CNTs) 
into building materials, resulting in the development of materials with exceptional properties, 
including enhanced strength, thermal conductivity, and electrical conductivity. However, each 
method possesses its own set of advantages and disadvantages, and the selection of a specific 
technique depends on the intended purposes and requirements of the manufactured 
materials. 

One such method is chemical deposition, which involves depositing a CNT solution onto the 
surface of the material [339–341]. This process begins by preparing a solution containing 
CNTs in a specialized liquid, typically ethylene glycol or other solvents. Various application 
techniques such as spraying or dripping are employed to apply the nanotube solution onto 
the material's surface. 

Another method, known as metal fusion, employs the combination of different metals to coat 
the material's surface. This technique involves mixing CNTs with metal powders and 
subjecting them to high temperatures to form a composite material. Metal fusion exhibits 
notable advantages, including high wear resistance and excellent thermal conductivity, 
making it suitable for the production of construction materials like metal structures and 
pipelines. 

The metal fusion method finds extensive use in modern industries, enabling the production of 
high-quality composite materials with unique properties unattainable by conventional carbon 
steels and other materials [342–345]. The process of metal alloying comprises several steps: 

Alloy preparation: Various methods, such as mechanical mixing of metal powders with CNTs 
in a ball mill, are utilized to create a homogeneous mixture. 
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Material formation: The mixture from the previous step is heated to temperatures typically 
exceeding 1000 degrees Celsius, causing the metal powders and CNTs to merge and form a 
homogenous material with the desired properties. 

Heat treatment: Heat treatment is necessary to enhance the material's mechanical properties 
and harden it. The composite material is subjected to specific temperatures during heat 
treatment and subsequently cooled down. 

The advantages of the metal fusion method for building material production are numerous. 
These include high resistance to wear and mechanical damage, excellent thermal conductivity, 
significant resistance to corrosion and chemical reactions, and the ability to produce 
composite materials in various shapes and sizes. 

In summary, chemical methods, such as chemical deposition and metal fusion, allow for the 
integration of CNTs into building materials, offering exceptional properties [346–349]. The 
choice of method depends on specific requirements, with metal fusion providing excellent 
wear resistance, thermal conductivity, corrosion resistance, and versatility in creating 
composite materials with unique shapes and sizes. 

3.4.4. Physical Deposition Methods 

Physical deposition methods for carbon nanotubes (CNTs) encompass a range of technologies 
and processes utilized to distribute nanotubes onto the surfaces of building materials. 

Ion-beam deposition is a technological process that employs ion streams to generate thin 
coatings on material surfaces [350,351]. The process initiates by producing a high-frequency 
flux of ions dispersed in a gas medium, typically within a vacuum. The flux is then directed 
towards the substrate where the coating is intended to adhere. The ion flux is separated into 
positive and negative ions. 

The distinctive feature of ion-beam deposition lies in the ability to precisely control the size, 
energy, and velocity of the ions. This enables the production of thin coatings with thicknesses 
ranging from fractions of a micron to several micrometers. When the ion flux impacts the 
material surface, it induces various chemical reactions and alterations in the CNT molecules, 
resulting in the formation of a thin layer on the material surface. These coatings can be created 
from a diverse range of materials, including ceramics, metals, plastics, and glass [352–355]. 

Ion-beam deposition finds extensive applications in the manufacturing of various devices 
such as microprocessors, sensors, optical devices, and more [356–358]. During the ion-beam 
deposition process, several factors need to be considered, including ion energy, the type of 
ions employed, the deposition medium, and the pressure within the vacuum chamber. 

Magnetron sputtering is a technology employed to produce thin coatings on diverse material 
surfaces [359–362]. In this process, materials are atomized within a vacuum and then 
deposited onto the target surface. Special generators generate electric and magnetic fields 
within the working chamber to initiate the sputtering process. Atomized materials find 
applications in various industries, including electronics production, solar cells, medical 
products, and others. Magnetron sputtering enables the production of coatings with different 
characteristics based on specific requirements [363–365]. 

In a particular study [366], the authors discussed various applications of magnetron 
sputtering in the development of crucial materials for lithium batteries, categorized according 
to battery components such as electrode materials and solid electrolytes. The authors also 
proposed future prospects to drive the advancement of magnetron sputtering technology. 

Vacuum cathode discharge represents one of the methods for growing CNTs on material 
surfaces [367,368]. It involves utilizing a vacuum chamber with a cathode composed of 
graphite or other carbon materials. When a high-frequency discharge passes through the 
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chamber between the anode and cathode, CNTs begin to grow on the cathode's surface. The 
key advantage of this method is the ability to create CNTs with predetermined characteristics, 
including length, diameter, and structure. Additionally, this method is relatively 
straightforward and controllable. 

However, there are also certain disadvantages. The CNT growth procedure within the vacuum 
chamber requires significant energy and time, which poses challenges for scaling up this 
method for industrial applications. Furthermore, the equipment cost for vacuum cathode 
discharge is relatively high. Nevertheless, vacuum cathode discharge remains an effective 
method for CNT creation in specific applications such as electronics, catalysis, and other fields 
[369,370]. 

3.4.5. Nanotechnology Methods 

Electron beam lithography represents a cutting-edge technology used to fabricate micro- and 
nanostructures through controlled local treatment of a material's surface with an electron 
beam [371–374]. By employing this technology, carbon nanotubes (CNTs) can be 
incorporated into construction materials to enhance their mechanical properties. The process 
of introducing CNTs using electron beam lithography involves several key stages: 

• Surface Preparation: The material's surface is meticulously cleaned and machined to 
create a specific pattern suitable for CNT integration. 

• Applying Resist: A resist material, capable of undergoing changes when exposed to 
an electron beam, is applied onto the material's surface. 

• Exposure: An electron beam is precisely directed onto the resist-coated surface, 
resulting in the formation of the desired pattern. 

• Manifestation: The resist material that has been exposed to the electron beam is 
selectively removed from the areas corresponding to the pattern. 

• Application of CNTs: A solution containing CNTs is applied onto the material's 
surface, specifically targeting the created pattern. This procedure reinforces the 
mechanical properties of the material at the required locations. 

• Cleaning: Excess resist and any remaining residues are thoroughly eliminated from 
the material's surface. 

This method of material reinforcement enables the production of lightweight yet robust and 
durable materials suitable for various construction applications [375,376]. Electron beam 
lithography serves as an effective approach to bolster building materials, facilitating the 
creation of more dependable and long-lasting structures [377–379]. 

Another technique involves incorporating CNTs into construction materials using a 
paramagnetic filler, which operates on the principles of electromagnetic induction [380–382]. 
Initially, CNTs are synthesized via chemical vapor deposition (CVD) using a suitable catalyst. 
Subsequently, the dispersion of CNTs in a solution containing a paramagnetic filler is 
performed to generate a nanocomposite. In some cases, the CNTs are treated with the 
paramagnetic filler before dispersion. The nanocomposite undergoes further treatment using 
an electromagnetic field created through electromagnetic induction. The paramagnetic filler 
within the solution responds to the induction field and adheres to the CNTs, resulting in the 
formation of an electromagnetic composite. 

Consequently, a composite material comprising CNTs embedded with paramagnetic fillers is 
obtained [383–385]. This approach enhances the composite's magnetic susceptibility while 
simultaneously improving its mechanical and functional properties. The integration of CNTs 
using paramagnetic fillers presents a promising avenue for developing novel construction 
materials with enhanced characteristics. Although some of these methods can be expensive 
and require specialized equipment and expertise, they enable the creation of stronger and 
more flexible building materials utilizing the potential of CNTs. 
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Table 4. Methods of CNT introduction 

Group Methods Principle of operation 

Mechanical 
methods 

Ultrasonic 
dispersion 
[386–388] 

Mechanical impact creates pores in the material, 
where CNTs are then inserted 

Mechanical 
activation 
[307,389] 

Mechanical impact creates pores and cracks in the 
material, where CNTs are then introduced 

Mechanical impact 
[390–393] 

Mechanical impact creates additional spaces for 
nanotubes 

Electrochemical 
methods 

Electrochemical 
deposition 
[394–398] 

An electrochemical process using a metallic cathode 
that serves as a current-carrying element 

Electrodeposition 
[399–403] 

Using electrodeposition to create a thin layer of 
carbon inside the material 

Chemical methods 

Chemical deposition 
[404–407] 

Using catalysts to create CNTs 

Metal alloying 
method 

[408–412] 

A method that uses metal fusion to create organic 
compounds, which are then replaced by CNTs 

Physical deposition 
methods 

Ion Beam 
Deposition 

[378,413–416] 

Using ion-beam deposition to create a thin layer of 
carbon on a material surface 

Magnetron 
sputtering 
[417–422] 

Using magnetron sputtering of carbon to create a film 
on the material surface 

Vacuum cathode 
discharge 
[360,416] 

Using vacuum cathodic discharge to create a thin 
layer of carbon on the material surface 

Nanotechnology 
methods 

Electron beam 
lithography 

[375,378,424,425] 

Using a lithographic process to create microchannels 
on the material surface, where CNTs are then added 

Nanotubes with 
paramagnetic filler 

[385,426–429] 

Using paramagnetic particles to trap CNTs in solution 
and direct them to the surface of the building 

material. The nanotubes then remain on the surface of 
the material and form a protective layer 

 

Integrating carbon nanotubes (CNTs) into building materials offers numerous advantages, 
such as enhanced strength, increased resistance to corrosion and wear, and improved thermal 
insulation properties [340,430–433]. However, prior to their utilization in construction, 
extensive research and testing are imperative to ensure both their safety and effectiveness. 

The study of CNT properties and their application in building materials is a rapidly advancing 
field in science and technology. Within this realm, the exploration of methods for 
incorporating CNTs into building materials holds considerable significance as a subject of 
investigation. 

To summarize, the methods employed to introduce CNTs into building materials exhibit 
considerable potential for creating more robust and long-lasting materials. Nonetheless, it is 
essential to consider the specific characteristics of each method and assess its efficacy under 
distinct conditions. Furthermore, continuous research in this domain is vital to develop novel 
approaches and optimize existing ones, ultimately achieving optimal outcomes. 

3.5. Properties of Building Materials Reinforced with CNT 

In the past few years, there has been a growing interest among engineers and scientists in 
enhancing the quality of building materials to ensure better protection and durability for 
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structures against external forces. One promising avenue of research involves the 
incorporation of carbon nanotubes (CNTs) to reinforce these materials [434–438]. In this 
section, we will explore the characteristics of building materials that are strengthened by 
CNTs. It is important to note that the concentration of CNTs and other relevant parameters 
can have a significant impact on the properties of these materials. Gaining a thorough 
understanding of these properties can be valuable for the development of novel materials that 
can construct more dependable and long-lasting buildings and structures. Nonetheless, it is 
crucial to consider the issues of economic feasibility and environmental safety when pursuing 
these advancements. 

3.5.1. Mechanical Properties 

The reliability and durability of construction materials heavily rely on their mechanical 
properties. A promising area of research in this field involves the utilization of Carbon 
Nanotubes (CNTs) to enhance the strength of materials. 

Strength: Research studies indicate that the incorporation of CNTs into building materials can 
substantially enhance their strength. Factors such as the concentration of nanotubes, their 
position within the material matrix, and the size of the matrix particles have a significant 
influence on strengthening the material. Furthermore, nanotubes can mitigate thermal 
stresses caused by temperature fluctuations, which further contributes to the material's 
strength. 

Shi et al.[439] outlines the principal characteristics of carbon nanotubes/nanofibres, the 
techniques for dispersing CNTs in cement-based materials, and the properties of CNT-based 
materials following modification with cement. The study affirm that the inclusion of CNT 
enhances the mechanical characteristics of cementitious materials.  

The investigation of Jung  et al. [440] employed diverse quantities of CNTs (0, 0.2, 0.5, 0.8, 1.0 
and 2.0 weight percent). Prior research has indicated that introducing CNTs into cement-
based materials can enhance their mechanical characteristics and cut down on porosity. 
Nevertheless, surpassing a certain concentration result in a decline in compressive strength.  

Research conducted by Thomoglou et al. [441]  suggests that the optimal amount of CNTs in 
cement mortar can provide improvements in various mechanical properties. Specifically, it 
was found that the incorporation of 0.2 wt% MWCNTs resulted in an increase in flexural 
strength by approximately 5.7%, compressive strength by 18.4%, 6.2%, and 8.8% for nano-, 
micro- and hybrid-modified cement mortars, respectively, compared to conventional mortars. 
These findings highlight the potential of CNTs in enhancing the mechanical performance of 
construction materials. 

Stiffness: The introduction of CNTs can also increase the stiffness of building materials. 
Numerous experiments have demonstrated that as the concentration of nanotubes increases, 
the stiffness of the material also increases. Moreover, the deformation mechanisms induced 
by the presence of nanotubes can enhance the material's overall stiffness. 

Kumar et al.[442] introduces the dynamic stiffness method (DSM) as a tool for analyzing the 
vibrations of multilayered plates containing carbon nanotubes (CNTs). The authors apply the 
Vitruvian-William method to solve the frequency-dependent stiffness matrix, allowing for an 
examination of the effects of various parameters on the plate and layer configuration. The 
findings from this study can be valuable for the design of multilayered FG-CNT structures, 
providing insights into optimizing their vibrational characteristics and performance. 

Li et al. [443], the authors focus on the enhancement of compressive stiffness in graphene 
aerogels using a unique approach inspired by the structure of leaves. By incorporating carbon 
nanotubes (CNTs) into the aerogel matrix, they create a new material called CNT-interlayered 
graphene aerogels (CSGAs) through the process of freeze drying. The researchers conduct 
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compression tests and observe that the presence of CNTs effectively reinforces the mechanical 
support of the aerogels, with the properties of CSGAs being influenced by the content of CNTs. 
Furthermore, molecular dynamics modeling reveals that an optimal concentration of CNTs 
forms a stable mesh structure, thereby preventing deformation of graphene nanosheets 
during bending. This study presents a promising strategy for the design of highly efficient 
graphene-based nanomaterials, thereby expanding the range of potential applications for 
these materials. 

Fracture Resistance: CNTs can enhance the fracture resistance of building materials. For 
instance, studies have shown that carbon nanotubes can absorb impact energy and localize 
material damage [444–447]. This characteristic proves particularly valuable in safeguarding 
buildings and structures from the detrimental effects of explosions or natural disasters. 

Table 5 presents a summary of the mechanical properties of CNT-enhanced materials in 
comparison to conventional building materials. The table encompasses four key 
characteristics of the materials: compressive strength, tensile strength, wear resistance, and 
corrosion resistance. According to the table, materials treated with CNTs exhibit significantly 
higher compressive strength, tensile strength, and wear resistance when compared to most 
industrial construction materials. However, it is important to note that the properties of 
improved CNT materials can vary considerably depending on the specific type of material and 
the technology employed. 

Table 5. Characteristics of the properties of building materials with CNT 

Characteristics Most building materials Materials improved by CNT 

Compressive strength 
[448–452] 

Relatively low Up to 4 times higher 

Tensile strength 
[453–458] 

Relatively low Up to 10 times higher 

Resistance to wear and tear 
[459–465] 

Relatively low Up to 5 times higher 

Corrosion resistance 
[466–475] 

Relatively low Above 

 

Studies of the properties of building materials reinforced with CNTs show that this approach 
can significantly improve their mechanical properties. Positive effects can manifest 
themselves in the strength, stiffness, and resistance to failure of the materials. Understanding 
these properties may lead to the creation of more reliable and durable building materials for 
various objects and structures. 

3.5.2. Thermal Properties 

Enhancing the thermal properties of building materials is crucial for efficient energy 
utilization and ensuring comfort inside structures. Factors such as heat transfer, thermal 
insulation, and thermal stability greatly influence the performance of materials. One approach 
to improving these properties is through the incorporation of Carbon Nanotubes (CNTs). 

CNTs possess exceptional thermal conductivity, and when integrated into materials, they can 
significantly enhance their ability to conduct heat. This improved thermal conductivity 
facilitates better temperature control within buildings, leading to reduced heating and air 
conditioning costs. By introducing CNTs, the overall thermal conductivity of the material 
increases, leveraging the exceptional thermal conductivity of CNTs themselves. 

Consequently, the use of CNTs in building materials enhances their thermal properties, 
enabling more efficient utilization of energy resources and improving comfort levels indoors. 
Additionally, CNTs exhibit high thermal stability, resulting in increased thermal stability of 
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the building materials. This enhancement improves the overall performance and prolongs the 
service life of the materials. For example, concrete structures containing CNTs display 
enhanced resistance to fire and other hazards due to their improved ability to withstand 
higher temperatures. 

Shin et al.[476] discuss the development of three types of thermoplastic polyurethane 
composites (TPU) based on carbon nanotubes (CNTs) to create lightweight, flexible, and heat-
conducting materials for electromagnetic interference (EMI) protection. The composites were 
developed using a solution blending technique with non-solvent induced phase separation 
(NIPS). The study investigates the impact of CNTs of different lengths on EMI shielding, 
electrical conductivity, and thermal conductivity. The composite with long CNTs (10 wt.%) 
demonstrated remarkable EMI shielding efficiency of 42.5 dB and an electrical conductivity of 
1.9 × 10-3 S/cm, while the composite with short CNTs exhibited a thermal conductivity of 0.51 
W/mK, with a thermal conductivity enhancement exceeding 145% compared to pure TPU. 
The inclusion of long-length CNTs facilitated the formation of interconnected conductive 
networks within the TPU matrix, improving mechanical properties, EMI shielding, and 
electrical properties. Conversely, short CNTs showed significant electromechanical 
characteristics and heat transferability. The composites also demonstrated high sensitivity to 
electrical conductivity and minimal changes in EMI shielding effectiveness during repeated 
bending cycles. This study provides insights into different types of CNT-based TPU composites 
for superior EMI protection and thermal regulation in next-generation wearable and 
stretchable electronics. 

In another related study of Jin  et al. [477], the development of highly thermally conductive 
polymer composites with excellent dielectric and mechanical properties for electronic devices 
is discussed. The researchers incorporated boron nitride, graphene nanoplatelets, and carbon 
nanotubes into a polycarbonate matrix to enhance thermal conductivity, dielectric constant, 
and mechanical properties. The resulting composite exhibited a 647% increase in thermal 
conductivity, a 50-fold increase in dielectric constant, and improvements in yield strength, 
elongation at break, fracture toughness, and notched impact strength. Moreover, the 
composite displayed reduced ignitability and remarkable anti-dripping performance. This 
research presents an effective strategy for fabricating dielectric thermal conductive polymer 
composites with excellent properties for electronic devices. 

Furthermore, incorporating CNTs in building materials can increase their heat capacity. This 
feature is particularly advantageous for constructing structures capable of absorbing and 
storing heat, effectively reducing heating costs. 

Overall, the utilization of CNTs in building materials offers several benefits, including efficient 
energy utilization and improved comfort within buildings. 

To further illustrate the impact of enhanced nanotechnology (CNTs) on thermal properties, 
Table 6 provides information on various materials. The table includes five different materials: 
polymer composites, ceramics, metals, concrete, and glass. Each material is presented with its 
thermal properties before and after the incorporation of CNTs. The first column displays the 
material names, while the second and third columns present the respective thermal 
properties before and after the inclusion of CNTs. The table also includes various parameters 
related to the thermal properties of the materials. 
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Table 6. Thermal properties of building materials with CNT 

Material Thermal properties without CNT Improved thermal properties using CNTs 

Polymer 
composites 
[478–483] 

May have limited thermal stability 

The use of CNTs significantly improves 
thermal stability, reduces thermal 

conductivity and increases material 
strength 

Ceramics 
[484–489] 

Has high thermal resistance, but 
often does not have high strength 

Use of CNTs increases material strength 
and thermal resistance 

Metals 
[490–493] 

Can have relatively high thermal 
conductivity and low thermal 

stability 

Use of CNTs increases material strength 
and thermal resistance 

Concrete 
[494–500] 

Has low thermal stability and 
limited strength 

The use of CNTs can increase the strength 
of the material and improve its thermal 

stability 

Glass 
[501–506] 

Fragile material that does not have 
high thermal resistance 

The use of CNT significantly increases the 
strength of the material and its thermal 

stability 

3.5.3. Electrical And Magnetic Properties 

The introduction of CNTs into construction materials can lead to a change in their electrical 
properties. This is due to the fact that CNTs have high electrical conductivity. For example, in 
the work [507] experiments were conducted on cylindrical concrete samples containing 
different CNT content up to 0.04%, in which the effect of an alternating magnetic field on the 
strength was evaluated. Magnetization of samples containing 0.02% CNT gave higher strength 
than the introduction of 0.04% CNT without magnetization. 

By the authors [508] studied the effect of temperature and water content on the electrical 
conductivity of cement mortar with different sizes of carbon nanotubes and revealed the 
effect of CNT size on the electrical conductivity of cement mortar. The results show that small 
diameter CNTs best improve the electrical conductivity of cement mortar. The electrical 
conductivity of cement mortar with different diameters of carbon nanotubes positively 
correlates with water content, and as the diameter of carbon nanotubes in the sample 
decreases, the effect of water content on the electrical conductivity of carbon nanotube 
cement mortar becomes less. 

Corrosion resistance. CNTs can improve the corrosion resistance of construction materials 
such as metals, concrete and ceramics. CNTs can be added to building materials in the form of 
a nanofiller that forms a protective layer on the surface of the material. This layer prevents 
water, acids and other aggressive media from penetrating the interior of the material and 
protects it from corrosion [509,510]. 

Table 7 presents the results of studies related to the introduction of CNTs into various 
materials. Various materials such as concrete, epoxy, wood, rubber, brick, ceramic, steel and 
asphalt coating were investigated with respect to their properties after the introduction of 
CNT in different concentrations. 

Recent research findings have demonstrated the positive impact of incorporating carbon 
nanotubes (CNTs) into various materials. This inclusion has led to enhancements in 
mechanical properties, as well as safeguarding against corrosion and fungal growth. However, 
determining the optimal concentration of CNTs in each material necessitates further 
investigation. These research outcomes serve as a foundation for subsequent studies and the 
optimization of materials containing CNTs. The integration of CNTs can substantially enhance 
the properties of diverse materials, ultimately contributing to the development of more robust 
and secure structures in the future. 
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The utilization of CNTs in building materials holds both economic and environmental 
advantages. On one hand, CNTs can augment the properties of construction materials, 
rendering them stronger, more corrosion-resistant, wear-resistant, and durable. 
Consequently, this can significantly diminish the costs associated with repairing and replacing 
such structures, thereby proving cost-effective. Additionally, CNTs can enhance the thermal 
characteristics of materials, facilitating energy savings and reduced expenditures on heating 
and air conditioning. 

Nevertheless, the production of CNTs can be expensive and resource-intensive, potentially 
escalating the costs of CNT-infused building materials. Moreover, it is crucial to consider 
environmental factors, such as the ecological and health impacts of producing and utilizing 
such materials. Certain methods employed in CNT production may generate hazardous waste, 
emissions, and even disrupt ecosystems. Consequently, economic and environmental aspects 
must be carefully evaluated when employing CNTs to strengthen building materials. Striking 
a balance between economic efficiency and environmental safety is imperative when selecting 
construction materials. 

Table 7. Construction materials with CNT 

Material CNT content Short Description Source 

Concrete 

0.10 wt.%, 0.15 
wt.% 

CNTs have been found to slow the propagation of 
microcracks by forming bridges through microcracks in 

concrete. 
[511] 

0, 0.03, 0.08, 0.15, 
0.25 wt% 

The results showed that concrete prepared with high 
CNT content of 0.15 and 0.25 wt% increased flexural 
strength by more than 100% compared to concrete 

with 0% CNT. 

[512] 

0.03 to 0.5 wt% 

The results showed that 0.03% CNTs with long-term 
treatment increased the compressive, flexural, and 

tensile strength of conventional concrete by 23, 29, and 
20%. The analysis also showed that using less CNTs 

(0.03 and 0.08 wt%) gave higher strength results 
regardless of the nanofiber treatment. 

[513] 

0.05-0.1 wt% 

It has been demonstrated that 0.05-0.1% CNTs 
effectively improve the tested properties, increasing 

the compressive, bending and cleavage strength as well 
as the fracture energy and modulus of elasticity by up 

to 23%, 18%, 27%, 42% and 15%, respectively. 

[514] 

0.01, 0.02 , 0.03 
wt% 

The results of the experimental work showed that the 
introduction of CNT led to an increase in the 

compressive and tensile strength of the samples 
compared with the control sample. 

[515] 

Epoxy 

0.107, 0.213 and 
0.425 vol.% 

The maximum synergistic effect of carbon and ceramic 
fillers on the dielectric properties of the epoxy-based 

composite was detected at a CNT content of 0.213 
vol.%. 

[516] 

0.1, 0.5 and 1 wt% 

The results showed that the greatest improvement in 
the mechanical properties of the CNT/epoxy resin 

composite was observed in the sample with 0.5 wt% 
CNT, which had a tensile strength of 61 MPa and 

Young's modulus equal to 1.8 GPa. 

[517] 

0.50 wt% 

The tensile strength and toughness of epoxy 
nanocomposites with 0.50 wt% MWNTs improved by 

21% and 46%, respectively, compared to conventional 
epoxy. 

[518] 

Wood 0.2% 
Antifungal tests showed that stronger growth 

inhibition was obtained for samples treated with 0.2% 
[519] 
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Material CNT content Short Description Source 

MWNT_ZnO + solution. The most effective treatment is 
a concentration of 0.2% nanocomposite applied with a 
brush. Thus, protection of wood against mold and fungi 

was achieved, while providing improved mechanical 
strength and water protection properties. 

Silicone 
Rubber 

1.25, 5.5, 7.5, 9.5 
wt% 

The results show that the proposed mixed carbon 
nanoconductive silicone rubber has good properties 

and great application prospects. 
[520] 

Brick 0.01% 
The compression strength of the MUNT-added bricks 

was 53.9% and 45.52% higher compared to 
commercially available and traditional bricks. 

[521] 

Ceramics 0.1, 4 wt% 

The thermal conductivities of nanocomposites with 
different amounts of carbon nanotubes (0, 1 and 4 

wt%) were investigated. Thermal conductivity 
increases with increasing temperature, 1 wt% 

CNT/silica nanocomposite provides the highest 
thermal conductivity. 

[522] 

Steel 

0.05, 0.1, 0.3, 0.5 
wt% 

Among all the samples tested, the lowest corrosion rate 
was achieved at 0.1 wt% CNT nanofluid, while the 

highest value was obtained at 0.5 wt% CNT nanofluid. 
At higher CNT concentrations, the accumulated CNTs 

can form active anode sites and increase the corrosion 
rate. 

[523] 

0.2, 0.5, 1.0, 2.0 
wt% 

The composite samples showed increased wear 
resistance compared to the primary and commercial 

grades. 
[524] 

Asphalt 
surface 

0.1, 0.5, 1 wt% 

The study demonstrates that the introduction of CNT 
into asphalt cement improves asphalt concrete 

performance in both hot and cold weather, which in 
turn extends pavement life and saves maintenance 

costs. 

[525] 

 

Therefore, the utilization of CNTs to reinforce building materials represents a promising 
frontier in modern engineering. This technology presents unique opportunities to enhance 
material properties, including strength and fracture resistance. However, the successful 
implementation of this technology necessitates further research on the economic and 
environmental efficiency of producing and employing CNT-infused materials. Overall, the 
integration of CNTs in building materials instills hope for the creation of more durable and 
safer structures in the future. 

3.6. Challenges and Future Directions in CNT Applications for Building Materials 

The production and application of Carbon Nanotubes (CNTs) in building materials face several 
significant challenges. While CNTs hold immense promise for revolutionizing the construction 
industry, these challenges must be addressed for their widespread adoption. Here are some 
of the key issues: 

• Large-Scale Production and Cost: Achieving large-scale production of high-quality 
CNTs at a reasonable cost is a major challenge. Current methods, like chemical vapor 
deposition (CVD), have issues with efficiency, high synthesis temperatures, and 
limited control over properties. 

• Control of CNT Growth: Precise control over the growth process is needed to prevent 
the formation of unwanted carbon structures alongside desired CNTs, as these 
impurities can affect properties of construction materials. 
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• Uniform Dispersion: Ensuring uniform dispersion of CNTs within construction 
materials is crucial. Agglomeration can affect mechanical performance and poses 
health and safety risks to workers. 

• Interface Bonding: Establishing a robust interface between CNTs and the matrix is 
essential for maintaining mechanical strength. 

• Health and Safety Risks: The potential health and safety risks associated with CNTs 
must be carefully managed. 

• Long-Term Stability and Durability: Evaluating the long-term performance of CNT-
based composites under different environmental conditions is crucial to ensure 
durability. 

• Cost-Effectiveness: The high cost of CNTs, processing steps, and potential alterations 
needed for large-scale production can impact economic feasibility. 

To overcome these challenges and fully realize the potential of CNT-based building materials, 
recommendations for future research and development include: 

• Optimization of CNT Dispersion Techniques: Investigate innovative dispersion 
methods to prevent agglomeration, such as functionalization, surfactants, and 
advanced mixing techniques. 

• Enhancement of Interfacial Bonding: Develop strategies for improving the bond 
between CNTs and the matrix to optimize mechanical properties. 

• Scalable Production Processes: Explore cost-effective synthesis methods and 
processing approaches that can be scaled up without compromising CNT quality. 

• Safety and Environmental Impact Assessment: Thoroughly assess health and safety 
risks, develop safety protocols, and conduct environmental impact assessments. 

• Multifunctional Material Development: Explore the potential for multifunctional 
CNT-based building materials, such as self-healing, self-cleaning, or thermal 
regulation capabilities. 

• Long-Term Durability Studies: Conduct studies to evaluate the long-term stability 
and durability of CNT-based building materials under various environmental 
conditions.  

4. Conclusions 

CNTs have exceptional mechanical properties, making them attractive for construction. 
Adding CNTs to concrete enhances its strength and durability. However, challenges include 
higher material costs and the need for specialized methods to ensure proper distribution. 
Establishing standards and regulations for safety and reliability is crucial. Further research 
will determine better techniques for incorporating CNTs into building materials. Utilizing 
CNTs in construction has the potential to create more resilient structures. 

The optimal concentration of CNTs to enhance the properties of different materials is also a 
crucial consideration and may vary depending on the material type and desired 
characteristics. Here are a few examples: 

Polymeric materials: For polymers like polyethylene or polypropylene, an optimal 
concentration ranging from 0.5% to 5% is typically recommended. This concentration range 
achieves improved mechanical properties such as strength and stiffness, along with enhanced 
thermal and electrical conductivity. In the case of elastomers, such as rubber materials, the 
optimal CNT concentration is generally lower, usually between 0.1% to 1%, which enhances 
the elastic and mechanical properties, such as resistance to rupture and deformation. 

Metallic materials: In the case of metals like aluminum or iron, the optimal concentration of 
CNTs typically falls within the range of 0.5% to 2%. Incorporating CNTs within metallic 
materials can enhance their strength, hardness, thermal conductivity, and electrical 
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conductivity. It is also important to ensure proper dispersion of CNTs in the metal matrix to 
achieve homogeneity and uniform reinforcement of properties. 

Ceramic materials: When it comes to incorporating carbon nanotubes (CNTs) into ceramic 
materials such as oxides, carbides, or nitrides, it is recommended to add them in the range of 
1% to 10%. While this range can enhance properties such as strength, hardness, thermal 
conductivity, and dielectric properties, it is important to carefully consider the potential 
drawbacks. The use of a high concentration of 10% CNTs in ceramic materials can lead to 
increased brittleness, affecting the material's integrity and processing. Additionally, it should 
be noted that such a high concentration may also significantly impact the overall cost of the 
material. Given these considerations, it would be advisable to reassess and fine-tune this 
concentration range to strike a balance between material properties and cost-effectiveness. 

The optimal concentration of CNTs can vary based on specific conditions. Further studies and 
laboratory experiments will aid in determining the optimal CNT concentration for particular 
materials. Advancements in catalyst development play a significant role in improving the 
chemical vapor deposition (CVD) process for producing high-quality CNTs. Catalysts influence 
the growth, structure, morphology, and properties of CNTs. One approach involves employing 
novel catalysts based on metals or alloys such as nickel, iron, cobalt, molybdenum, and their 
compounds. These materials exhibit high activity and stability, contributing to more efficient 
CNT growth. Precious metal-based catalysts like platinum or palladium are also being 
explored to enhance CNT quality and achieve higher-quality single-layer and defect-free 
growth. 

A comprehensive examination of catalyst shape and structure is crucial to optimize the CVD 
process and improve CNT quality. Studies have shown that the use of nanostructured 
catalysts, such as nanoparticles, nanowires, or nanofilms, facilitates more uniform and 
controlled CNT growth. Additionally, modifying the catalyst's surface with layers of other 
materials like oxides or carbides has been considered. This approach helps improve catalyst 
adhesion and stability, while also providing control over CNT growth. Optimizing the gas 
mixture composition used in the CVD process can significantly impact CNT growth and 
quality. The addition of different gases, such as hydrocarbons, inert gases, or decomposition 
intermediates, aids in controlling growth rate, structure, and dispersion of CNTs. 

Practical applications of CNT-reinforced materials in construction include: 

Concrete composites: CNTs can be employed to reinforce concrete, creating composite 
materials with high strength and resistance to breakage. This leads to improved mechanical 
properties of concrete. 

Reinforcement of metal structures: Introducing CNTs into metal materials enhances their 
mechanical properties, such as strength and stiffness, thereby improving the reliability and 
durability of structures. 

Heat and sound insulation: The use of CNTs in construction has the potential to improve heat 
and sound insulation properties. Despite encountering technical challenges, the utilization of 
CNTs in construction holds significant potential for creating stronger, more stable, and 
durable structures. Ongoing research and development efforts will enhance the technology 
and expand the use of CNTs in construction in the future. 
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