

Research on Engineering Structures & Materials

journal homepage: http://www.jresm.org

Estimating vibration period of reinforced concrete moment resisting frame buildings

Thaer Alrudaini

Online Publication Date: 30 August 2023 URL: <u>http://www.jresm.org/archive/resm2023.724st0331.html</u> DOI: <u>http://dx.doi.org/10.17515/resm2023.724st0331</u>

Journal Abbreviation: Res. Eng. Struct. Mater.

To cite this article

Alrudaini T. Estimating vibration period of reinforced concrete moment resisting frame buildings. *Res. Eng. Struct. Mater.*, 2023; 9(4): 1417-1432.

Disclaimer

All the opinions and statements expressed in the papers are on the responsibility of author(s) and are not to be regarded as those of the journal of Research on Engineering Structures and Materials (RESM) organization or related parties. The publishers make no warranty, explicit or implied, or make any representation with respect to the contents of any article will be complete or accurate or up to date. The accuracy of any instructions, equations, or other information should be independently verified. The publisher and related parties shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with use of the information given in the journal or related means.

Published articles are freely available to users under the terms of Creative Commons Attribution - NonCommercial 4.0 International Public License, as currently displayed at <u>here (the "CC BY - NC")</u>.

Research on Engineering Structures & Materials

journal homepage: http://www.jresm.org

Research Article

Estimating vibration period of reinforced concrete moment resisting frame buildings

Thaer Alrudainia

Department of Civil Engineering, University of Basrah, Basrah, Iraq

Article Info	Abstract
Article history:	One of the initial steps in the analysis and design of buildings subjected to lateral loads is estimating the fundamental vibration period of the building. Design codes and standards recommend conducting modal analysis to investigate the
Received 31 Mar 2023 Accepted 21 Aug 2023	fundamental vibration period of the building. On the other hand, these design codes and standards specify simple empirical models that relate the fundamental period to the building height as an alternative approach to modal analysis. In this
Keywords:	study, extensive modal analyses were conducted to investigate the fundamental period of 382 building models. Modal analyses were conducted to evaluate the
Fundamental period; Modal analysis; Moment resisting frame; Vibration; Reinforced concrete buildings	effect of design parameters on the fundamental vibration period of reinforced concrete moment resisting frame buildings. The effect of each design parameter was identified using sensitivity analysis. Finally, a simple model was developed in this study based on the results of modal analysis to estimate the fundamental vibration period of the buildings. Main design parameters including building height, spans length, columns elasticity and columns size were considered in the developed model. The proposed model was validated against modal analysis in which a mean value of the proposed model to modal analysis predictions ratio equal to 1.00 \pm 0.155 with coefficient of variation equal to 15.38 were obtained.

© 2023 MIM Research Group. All rights reserved.

1. Introduction

The fundamental vibration period is a main parameter that appears in base shear and lateral forces equations used for the analysis and design of buildings subjected to either wind loads or seismic excitation. The fundamental vibration period is mainly depending on stiffness and mass of the building which is a function of several parameters including building height, structural system, material properties, members dimensions and plan area of the building. Design codes and standards recommended using either modal analysis or a specified simple time period building height relation in order to predict the fundamental period of the buildings [1–3]. Researchers used recorded vibration time during earthquakes or ambient vibration experiments for developing empirical models. Goel and Chopra [4] and Salama [5] considered vibration of reinforced concrete moment-resisting frame buildings during earthquake in different regions in the United States. Hong and Hwang [6] and Chiauzzi et al. [7] considered vibration of reinforced concrete buildings during earthquake in Taiwan and Canada, respectively. On the other hand, several models were developed based on the recorded ambient vibrations of the buildings in different regions in the world. Guler et al. [8], Inel et al. [9] and Kaplan et al. [10] considered buildings in Turkey. Velani and Ramancharla [11] and Velani and Kumar [12] considered buildings in India. Jalali and Milani [13], Gallipoli et al. [14], Al-Nimry et al. [15] and Pan et al. [16] considered ambient vibration of buildings in Iran, Europe, Jordan and Singapore, respectively. Almost all the previous developed models give direct relations of the fundamental vibration period to buildings height. However, it was shown that previous simple models resulted in significantly large variations in predictions [17–24].

Several models to predict fundamental vibration time were developed in the literature based on modal analysis considering numerical modelling of the buildings. Crowley and Pinho [25] and Crowley and Pinho [26] studied several existing European buildings and developed an equation that relates fundamental vibration periods to building height. Amanat and Hoque [27] modified code specified fundamental period to building height relation by introducing span length, number of spans and infill amount factors based on finite element modeling and modal analyses. Rimal and Maskey [28] considered building height, building plan and number of bays in their proposed model that developed based on finite element modelling and modal analyses results. Koçak et al. [29] proposed empirical relation of fundamental period to building height, modulus of elasticity of infill walls and thickness of the infill walls based on numerical analysis considering 270 building models. Kewate and Murudi [30] modeled 21 existing reinforced concrete moment resisting frame buildings in India and proposed an equation that relates the fundamental vibration period to building height. Multiple fundamental period to building height relations for different seismic intensities were developed by Verderame et al. [31] based on modal analyses results. Mohamed et al. [32] used applied element method in modeling reinforced concrete buildings and conducted nonlinear dynamic analysis in which the fundamental period was extracted from the time history curve. An equation relates fundamental vibration period to building height, building width to length ratio and column size was developed. Joshi et al. [33] analyzed 206 building models to generate vibration period data and used the generated data in genetic programming for developing multiple models according to different limits of building height. Also, Hadzima-Nyarko and Draganic [34] used genetic algorithms to develop a fundamental period formulas based on the modal analysis results of finite element models. Asteris et al. [35] proposed using artificial neural network to predict the fundamental vibration period of buildings considering the effect of several design parameters including building height, spans length, number of spans, infill strength and amount. The developed artificial neural network model was trained and verified against numerical modeling and modal analyses results. Al-Balhawi and Zhang [36] investigated and developed a vibration period model for reinforced concrete tall buildings having moment resisting frames with shear walls system. Noor et al. [37] modeled 21 existing reinforced concrete buildings in India and proposed simple fundamental period to building height model based on the analyses results. Sharma et al. [38] developed artificial neural network model to predict fundamental period of reinforced concrete buildings based on finite element analysis results of modal analyses considering the effect of pile soil interaction. Gravett et al. [39] developed fundamental period formula based on the analyses results of 475 building models considering the effect of soil structure interaction and foundation types including separate footings and mat foundations. Ruggieri et al. [40] modeled newly constructed 40 reinforced concrete buildings using finite element method and conducted modal analyses. The results were utilized in regression analysis to derive a model to estimate fundamental period of buildings. Mirrashid and Naderpour [41] proposed fundamental period models of infilled reinforced concrete buildings using artificial neural network and neuro fuzzy methods considering the influence of number of stories, number of spans, spans length, infill stiffness and ratio of openings to infill.

In this study, recorded vibration periods of buildings located in different regions in the world were collected and compared with predictions of different models. Also, extensive modal analyses were conducted considering 382 reinforced concrete moment resisting frame (RC MRF) building models developed in this study to investigate the effect of different design parameters on the fundamental vibration period of the buildings. Models were built and modal analyses were conducted using commercially available structural

analysis and design software SAP 2000 [42]. Sensitivity analyses were conducted in which the effects of main design parameters including building height, spans length, columns stiffness was considered. The main objective of this study was to develop a simple but more precise model to estimate the fundamental vibration period of reinforced concrete moment resisting frame buildings based on the results of the modal analyses and considering the main influencing design parameters. The developed model is recommended for practicing engineers as an alternative to modal analysis.

The following section includes collecting some of actual records of fundamental periods as well as exploring several available models to predict fundamental period in which the results are compared. The third section includes presenting numerical modeling and modal analyses to investigate the fundamental period of 382 building models developed in this study. A proposed model in this study to estimate the fundamental vibration period is presented in fourth section followed by section five that includes the sensitive analysis to investigate the influence of each design parameter of the proposed model has verified in the sixth section. Finally, study considerations are highlighted and main conclusions points are drawn.

2. Available Period of Vibration Models

The design codes and standards specify different fundamental period to building height relations [1–3]. Also, several models were presented in the literature. Most of the available models consider the fundamental period of the building as a function of to its height or a number of stories. The available models were derived by regression analysis considering actual vibration records during earthquakes or ambient vibration of buildings located in different regions in the world. Table 1 presents some of these available models. The terms T_f and H represent the time of the fundamental vibration period and the building height, respectively.

Researcher	Model	Location
ASCE/SEI 7-16 [1]	$T_f = 0.0466 H^{0.9}$	USA
Eurocode 8 [2]	$T_f = 0.075 H^{3/4}$	Europe
FEMA 450 [3]	$T_f = 0.0524 H^{0.9}$	USA
Hong and Hwang [6]	$T_f = 0.0294 H^{0.804}$	Taiwan
Michel et al. [43]	$T_f = 0.013 H$	France
Chiauzzi et al. [7]	$T_f = 0.037 H^{0.76}$	Canada
Guler et al. [8]	$T_f = 0.026 H^{0.9}$	Turkey
Velani and Ramancharla [11]	$T_f = 0.009 H^{1.1}$	India
Inel et al. [9]	$T_f = 0.0343 H^{0.762}$	Turkey

Table 1. Available vibration time model

To evaluate the validity of the available models, predictions using these models are compared with actual records gathered from published works. Data of vibration period of 255 RC MRF buildings located in different regions in the world were collected and presented in Table 2 with measured time periods illustrated in Fig. 1. A comparison between predictions using available models and actual records of fundamental vibration time is presented in Fig. 2. Fig. 2 shows that almost all the existing formulas resulted in substantially different predictions. Also, a significant discrepancy between the predictions and measured values have been demonstrated. Consequently, adopting simple relation of building height to fundamental period resulted in inadequate predictions.

Reference	Location	No. of data	Building height (m)
Goel and Chopra [4]	USA	34	9 - 56
Hong and Hwang [6]	Taiwan	19	27 – 77
Jalali and Milani [13]	Iran	11	17 – 53
Guler et al. [8]	Turkey	6	12 - 30
Chiauzzi et al. [7]	Canada	12	12 - 70
Gallipoli et al. [14]	Europe	113	3 – 51
Ditommaso et al. [44]	Italy	14	5.2 – 24.7
Al-Nimry et al. [15]	Jordan	25	4.4 - 20.5
Velani and Ramancharla [11]	India	21	72 – 147
	Total	255	3 - 147

Table 2. Data of measured fundamental period of RC MRF buildings published in the literature

Fig. 1 Recorded fundamental vibration time of RC MRF buildings located in different regions in the world

Fig. 2 Comparison between the recorded and predicted fundamental vibration time of RC MRF buildings

3. Numerical Investigations

In this study, modal analysis was conducted considering 382 models of reinforced concrete moment resisting frame buildings to determine the fundamental time period. Buildings were modelled using three-dimensional finite elements using the structural analysis and design software SAP2000 [42]. Beams and columns were simulated using three-dimensional frame elements and slabs were modelled using three-dimensional plate rectangular elements. The slabs thickness was assigned equal to 180 mm for all building models and the beams web width and total depth were set equal to 0.3 m and 0.50 m, respectively. The parametric investigations include the effect of building height, column size, span length and material properties on the time period of the buildings (T). The considered height of each storey of was 3 m. Table 3 gives the limits of the design parameters of the building models that considered in the investigations. Figure 3 illustrates a model structure of the buildings using the structural analysis and design program SAP2000 [42]. Table 4 illustrates the details of the parameters of the considered models in this study including height of the building (H), the span length (L), the

compressive strength of concrete (f'c), the side dimension of the column (D) and the number of spans in orthogonal directions (Bx and By). Results of modal analyses for the considered models are illustrated in Table 4 and Fig. 4. Fig. 4 shows very wide range of predicted vibration periods corresponding to building height. The variation in the fundamental period can be seen to stem from the effect of different design parameters other than the building height. Also, it is shown that the numerical results presented in Fig. 4 cover the range of almost all measured values that shown in Figs. 1 and 2.

Table 3. Limits of the design parameters of the considered building models in the numerical analysis

Parameter		Values	Range
Building height (m)	3, 15, 30, 45, 60, 90	3 – 90
Columns side dimens	ion (m)	0.3, 0.4, 0.5, 0.6, 0.7,	0.3 – 1.2
		0.8, 0.9, 1.0, 1.2	
Compressive strength of con	30, 40, 50, 60, 70,	30 – 90	
	80, 90		
Span length (m	4, 5, 6, 7	4 – 7	
(a)	(b)	(c)	

Fig. 3 Building Model considered in this study using SAP2000 [42], a) plan view, b) side view and c) three dimensional view

Fig. 4 Comparison of numerical fundamental period of buildings with different specified models

Mod.	Н	L	F'c	D	Bx	By	Т	Mod.	Н	L	F'c	D	Bx	By	Т
	(m)	(m)	(MPa)	(m)	(m)	(m)	(sec.)		(m)	(m)	(MPa)	(m)	(m)	(m)	(sec.)
1	3	4	70	03	3	3	01556	59	30	4	70	0.6	3	3	0 7301
2	15	1	70	0.3	3	3	0.6179	60	45	1	70	0.6	3	3	1 1 1 6 9
2	20	т 4	70	0.5	2	2	1 2217	61	40		70	0.0	2	2	1 5005
3	30	4	70	0.5	3	2	1.2317	61	00	4	/0	0.0	3	3	1.5995
4	45	4	70	0.3	3	3	1.8965	62	15	4	60	0.6	3	3	0.3532
5	15	4	60	0.3	3	3	0.6421	63	30	4	60	0.6	3	3	0.7588
6	30	4	60	0.3	3	3	1.2800	64	45	4	60	0.6	3	3	1.1919
7	45	4	60	0.3	3	3	1.9710	65	60	4	60	0.6	3	3	1.6623
8	15	4	50	0.3	3	3	0.6720	66	15	4	50	0.6	3	3	0.3697
9	30	4	50	0.3	3	3	1 3 3 9 7	67	30	4	50	0.6	3	3	0 7942
10	45	1	50	0.5	2	2	2 0620	60	15	1	50	0.0	2	2	1 2474
10	45	4	40	0.5	3	2	2.0030	00	43	4	50	0.0	2	2	1.24/4
11	3	4	40	0.3	3	3	0.1789	69	60	4	50	0.6	3	3	1./399
12	15	4	40	0.3	3	3	0.7106	70	15	4	40	0.6	3	3	0.3909
13	30	4	40	0.3	3	3	1.4166	71	30	4	40	0.6	3	3	0.8397
14	15	4	30	0.3	3	3	0.7635	72	45	4	40	0.6	3	3	1.3190
15	30	4	30	0.3	3	3	1.5222	73	60	4	40	0.6	3	3	1.8397
16	15	4	70	0.4	3	3	0.4393	74	15	4	30	0.6	3	3	0.4200
17	30	4	70	0.4	3	3	0.8972	75	30	4	30	0.6	3	3	0.9023
10	45	1	70	0.1	3	3	1 2062	76	45	1	30	0.6	3	3	1 4174
10	15	4	/0 ()	0.4	3	2	1.3903	70	43	4	20	0.0	2	2	1.41/4
19	15	4	60	0.4	3	3	0.4566	//	60	4	30	0.6	3	3	1.9769
20	30	4	60	0.4	3	3	0.9325	78	15	5	70	0.4	3	3	0.5088
21	45	4	60	0.4	3	3	1.4511	79	30	5	70	0.4	3	3	1.0393
22	60	4	60	0.4	3	3	2.0288	80	45	5	70	0.4	3	3	1.5576
23	3	4	50	0.4	3	3	0.1063	81	60	5	70	0.4	3	3	2.1995
24	15	4	50	0.4	3	3	0.4779	82	15	5	60	0.4	3	3	0.5288
25	30	4	50	0.4	3	3	0.9760	83	30	5	60	0.4	3	3	1.0801
26	45	4	50	0.4	3	3	1,5188	84	45	5	60	0.4	3	3	1.6188
27	60	4	50	0.4	3	3	2 1 2 3 4	85	60	5	60	04	3	3	2 2859
20	2	1	40	0.1	3	3	0.1124	86	15	5	50	0.1	3	3	05534
20	1	4	40	0.4	3	2	0.1124	00	20	5	50	0.4	2	2	1 1 2 0 5
29	15	4	40	0.4	3	3	0.5053	87	30	5	50	0.4	3	3	1.1305
30	30	4	40	0.4	3	3	1.0319	88	45	5	50	0.4	3	3	1.6943
31	45	4	40	0.4	3	3	1.6059	89	15	5	40	0.4	3	3	0.5852
32	60	4	40	0.4	3	3	2.2452	90	30	5	40	0.4	3	3	1.1953
33	15	4	30	0.4	3	3	0.5430	91	15	5	30	0.4	3	3	0.6288
34	30	4	30	0.4	3	3	1.1089	92	30	5	30	0.4	3	3	1.2845
35	45	4	30	0.4	3	3	1.7257	93	15	5	70	0.5	3	3	0.4235
36	60	4	30	0.4	3	3	2 4 1 2 7	94	30	5	70	0.5	3	3	0.8851
27	15	1	70	0.1	2	2	02711	05	15	5	70	0.5	2	2	1 2257
37	15	4	70	0.5	2	2	0.3711	93	45	5	70	0.5	2	2	1.0050
38	30	4	70	0.5	3	3	0.7762	96	60	5	/0	0.5	3	3	1.8852
39	45	4	70	0.5	3	3	1.2138	97	15	5	60	0.5	3	3	0.4401
40	60	4	70	0.5	3	3	1.6964	98	30	5	60	0.5	3	3	0.9198
41	15	4	60	0.5	3	3	0.3857	99	45	5	60	0.5	3	3	1.3882
42	30	4	60	0.5	3	3	0.8067	100	60	5	60	0.5	3	3	1.9593
43	45	4	60	0.5	3	3	1.2615	101	15	5	50	0.5	3	3	0.4607
44	60	4	60	0.5	3	3	1.7631	102	60	5	80	0.7	3	3	1.1800
45	15	4	50	0.5	3	3	0 4037	103	30	5	50	0.5	à	ą	0.9627
15	20	4	50	0.5	2	2	0.1057	104	45	- г	50	0.5	2	2	1 45 20
40	30 4 E	4	50	0.5	2	2	1 2202	104	45	5	50	0.5	2	2	1.4529
47	45	4	50	0.5	3	3	1.3203	105	60	5	50	0.5	3	3	2.0507
48	60	4	50	0.5	3	3	1.8453	106	15	5	40	0.5	3	3	0.4871
49	15	4	40	0.5	3	3	0.4269	107	30	5	40	0.5	3	3	1.0180
50	30	4	40	0.5	3	3	0.8928	108	45	5	40	0.5	3	3	1.5363
51	45	5	60	07	6	2	0 9160	100	60	5	40	05	2	э	2 1692
21	40	3	40	0.7	0	3	0.7100	109	15	5	40	0.5	3	3	2.1003
52	45	4	40	0.5	3	3	1.3961	110	15	5	30	0.5	3	3	0.5234
53	60	4	40	0.5	3	3	1.9512	111	30	5	30	0.5	3	3	1.0939
54	15	4	30	0.5	3	3	0.4587	112	15	5	70	0.6	3	3	0.3831
55	30	4	30	0.5	3	3	0.9594	113	30	5	70	0.6	3	3	0.8215
56	45	4	30	0.5	3	3	1.5002	114	45	5	70	0.6	3	3	1.2487
57	60	4	30	05	3	3	2.0967	115	60	5	70	0.6	3	3	1.7591
58	15	4	70	0.6	3	3	03300	116	15	5	60	0.6	2	2	0 3981

Table 4. Details of the design parameters of the considered models

Table 4. Continued	
--------------------	--

Mod.	Н	L	F'c	D	Bx	By	Т	Mod.	Н	L	F'c	D	Bx	By	Т
	(m)	(m)	(MPa)	(m)	(m)	(m)	(sec.)		(m)	(m)	(MPa)	(m)	(m)	(m)	(sec.)
117	30	5	60	0.6	3	3	0.8538	172	15	6	30	0.5	3	3	0.5991
118	45	5	60	0.6	3	3	1.2977	173	30	6	30	0.5	3	3	1.2262
119	60	5	60	0.6	3	3	1.8283	174	15	6	70	0.6	3	3	0.4339
120	15	5	50	0.6	3	3	0.4167	175	30	6	70	0.6	3	3	0.9108
121	30	5	50	0.6	3	3	0.8936	176	45	6	70	0.6	3	3	1.4051
122	45	5	50	0.6	3	3	1.3582	177	60	6	70	0.6	3	3	1.9230
123	60	5	50	0.6	3	3	1.9135	178	15	6	60	0.6	3	3	0.4510
124	15	5	40	0.6	3	3	0.4406	179	30	6	60	0.6	3	3	0.9466
125	30	5	40	0.6	3	3	0.9449	180	45	6	60	0.6	3	3	1.4603
126	45	5	40	0.6	3	3	1.4362	181	60	6	60	0.6	3	3	1.9986
127	60	5	40	0.6	3	3	2.0233	182	15	6	50	0.6	3	3	0.4720
128	15	5	30	0.6	3	3	0.4734	183	30	6	50	0.6	3	3	0.9908
129	30	5	30	0.6	3	3	1.0171	184	45	6	50	0.6	3	3	1.5284
130	45	5	30	0.6	3	3	1.5433	185	60	6	50	0.6	3	3	2.0918
131	45	5	70	0.7	3	3	1.2159	186	15	6	40	0.6	3	3	0.4991
132	60	5	70	0.7	3	3	1.7121	187	30	6	40	0.6	3	3	1.0476
133	45	5	60	0.7	3	3	1.2637	188	45	6	40	0.6	3	3	1.6161
134	60	5	60	0.7	3	3	1.7794	189	60	6	40	0.6	3	3	2.2118
135	45	5	50	0.7	3	3	1.3226	190	15	6	30	0.6	3	3	0.5363
136	60	5	50	0.7	3	3	1.8624	191	30	6	30	0.6	3	3	1.1257
137	45	5	40	0.7	3	3	1.3985	192	45	6	30	0.6	3	3	1.7366
138	60	5	40	0.7	3	3	1.9692	193	45	6	70	0.7	3	3	1.3542
139	45	5	30	0.7	3	3	1.5028	194	60	6	70	0.7	3	3	1.8566
140	15	6	70	0.4	3	3	0.5899	195	45	6	60	0.7	3	3	1.4075
141	30	6	70	0.4	3	3	1.1811	196	60	6	60	0.7	3	3	1.9295
142	45	6	70	0.4	3	3	1.8003	197	45	6	50	0.7	3	3	1.4731
143	60	6	70	0.4	3	3	2.4584	198	60	6	50	0.7	3	3	2.0195
144	15	6	60	0.4	3	3	0.6131	199	45	6	40	0.7	3	3	1.5576
145	30	6	60	0.4	3	3	1.2275	200	60	6	40	0.7	3	3	2.1354
146	45	6	60	0.4	3	3	1.8711	201	45	6	30	0.7	3	3	1.6737
147	60	6	60	0.4	3	3	2.5549	202	15	7	70	0.4	3	3	0.6458
148	15	6	50	0.4	3	3	0.6417	203	30	7	70	0.4	3	3	1.2821
149	30	6	50	0.4	3	3	1.2847	204	60	5	90	0.7	3	3	1.1400
150	45	6	50	0.4	3	3	1.9583	205	45	7	70	0.4	3	3	1.9654
151	15	6	40	0.4	3	3	0.6785	206	60	7	70	0.4	3	3	2.6429
152	30	6	40	0.4	3	3	1.3585	207	15	7	60	0.4	3	3	0.6711
153	45	5	70	0.7	6	3	0.8800	208	30	7	60	0.4	3	3	1.3325
154	15	6	30	0.4	3	3	0.7291	209	45	7	60	0.4	3	3	1.9803
155	30	6	30	0.4	3	3	1.4598	210	15	7	50	0.4	3	3	0.7024
156	15	6	70	0.5	3	3	0.4847	211	30	7	50	0.4	3	3	1.3947
157	30	6	70	0.5	3	3	0.9921	212	45	7	50	0.4	3	3	2.0726
158	45	6	70	0.5	3	3	1.5212	213	15	7	40	0.4	3	3	0.7427
159	60	6	70	0.5	3	3	2.0806	214	30	7	40	0.4	3	3	1.4747
160	15	6	60	0.5	3	3	0.5038	215	15	7	70	0.5	3	3	0.5162
161	30	6	60	0.5	3	3	1.0311	216	30	7	70	0.5	3	3	1.0452
162	45	6	60	0.5	3	3	1.5810	217	45	7	70	0.5	3	3	1.5632
163	60	6	60	0.5	3	3	2.1623	218	60	7	70	0.5	3	3	2.1723
164	15	6	50	0.5	3	3	0.5273	219	15	7	60	0.5	3	3	0.5364
165	30	6	50	0.5	3	3	1.0792	220	30	7	60	0.5	3	3	1.0862
166	<u>45</u>	6	50	0.5	2	2	1 6547	220	45	7	60	0.5	2	2	1 6246
167	-+-5	e E	50	0.5	Э	2	1.0041	221	40 60	7	60	0.5	2	2	2.0240
169	1	e e	10	0.5	с 2	ა ი	2.2032	222	15	7	50 E0	0.5	э 2	2	2.2370 0 E 6 1 E
100	72	b C	40	0.5	3	3	0.55/5	223	12	7	50	0.5	3	3	0.5015
169	30	6	40	0.5	3	3	1.1411	224	30	/	50	0.5	3	3	1.1369
170	45	6	40	0.5	3	3	1.7496	225	45	/	50	0.5	3	3	1./003
171	60	6	40	0.5	3	3	2.3930	226	60	7	50	0.5	3	3	2.3629

Alrudaini/ Research on Engineering Structures & Materials 9(4) (2023) 1417-1432

			E.	P	P	P	m	N 1				P	P	P	
Mod.	H	L	FC	D	BX	By	T	Mod.	H	L	FC	D (BX	By	T
	(m)	(m)	(MPa)	(m)	(m)	(m)	(sec.)		(m)	(m)	(MPa)	(m)	(m)	(m)	(sec.)
227	15	7	40	0.5	3	3	0.5937	285	30	4	60	0.7	3	9	0.5080
228	30	7	40	0.5	3	3	1.2021	286	30	4	70	0.7	3	9	0.4890
229	45	7	40	0.5	3	3	1.7979	287	30	4	80	0.7	3	9	0.4730
230	60	7	40	0.5	3	3	2.4985	288	30	4	90	0.7	3	9	0.4590
231	15	7	70	0.6	3	3	0.4540	289	30	4	30	0.6	3	9	0.7140
232	30	7	70	0.6	3	3	0.9398	290	30	4	40	0.6	3	12	0.6640
233	45	7	70	0.6	3	3	1 4144	291	30	4	50	0.6	3	12	0.6280
233	45	7	70	0.0	2	2	1.4144	202	20	4	60	0.0	2	12	0.0200
234	15	7	/0	0.0	3	с С	1.9001	292	20	4	00 70	0.0	2	12	0.0000
235	15	_	60	0.6	3	3	0.4718	293	30	4	70	0.6	3	12	0.5780
236	30	7	60	0.6	3	3	0.9767	294	30	4	80	0.6	3	12	0.5590
237	45	7	60	0.6	3	3	1.4699	295	30	4	90	0.6	3	12	0.5420
238	60	7	60	0.6	3	3	2.0434	296	45	5	30	0.8	3	12	0.9500
239	15	7	50	0.6	3	3	0.4938	297	45	5	40	0.8	3	12	0.8800
240	30	7	50	0.6	3	3	1.0223	298	45	5	50	0.8	3	15	0.8300
241	45	7	50	0.6	3	3	1.5385	299	45	5	60	0.8	3	15	0.8000
242	60	7	50	0.6	3	3	2 1 3 8 6	300	45	5	70	0.8	3	15	0 7 7 0 0
243	15	7	40	0.6	3	3	0 5221	301	45	5	80	0.0	3	15	0.7400
243	20	7	40	0.0	2	2	1 0000	202	15	5	00	0.0	2	15	0.7400
244	30	7	40	0.0	2	2	1.0009	202	45	5	20	0.8	2	15	1.0000
245	45	/	40	0.6	3	3	1.6268	303	45	5	30	0.7	3	15	1.0900
246	60	7	40	0.6	3	3	2.2613	304	45	5	40	0.7	3	15	1.0100
247	15	7	70	0.7	3	3	0.4178	305	45	5	50	0.7	3	15	0.9600
248	30	7	70	0.7	3	3	0.8870	306	90	5	60	1.2	3	3	1.3900
249	45	7	70	0.7	3	3	1.3450	307	45	5	90	0.7	6	3	0.8300
250	60	7	70	0.7	3	3	1.8710	308	45	5	30	0.6	6	3	1.3000
251	15	7	60	0.7	3	3	0.4342	309	45	5	40	0.6	6	3	1,2000
252	30	7	60	07	3	3	0 9219	310	15	5	50	0.6	6	3	1 1/00
252	45	7	60	0.7	2	2	1 2070	211	45	г	50	0.0	6	2	1.1400
255	45	/	60	0.7	3	3	1.39/0	311	45	5	50	0.6	0	3	1.0900
254	60	/	60	0.7	3	3	1.9445	312	45	5	70	0.6	9	3	1.0500
255	45	5	80	0.7	6	3	0.8500	313	45	5	80	0.6	9	3	1.0100
256	15	7	50	0.7	3	3	0.4545	314	45	5	90	0.6	9	3	0.9900
257	30	7	50	0.7	3	3	0.9648	315	3	5	30	0.3	9	3	0.2440
258	45	7	50	0.7	3	3	1.4630	316	3	5	40	0.3	9	3	0.2300
259	60	7	50	07	3	3	2 0352	317	3	5	30	0.25	9	3	0 3300
200	15	, 7	10	0.7	2	2	0.4906	210	3	5	40	0.25	á	2	0.2050
200	10	7	40	0.7	2	2	1.0202	210	1 -	5	20	0.25	0	2	0.3030
261	30	/	40	0.7	3	3	1.0202	319	15	5	30	0.8	9	3	0.3000
262	45	7	40	0.7	3	3	1.5469	320	15	5	40	0.8	12	3	0.2800
263	60	7	40	0.7	3	3	2.1520	321	15	5	50	0.8	12	3	0.2600
264	90	6	70	0.8	3	3	2.7410	322	15	5	60	0.8	12	3	0.2500
265	90	6	70	0.9	3	3	2.7200	323	15	5	70	0.8	12	3	0.2400
266	90	6	80	0.9	3	3	2.6310	324	15	5	80	0.8	12	3	0.2300
267	90	6	90	1	3	3	2.5580	325	15	5	90	0.8	12	3	0.2250
268	90	6	60	0.7	3	3	2.8060	340	15	5	30	0.7	12	3	0.3400
269	90	6	90	12	3	3	2 5970	341	15	5	40	0.7	12	3	0 3200
270	90	6	90	1	3	3	2 5 1 5 0	342	15	5	50	0.7	15	3	0.3000
270	90	4	70	07	3	2	2.5150	343	60	5	60	0.7	2	2	1 1 1 0 0
271	00	4	70 F0	0.7	2	2	2.0330	243	60	5	70	0.0	2	2	1.1100
272	90	4	50	0.7	3	2	2.9600	344	60	5	70	0.0	2	2	1.0700
2/3	90	4	40	0./	3	3	3.1600	345	60	5	80	0.8	3	3	1.0300
274	90	4	40	0.6	3	6	3.1800	346	60	5	90	0.8	3	3	1.0000
275	30	4	30	0.8	3	6	0.5290	347	60	5	30	0.7	3	3	1.5000
276	30	4	40	0.8	3	6	0.4920	348	60	5	40	0.7	3	3	1.4000
277	30	4	50	0.8	3	6	0.4660	349	60	5	50	0.7	3	3	1.3200
278	30	4	60	0.8	3	6	0.4450	350	60	5	60	0.7	3	3	1.2600
279	30	4	70	0.8	3	6	0.4280	351	60	5	70	0.7	3	3	1.2200
280	30	4	80	0.8	3	6	0.4140	352	90	5	70	1.2	3	3	1.3400
281	30	4	90	0.8	2 2	6	0 4000	352	90	5	80	1 2	2	2 2	1 2900
201	20	т Л	20	0.0	5	0	0.1000	252	00	5	00	1.2	2	2	1 2000
202	30	4	30	0.7	3	7	0.0040	334	90	5	30	1.2	3	3	1.2000
283	30	4	40	0.7	3	9	0.5630	355	90	5	30	1	3	3	1.8400
284	30	4	50	0.7	3	9	0.5320	356	90	5	40	1	3	3	1.7100

Table 4. Continued

Mod.	Н	L	F'c	D	Bx	By	Т	Mod.	Н	L	F'c	D	Bx	By	Т
	(m)	(m)	(MPa)	(m)	(m)	(m)	(sec.)		(m)	(m)	(MPa)	(m)	(m)	(m)	(sec.)
357	90	5	50	1	3	3	1.6200	370	90	5	40	0.8	3	3	2.0300
358	90	5	60	1	3	3	1.5500	371	90	5	50	0.8	3	3	1.9200
359	90	5	70	1	3	3	1.4900	372	90	5	60	0.8	3	3	1.8300
360	90	5	80	1	3	3	1.4400	373	90	5	70	0.8	3	3	1.7600
361	90	5	90	1	3	3	1.4000	374	90	5	80	0.8	3	3	1.7000
362	90	5	30	0.9	3	3	1.9800	375	90	5	90	0.8	3	3	1.6500
363	90	5	40	0.9	3	3	1.8500	376	90	5	30	0.7	3	3	2.4500
364	90	5	50	0.9	3	3	1.7500	377	90	5	40	0.7	3	3	2.2800
365	90	5	60	0.9	3	3	1.6700	378	90	5	50	0.7	3	3	2.1600
366	90	5	70	0.9	3	3	1.6100	379	90	5	60	0.7	3	3	2.0600
367	90	5	80	0.9	3	3	1.5500	380	90	5	70	0.7	3	3	1.9800
368	90	5	90	0.9	3	3	1.5100	381	90	5	80	0.7	3	3	1.9200
369	90	5	30	0.8	3	3	2.1800	382	90	5	90	0.7	3	3	1.8600

Table 4. Continued

4. Proposed Formula

The proposed fundamental time model in this study incorporates the main design parameters that affect the fundamental period of buildings. The considered parameters in the proposed model include buildings height, spans length and columns stiffness (size and material properties). The proposed fundamental time model is presented as:

$$T_f = \alpha_1 (H)^{\alpha_2} (L)^{\alpha_3} (f_c')^{\alpha_4} (D)^{\alpha_5}$$
(1)

In which, D, f'_c and L are the column side dimension, compressive strength of the concrete and span length, respectively. The constants α_1 , α_2 , α_3 , α_4 and α_5 are the proportional factors that determined by adopting sensitive analyses on 382 modal analysis results.

5. Sensitivity Investigations

Sensitivity analyses are conducted to evaluate the effect of different design parameters on the vibration period of the building models. The sensitivity investigations are conducted considering the numerical results of 382 models of RC MRF buildings presented in this study. The parameters that considered in this study are illustrated in Table 4. The results of the sensitivity analyses are presented in the following subsections.

5.1. Effect of Buildings Height

A relation between the building height and the fundamental period of the buildings was presented in which the best fit curve was obtained and illustrated in Fig. 5. The fundamental time period to building height relation becomes;

$$T_f = 0.0537 \,\mathrm{H}^{0.828} \tag{2}$$

Fig. 5 shows that the vibration period T_f is directly proportional to the height of the building with a power of 0.828. In comparison with previous simple models, it is shown that equation 2 is closest to the model specified by FEMA [3] that presented in Table 1.

5.2. Effect of Span Length

To investigate the effect of span length L on the vibration period of the buildings, the vibration periods are normalized by ($H^{0.828}$) to exclude the effect of building height. The resulted normalized vibration period is given by;

 $T_{f1} = T_f / H^{0.828}$

Fig. 5 Varying the fundamental period of the buildings with building height

Fig. 6 shows that the normalized vibration period T_1 increased with increasing span length with a power of 0.55.

Fig. 6 Varying the normalized fundamental period of the buildings with spans length

5.3. Effect of Members Elasticity

In modeling reinforced concrete members, the elasticity of concrete is considered for defining members elasticity in which it is directly proportional to compressive strength of the concrete. In order to investigate the effect of concrete compressive strength on the vibration period of the buildings, the vibration periods (T_{f1}) are normalized by ($L^{-0.55}$) to exclude the effect of column size. The resulted normalized vibration period is given by;

$$T_{f2} = Tf_1 / L^{-0.55} \tag{4}$$

Fig. 7 shows that the normalized vibration period T_{f2} decreased with increasing compressive strength with a power of - 0.358.

(3)

Fig. 7 Varying of normalized fundamental period of the buildings with concrete compressive strength

5.3 Effect of Columns Size

To investigate the effect of columns size on the vibration period of the buildings, the vibration periods (T_{f2}) are normalized by ($f_c'^{-0.358}$) to eliminate the effect of concrete compressive strength. The resulted normalized vibration period is given by;

$$T_{f3} = \frac{T_{f2}}{f_c'^{-0.358}} \tag{5}$$

Fig. 8 shows that the normalized vibration period T_{f3} decreased with increasing columns size with a power of - 0.665.

Fig. 8 Varying of normalized fundamental period of the buildings with columns size

5.4 Proportional Factor α_1

The obtained powers 0.828, 0.55, -0.358 and -0.665 of the parameters H, L, f_c and D, respectively that obtained from curves of Figs. 5-8 are substituted in equation 1 in which becomes;

$$T_{f4} = \alpha_1 (H)^{0.828} (L)^{0.55} (f_c')^{-0.358} (D)^{-0.665}$$
(6)

In order to obtain the value of the coefficient a_1 , a relation between numerical period T_f and T_{f4} is presented in which the best fit curve is obtained. A value of 0.0314 for the coefficient α_1 and a normalizes period with a power of 1.2459 are obtained with R² equal to 0.953. By substituting the coefficient a_1 and refining equation 6 by multiplying the parameters powers by the obtained new power from Fig. 9 resulted in new powers for parameters H, L, D and f'c that equals to 1.032, 0.69, -0.83 and -0.45, respectively. Substituting the new powers in equation 1 resulted in;

$$T_{f} =$$

$$0.0314 \quad (H)^{1.023} (L)^{0.69} (f_{c}')^{-0.45} (D)^{-0.83}$$

$$(7)$$

Fig. 9 Varying of fundamental period of the buildings with normalized time period

6. Validation of the Proposed Model

The calculated fundamental period using the developed simple equation is verified against the results of modal analysis of the 382 numerical models of buildings. Verification results in terms of the ratio of proposed model to modal analysis predictions demonstrated very good performance of the developed model. A mean value of the prediction's ratio (proposed model predictions to modal analysis predictions) equal to 1.00 ± 0.15 and a coefficient of variation of 15.38 are obtained. On the other hand, statistical measures are compared with those corresponding to predictions using the models available in the literature as illustrated in Table 5. It is obvious that the proposed model results in the most accurate predictions compared with other models as it provides the least standard of deviation and coefficient of variation as well as the closest results between the modal analysis and model predictions.

Additional ten models were considered for comparison in which haven't used in the sensitivity analyses and verification of the developed model. Table 6 illustrates the comparison results of the predicted fundamental vibration period of the ten models by using modal analysis and the proposed model. Comparison results have demonstrated very good agreement between the predictions using the proposed model and the modal analysis. The mean value of the proposed model to modal analysis ratio of 1.00 ± 0.12 and a coefficient of variation of 11.79 were obtained.

Mean	St. Deviation	CoV %
0.936	0.289	30.89
0.991	0.290	29.22
0.832	0.257	30.89
1.462	0.453	31.01
2.366	0.834	35.25
1.938	0.565	29.17
1.677	0.518	30.89
2.424	1.029	42.45
2.075	0.605	29.17
1.00	0.155	15.38
	Mean 0.936 0.991 0.832 1.462 2.366 1.938 1.677 2.424 2.075 1.00	MeanSt. Deviation0.9360.2890.9910.2900.8320.2571.4620.4532.3660.8341.9380.5651.6770.5182.4241.0292.0750.6051.000.155

Table 5. Comparison of the predicted fundamental periods using the proposed model and other available models

Table 6. Comparison of the predicted fundamental periods using the proposed model and numerical modal analysis

Snon	Col.	f!	Building		Time perio	d
(m)	width (m)) _c (MPa)	Height (m)	Modal analysis	Proposed model	Prop. /Modal
4	0.4	30	30	1.1089	1.2317	1.1108
4	0.4	50	30	0.9760	0.9788	1.0029
4	0.4	70	30	0.8972	0.8412	0.9376
4	0.6	70	30	0.7301	0.6008	0.8230
5	0.4	30	30	1.2845	1.4367	1.1185
5	0.5	70	30	0.8851	0.8154	0.9213
6	0.4	30	30	1.4598	1.6293	1.1162
6	0.4	70	30	1.1811	1.1128	0.9422
7	0.5	70	30	0.8870	1.0284	1.1595
7	0.7	70	45	1.3450	1.1782	0.8760
			Mean			1.00
		S	t. Deviation			0.12
			CoV %			11.79

7. Conclusions

Fundamental vibration period of buildings is an essential factor for the analysis and design of buildings subjected to lateral loads. Design codes and standards recommended either conducting modal analysis on numerical models or using a specified simple formula that relates the fundamental vibration period to either building height or number of floors. The specified formulas by design standards and guidelines to predict the fundamental vibration period of buildings were empirically derived based on limited actual records of buildings vibration in different regions around the world. In contrast, modal analyses entail careful and time consuming numerical modelling process that include defining specific design parameters. The aim of this study is to propose a simple but more accurate model to estimate fundamental vibration period of reinforced concrete moment frame buildings. The first part of this study includes collecting some of the published recorded vibration period of buildings in different regions in the world. Some of the collected records were adopted by previous researcher in regression analyses for developing vibration time to building height relations. Also, several simple models available in the literature were explored. The collected data were compared with predictions of the available models in which shows large scatters in actual building vibrations compared to the estimations of the simple formulas. Also, investigations show different and diverse

estimations of vibration periods using the available simple models. The large discrepancy between predictions using different model and the large scatters of actual values compared with empirical predictions stem from neglecting the main design parameters in the developed models. In this paper, fundamental periods of moment frame buildings have extensively investigated considering 382 building models by using numerical modal analyses. A sensitivity analysis considering the modal analysis results is conducted in which a model is developed to estimate the fundamental period of the buildings considering the main influencing design parameters. The main design parameters include building height, spans length, members stiffness. Then, the effect of each design parameter is evaluated using sensitivity analyses in which assist in developing the proposed model. Sensitivity analysis showed that fundamental vibration period was directly proportional to the height of the building and span length with powers equal to 1.032 and 0.69, respectively. On the other hand, the fundamental period was inversely proportional to the lateral size of the columns and compressive strength of the concrete with powers equal to 0.83 and 0.45, respectively. Finally, a simple model is proposed based on modal analyses results and considering the effect of main design parameters. The proposed model is validated against modal analysis results of the 382 numerical models of buildings in which results in modal analysis to proposed model ratio equal to 1.00 ± 0.155 with coefficient of variation of 15.38. Additional ten models haven't used in the sensitivity analyses and verification of the developed model shows mean value of the proposed model to modal analysis ratio equal to 1.00 ± 0.12 and a coefficient of variation of 11.79. Also, the predictions of the proposed model were compared with the predictions of the available simple models and showed the most accurate results. Accordingly, adopting the developed model by practicing engineers rather than using simple models or complex modal analysis for predicting time of fundamental vibration provides efficient solution.

Acknowledgement

The author acknowledges that the research described in this paper was unfunded by any organization, institutions or people.

References

- [1] ASCE/SEI 7-22. Minimum Design Loads and Associated Criteria for Buildings and Other Structures.
- [2] Eurocode 8: Design of structures for earthquake resistance Part 1 : General rules, seismic actions and rules for buildings. Eur Comm Stand 2004.
- [3] FEMA 450. NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures. Part 1 2003:338.
- [4] Goel RK, Chopra AK. Period Formulas for Moment-Resisting Frame Buildings. J Struct Eng 1997;123:1454-61. <u>https://doi.org/10.1061/(ASCE)0733-</u> 9445(1997)123:11(1454)
- [5] Salama MI. Estimation of period of vibration for concrete moment-resisting frame buildings. HBRC J 2015;11:16-21. <u>https://doi.org/10.1016/j.hbrcj.2014.01.006</u>
- [6] Hong LL, Hwang WL. Empirical formula for fundamental vibration periods of reinforced concrete buildings in Taiwan. Earthq Eng Struct Dyn 2000;29:327-37. <u>https://doi.org/10.1002/(SICI)1096-9845(200003)29:3<327::AID-EQE907>3.0.CO;2-0</u>
- [7] Chiauzzi L, Masi A, Mucciarelli M, F CJ. Estimate of fundamental period of reinforced concrete buildings: code provisions vs. experimental measures in Victoria and Vancouver (BC, Canada) Hazards View project RINTC-Implicit seismic risk of codeconforming Italian buildings View project Estimate o. vol. 3033. 2012.

- [8] Guler K, Yuksel E, Kocak A. Estimation of the fundamental vibration period of existing RC buildings in Turkey utilizing ambient vibration records. J. Earthq. Eng., vol. 12, Taylor & Francis; 2008, p. 140-50. <u>https://doi.org/10.1080/13632460802013909</u>
- [9] Inel M, Ozmen HB, Cayci BT. Determination of period of RC buildings by the ambient vibration method. Adv Civ Eng 2019;2019. <u>https://doi.org/10.1155/2019/1213078</u>
- [10] Kaplan O, Guney Y, Dogangun A. A period-height relationship for newly constructed mid-rise reinforced concrete buildings in Turkey. Eng Struct 2021;232:111807. <u>https://doi.org/10.1016/j.engstruct.2020.111807</u>
- [11] Velani PD, Ramancharla PK. New Empirical Formula for Fundamental Period of Tall Buildings New Empirical Formula for Fundamental Period of Tall. 16th World Conf. Earthq. Eng., 2017.
- [12] Velani PD, Kumar RP. Approximate natural period expression for reinforced concrete tall buildings in India. Curr Sci 2023;124:1412.
- [13] Jalali A, Salem Milani A. Fundamental periods of buildings measured from ambient vibration measurements. 2005 World Sustain. Build. Conf., vol. 2729, 2005, p. 2577-84.
- [14] Gallipoli MR, Mucciarelli M, Šket-Motnikar B, Zupanćić P, Gosar A, Prevolnik S, et al. Empirical estimates of dynamic parameters on a large set of European buildings. Bull Earthq Eng 2010;8:593-607. <u>https://doi.org/10.1007/s10518-009-9133-6</u>
- [15] Al-Nimry H, Resheidat M, Al-Jamal M. Ambient vibration testing of low and medium rise infilled RC frame buildings in Jordan. Soil Dyn Earthq Eng 2014;59:21-9. <u>https://doi.org/10.1016/j.soildyn.2014.01.002</u>
- [16] Pan TC, Goh KS, Megawati K. Empirical relationships between natural vibration period and height of buildings in Singapore. Earthq Eng Struct Dyn 2014;43:449-65. <u>https://doi.org/10.1002/eqe.2356</u>
- [17] Oliveira CS, Navarro M. Fundamental periods of vibration of RC buildings in Portugal from in-situ experimental and numerical techniques. Bull Earthq Eng 2010;8:609-42. <u>https://doi.org/10.1007/s10518-009-9162-1</u>
- [18] Aninthaneni PK, Dhakal RP. Prediction of fundamental period of regular frame buildings. Bull New Zeal Soc Earthq Eng 2016;49:175-89. <u>https://doi.org/10.5459/bnzsee.49.2.175-189</u>
- [19] Kose MM. Parameters affecting the fundamental period of RC buildings with infill walls. Eng Struct 2009;31:93-102. <u>https://doi.org/10.1016/j.engstruct.2008.07.017</u>
- [20] Ricci P, Verderame GM, Manfredi G. Analytical investigation of elastic period of infilled RC MRF buildings. Eng Struct 2011;33:308-19. https://doi.org/10.1016/j.engstruct.2010.10.009
- [21] Asteris PG, Repapis CC, Tsaris AK, Di Trapani F, Cavaleri L. Parameters affecting the fundamental period of infilled RC frame structures. Earthq Struct 2015;9:999-1028. <u>https://doi.org/10.12989/eas.2015.9.5.999</u>
- [22] Perrone D, Leone M, Aiello MA. Evaluation of the infill influence on the elastic period of existing RC frames. Eng Struct 2016;123:419-33. https://doi.org/10.1016/j.engstruct.2016.05.050
- [23] Al-Balhawi A, Zhang B. Investigations of elastic vibration periods of reinforced concrete moment-resisting frame systems with various infill walls. Eng Struct 2017;151:173-87. <u>https://doi.org/10.1016/j.engstruct.2017.08.016</u>
- [24] Soni P, Sangamnerkar P, Dubey SK. Analysis of natural time period of moment resisting frame buildings. AIP Conf. Proc., vol. 2158, AIP Publishing LLC; 2019, p. 20016. <u>https://doi.org/10.1063/1.5127140</u>
- [25] Crowley H, Pinho R. Period-height relationship for existing European reinforced concrete buildings. J Earthq Eng 2004;8:93-119. <u>https://doi.org/10.1080/13632460409350522</u>
- [26] Crowley H, Pinho R. Simplified equations for estimating the period of vibration of existing buildings. Proc 1st Eur Conf ... 2006;3:3-8.

- [27] Amanat KM, Hoque E. A rationale for determining the natural period of RC building frames having infill. Eng Struct 2006;28:495-502. https://doi.org/10.1016/i.engstruct.2005.09.004
- [28] Rimal JC, Maskey PN. Fundamental Time Period of RC Moment Resisting Frames. Proc. IOE Grad. Conf., 2019.
- [29] Koçak A, Borekci M, Zengin B. Period formula for RC frame buildings considering infill wall thickness and elasticity modulus. Sci Iran 2018;25:118-28.
- [30] Kewate SP, Murudi MM. Empirical Period-Height Relationship for reinforced Concrete Moment Resisting Buildings in India. IOP Conf. Ser. Mater. Sci. Eng., vol. 481, IOP Publishing; 2019, p. 12018. <u>https://doi.org/10.1088/1757-899X/481/1/012018</u>
- [31] Verderame GM, Iervolino I, Manfredi G. Elastic period of sub-standard reinforced concrete moment resisting frame buildings. Bull Earthq Eng 2010;8:955-72. https://doi.org/10.1007/s10518-010-9176-8
- [32] Mohamed AN, El Kashif KF, Salem HM. An Investigation of the Fundamental Period of Vibration for Moment Resisting Concrete Frames. Civ Eng J 2019;5:2626-42. <u>https://doi.org/10.28991/cej-2019-03091438</u>
- [33] Joshi SG, Londhe SN, Kwatra N. Determination of natural periods of vibration using genetic programming. Earthq Struct 2014;6:201-16. https://doi.org/10.12989/eas.2014.6.2.201
- [34] Hadzima-Nyarko M, Nyarko EK, Morić D, Draganić H. New Direction Based (Fundamental) Periods of RC Frames Using Genetic Algorithms. 15 World Conf. Earthq. Eng., vol. 15, 2012.
- [35] Asteris PG, Tsaris AK, Cavaleri L, Repapis CC, Papalou A, Di Trapani F, et al. Prediction of the fundamental period of infilled rc frame structures using artificial neural networks. Comput Intell Neurosci 2016;2016. https://doi.org/10.1155/2016/5104907
- [36] Al-Balhawi A, Zhang B. Investigations of elastic vibration periods of tall reinforced concrete office buildings. Wind Struct An Int J 2019;29:209-23.
- [37] Noor SM, Halim NSM, Ibrahim A, Majid TA, Hassan SH. Fundamental period of vibrations influencing characteristics of torsional irregularity in reinforced concrete buildings. IOP Conf. Ser. Earth Environ. Sci., vol. 244, IOP Publishing; 2019, p. 12021. https://doi.org/10.1088/1755-1315/244/1/012021
- [38] Sharma N, Dasgupta K, Dey A. Natural period of reinforced concrete building frames on pile foundation considering seismic soil-structure interaction effects. Structures, vol. 27, Elsevier; 2020, p. 1594-612. <u>https://doi.org/10.1016/j.istruc.2020.07.010</u>
- [39] Gravett DZ, Mourlas C, Taljaard V-L, Bakas N, Markou G, Papadrakakis M. New fundamental period formulae for soil-reinforced concrete structures interaction using machine learning algorithms and ANNs. Soil Dyn Earthq Eng 2021;144:106656. <u>https://doi.org/10.1016/j.soildyn.2021.106656</u>
- [40] Ruggieri S, Fiore A, Uva G. A new approach to predict the fundamental period of vibration for newly-designed reinforced concrete buildings. J Earthq Eng 2022;26:6943-68. <u>https://doi.org/10.1080/13632469.2021.1961929</u>
- [41] Mirrashid M, Naderpour H. Computational intelligence-based models for estimating the fundamental period of infilled reinforced concrete frames. J Build Eng 2022;46:103456. <u>https://doi.org/10.1016/j.jobe.2021.103456</u>
- [42] Csi. ETABS Integrated Software for Structural Analysis and Design. Comput Struct Inc, Berkeley, CA, USA 1995:1-74.
- [43] Michel C, Guéguen P, Lestuzzi P, Bard PY. Comparison between seismic vulnerability models and experimental dynamic properties of existing buildings in France. Bull Earthq Eng 2010;8:1295-307. <u>https://doi.org/10.1007/s10518-010-9185-7</u>
- [44] Ditommaso R, Vona M, Gallipoli MR, Mucciarelli M. Evaluation and considerations about fundamental periods of damaged reinforced concrete buildings. Nat Hazards Earth Syst Sci 2013;13:1903-12. <u>https://doi.org/10.5194/nhess-13-1903-2013</u>