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 Heat exchangers are utilized in a vast region of the process industry for heating 
and cooling. Long-term operation of heat exchangers results in decreased 
efficiency due to many problems, such as fouling. Therefore, the object of this 
research paper is to use three artificial intelligence techniques (feedforward 
neural networks-multilayer perceptron (FNN-MLP), nonlinear autoregressive 
networks with exogenous inputs (NARX), and support vector machines (SVM-
RBF)) for predicting the fouling resistance in the tube and the shell heat 
exchanger in the preheating circuit of atmospheric distillation. The results 
summarize the high training as well as the predictive capacity of the "FFNN-MLP" 
model for predicting the fouling resistance in the heat exchanger with the highest 
coefficient of correlation (R = 0.99961) and the lowest root-mean-squared error 
(nRMSE = 1.0031%) for the testing phase, where the FNN-MLP network is 
superior to that provided using the SVM model (R = 0.9955 and 
nRMSE=3.8652%). All the models of artificial networks and machine learning 
techniques used in the current work can be used to predict the fouling resistance 
in heat exchanger data with high accuracy. Despite this, the FNN-MLP model is 
the preferred model compared with the other proposed models, followed by the 
NARX model. 
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1. Introduction 

The heat exchanger (HE) is an essential equipment widely used in considerable industrial 
applications such as power production, heating and refrigeration, petroleum and chemical 
industry, food processing, and waste heat recovery [1], [2]. Usually, around 90% of the 
thermal industrial operations pass in a heat exchanger at least once  [3]. It ensures heat 
transfer occurs between two fluids at different temperatures. Also, it can transmit energy 
in the form of latent heat, such as in condensers and boilers, or sensible heat, such as in 
coolers and heaters [4]. Heat exchangers are categorized based on the principal using 
criteria such as transfer processes, quantity of fluids, surface compactness, construction 
characteristics, heat transfer methods, and flow arrangements  [5]. Among various 
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classifications of HE, shell and tube heat types are the most often utilized in industrial 
applications. In this exchanger, the tubes are arranged according to different motifs [6]. 

In contrast, several baffles are usually added at a uniform spacing inside the shell to 
increase turbulence and improve heat transfer. The flow can be parallel, counter, or 
sometimes crossed [7]. Despite their advantages, heat exchangers' performance declines 
dramatically with age of exchangers, and many problems arise, especially vibration and 
fouling. The poor quality of the media used, especially on the tube side, can lead to 
increased fouling problems and decrease the exchanger's performance, even in short 
periods. A fouling phenomenon occurs when unwanted deposits accumulate on the heat 
transfer surfaces in heat exchanges over time. This phenomenon leads to operational 
inefficiencies and increases energy consumption. So, accurate prediction of fouling 
resistance is a crucial goal for many industries. 

Sediments, crystals, and biological residues are familiar forms of fouling and can be 
extended to the products of a chemical reaction or even the combination of several of these 
elements. This deposit, developed on one side or both sides of the heat exchange surface, 
has poorer thermal conductivity than the metal comprising the exchange surface, resulting 
in a high increase in total resistance [8]. The fouling results are the main reason for the 
decrease in heat transfer coefficients, as are changes in the surface's topography and the 
flow's geometry. Furthermore, significant pressure reductions occur due to the 
constriction of flow and increased friction caused by scale development that can render a 
heat exchanger unusable even before the lowered thermal efficiency [9], [10]. Many 
aspects influence the development of fouling, including fluid composition, operating 
conditions, heat exchanger type and features, and fouling site [11]. As a result, considering 
all these variables makes it impossible to build a semi-empirical or empirical connection 
to predict the fouling factor precisely [12]. Accurately predicting fouling resistance is 
essential for optimizing heat exchanger performance, reducing downtime, and minimizing 
maintenance costs. 

Fouling prediction is a primary goal for many researchers, and the methods that can be 
used for this purpose have varied. It is worth noting that experiments, computational fluid 
dynamics (CFD) simulations, and other traditional methods failed due to many 
considerations, including time, resources, and accuracy in predicting the effects of fouling. 
Accordingly, research institutions have turned to more appropriate patterns, such as 
machine learning algorithms, to predict the fouling resistance. 

Rached Ben-Mansour et al. [13] explored and discussed the fouling analysis in several 
previous studies on various types of heat exchangers, especially those considering thermal 
desalination systems. Xiao Zheng et al. [14] used regression neural network (GRNN) as well 
as random forests (RF) algorithms to predict the coefficient of heat transfer in channels of 
heat exchange with the effect of bulges in many locations on HTC as input data and 143 set 
data. They concluded that the GRNN model is better than the RF algorithm in the heat 
transfer channels' prediction accuracy and generalization ability. Jyoti Prakash Panda et al. 
[15] modeled the heat transfer correlations for the twisted tape heat exchangers. Artificial 
neural network (ANN), random forest (RF), and polynomial regression are employed for 
surrogate modeling. The input data are the Reynolds numbers, the twist ratio, the 
perforation percentage, and the different numbers of the twisted tapes. This study 
concluded that the potential ANN is suitable for future data-driven modeling. Anurag 
Kumra et al. [16] used the SVM and ANN models for predicting the heat transfer rate in 
wire-on-tube type heat exchangers, they used the flow direction, heat transfer surfaces 
area, diameter, volumetric flow rate, mass flow rate, and temperature as input values. The 
results showed that the SVM modeling approach provides better performance and more 
precise results. Wen et al. [17] indicated that the vector regression machine (SVR) 
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approach outperformed the partial least squares (PLS) algorithm for predicting the fouling 
in the plate heat exchanger. They used the input data of pH, dissolved oxygen, chloride ion, 
iron ion, conductivity, dissolved, hardness, turbidity, alkalinity, and the total bacterial 
count. In the same direction, Wen Xiaoqiang et al.[18] the multi-resolution wavelet neural 
network (MRWNN) exceeds other neural networks according to its significance in 
nonlinear function approximations. Aminian and Shahhosseini [19] tried to avoid the 
operating conditions that accelerate fouling in pre-heat exchangers by using ANN to 
develop the mathematical formulation sets. Seyit Ahmet Kuzucanlı et al. [20] examined 
several multi-classification algorithms and compared them to predict the fouling 
resistance and the overall heat transfer coefficient in plate heat exchangers. They found 
that the Naïve Bayes algorithm was better than the decision tree algorithm and k-nearest 
neighbors (kNN). Sreenath Sundar et al. [21] found that using a robust algorithmic 
framework for deep learning non-linear functional relationships is suitable for predicting 
the fouling of the waste heat recovery crossflow heat exchanger. Also, they found that 
multiple ANNs attain more reasonable accuracy and robustness to noise. Sun Lingfang et 
al. [22]used the SVM and the wavelet relevance vector machine [23] to predict the fouling 
resistance in heat exchangers based on the statistical learning theory. They found that the 
SVM model indicates high prediction accuracy. 

More specifically, some studies have been concerned with predicting fouling resistance in 
shell and tube heat types. Emad M.S. El-Said et al. [24] utilized social media optimization 
(SMO), k-nearest neighbors’ algorithm (KNN),  SVM, random vector functional link (RVFL) 
algorithms to predict the outlet temperature and pressure drop values, and they found that 
the RVFL outperformed other algorithms. Cao Shengxian et al. [25] indicated that the least 
squares-support vector machine (LS-SVM) and the BP neural network algorithms have 
better accuracies than traditional methods for predicting cooling water biofouling 
resistance. They considered pH, conductivity, total number of bacteria, dissolved oxygen, 
TN, and NH3-N as input parameters. R. Harche et al. [26] employed long-short-term 
memory (LSTM) and random forest (RF) to predict fouling status according to historical 
data in crude distillation unit preheat trains in petroleum refineries. Al-Naser et al. [27] 
also used LSTM and the ANN in two stages to calculate the fouling factor of the shell and 
tube heat exchangers using commercial software, and they found the prediction accuracy 
to be very high. Later, Al-Naser et al. [28] expanded their study from fouling prediction to 
estimating the local fouling factor using an artificial model of different fouling tactics 
simulations. 

Providing accurate and robust results to predict fouling resistance in heat exchangers is 
one of the limitations in recent years when using traditional methods, where the results 
are far from practical reality. Therefore, researchers' growing consensus emerged 
regarding the need for advanced artificial intelligence (AI) models because they possess 
excellent capabilities, such as dealing with complex and non-linear patterns. These 
techniques have become the most promising comprehensive comparative analysis 
method. This study highlights the importance of advanced artificial intelligence models in 
predicting fouling resistance in shell-and-tube heat exchangers. 

In the realm of heat exchanger research, there exists a notable research gap regarding the 
comprehensive exploration of three distinct artificial intelligence techniques, namely 
feedforward neural networks-multilayer perceptron (FNN-MLP), a nonlinear 
autoregressive model with exogenous inputs (NARX), and the support vector machine 
(SVM), in predicting fouling resistance. Their application to shell and tube heat exchangers 
has remained largely uncharted territory. This study endeavours to bridge this research 
gap by offering a comprehensive investigation into the prediction of fouling resistance 
through an extensive comparison of FNN-MLP, NARX, and SVM-RBF methods. 
Furthermore, we aim to present the outcomes of our research in a manner that facilitates 
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their practical implementation in the real world, drawing upon experimental data from a 
refinery in Algeria. By addressing this research gap, our work seeks to contribute 
significantly to resolving a longstanding industrial challenge in heat exchangers, 
particularly within the shell and tube configurations domain. 

2. Materials and Methods  

2.1. Data Acquisition and Preprocessing for Experimental Analysis 

Atmospheric distillation (U100) is the basic unit of an ALGIERS refinery. It aims to split 
crude oil into various finished products (kerosene, diesel, fuel oil, LPG, and light and heavy 
solvents), which can be used for one or more treatments. For our study, we are interested 
in the preheating circuit of this unit when the crude oil leaves the storage bins at room 
temperature; it is discharged by one of three pumps of type centrifugal, P101, to the 
atmospheric distillation unit, then passes through two circuits of E101 battery (FED and 
CBA). Crude oil passes through the battery on the tube side, where it is heated with head 
reflux (RT), the light product mixture from the top of the C101 distillation column at tray 
46. The oil then passes through electrostatic desalination by treating the water with caustic 
soda. This treated water is injected at the E101 heat exchanger inlet and at the desalted 
entrance to wash the crude oil and drive the salts present (Fig.1). 

 

Fig. 1. Atmospheric distillation scheme (unit 100) [26] 

 

Fig. 2. Shell and tube heat exchanger 
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This work primarily aims to verify the performance measure of the E101 CBA heat 
exchanger by predicting the fouling resistance. E101CBA is a shell and tube exchanger with 
one pass on the shell and two on the tube sides. Fig. 2 illustrates the main parts of the shell 
and tube heat exchanger. Crude oil passes through the tubes while head reflux (RT) flows 
in the shell side. Several sensors are placed to measure flow rates and temperatures. Table 
1. presents the measured variables of the E101CBA heat exchanger. Standard deviations 
(SD) were added to explore the process variables' variation. 

Table 1. Statistical analysis for shell and tube process parameters 

Side Parameters Unit Min Mean Max SD 

T
u

b
e 

Inlet Temperature (ti) °C 17 24 31 4.169 

Outlet Temperature (to) °C 101 92 110 2.367 

Mass flux (ṁt) Kg/s 23.50 34.80 46.10 6.009 

Sh
el

l 

Inlet Temperature (Ti) °C 111 120.5 130 3.253 

Outlet Temperature (To) °C 44 54 64 4.528 

Mass flux (ṁs) Kg/s 38.98 59.54 80.104 6.560 

Fouling resistance (Rf) m2°C/W 0.00017 0.0093 0.0017 0.003 

2.2. Feed-forward Multi-layer Perceptron 

The most often utilized architecture now is the multilayer-feedforward neural network, 
referred to as the multi-layer perceptron (MLP) network [29]. This structure comprises 
the hidden layer or layers, the output layer, and the input layer. A nonlinear input-output 
model structure can be considered this kind of network. This network passes signals from 
one node to each subsequent layer's nodes [30]. The multi-layer feed-forward neural 
network's topology is shown in Fig. 3. This picture shows how the input layer receives all 
the input signals and transfers them to additional neurons in the hidden layer, where the 
processing task is carried out. The output layer then receives the data. Synaptic weights 
and biases are the parameters of such a network. 

 

Fig. 3. Multilayer feedforward neural network's topology 

The outputs of the FNN are the outcomes of the neuromorphic model. The output of the 
proposed MLP neural network can be given as follows [31]:  
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𝑦𝑖 = 𝑄𝑖(∑ 𝑊𝑗
𝑖𝑍𝑗

𝑖 + 𝑏𝑖)

𝑛𝑖

𝑗−1

 
(1) 

The activation function Qi regulates the i-th node's output within a specific range, which 
depends on the total incoming connections n^i, bias bi, weight Wi, and input Zi.  

2.3. Nonlinear Autoregressive Models with Exogenous Inputs (NARX) 

The NARX network [32], [33] is the recurrent ANN with feedback connections enclosing 
many network layers. This model has the well-known ARX model nonlinear generalization. 
In addition, it predicts the time series in a very efficient way [34], [35]. This model is used 
widely with nonlinear systems [36], [37]. The NARXNN model consists of three layers, as 
indicated in Fig. 4. The input layer consists of six parameters (mentioned before), a 
nonlinear hidden layer that contains the hidden neurons and its activation function of type 
hyperbolic tangent, tanh. In contrast, the third layer represents the nonlinear output which 
estimates the fouling resistance. The activation function in the output layer is the 
hyperbolic tangent, tanh. The vector of the input delay is [0 1], whereas the vector of the 
output delay is [1 2].  

 

Fig. 4. The designed and proposed NARX network architecture 

2.4. Support Vector Machine 

The SVM technique is a collection of supervised learning strategies designed to address 
discrimination and regression issues [38]. Due to its capacity to handle vast amounts of 
data, SVM gained popularity quickly [39]. The SVM implements nonlinear class borders 
using some input vectors of nonlinear mapping into the high-dimensional feature space 
and then uses a linear model to generate a hyperplane. The Radial basis function kernel 
(RBF kernel) is a well-liked kernel function in support vector machine classification [40]. 

The output of an SVM model can be determined by solving a specific equation (2): 

𝑓(𝑥𝑖) = 𝜔𝑇∅(𝑥𝑖) + 𝑏, 𝑖 = 1,2, … , 𝑛   (2) 

Where f(xi) refers to the predicted data, φ(xi) is the implicitly constructed nonlinear 
function, ω is the SVM model's weight vector, and b is the SVM model's bias. The dataset 
has the D-dimensional input vector xi∈RD and the scalar output yi∈R. 

2.5. Assessment Performance Evaluation 

Several error measures were employed to control the prediction models' precision level. 
These error measures include the Coefficient of Correlation (R), Mean Absolute Error 
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(nMAE), Root mean squared error (nRMSE), and standard prediction error (SEP). 
Equations that specify these errors mathematically represent the equations (3–7) [41], 
[42]. These error measurements make it possible to evaluate the performance of the 
prediction models in detail and get a good grasp of their advantages and disadvantages. 

y and y’ are the measured and calculated values of the fouling resistance in the tube and 
the shell heat exchanger; their mean values are: 

 𝒚̅ = ∑ 𝒚𝒊/𝑵𝑵
𝒊=𝟏     and      𝒚′̅ = ∑ 𝒚𝒊

′/𝑵𝑵
𝒊=𝟏    where N is the data number  

𝑅 =
∑𝑛

𝑖=1 (𝑌𝑖,𝑒𝑥𝑝 − 𝑌𝑖,𝑒𝑥𝑝
̅̅ ̅̅ ̅̅ ̅)(𝑌𝑖,𝑐𝑎𝑙 − 𝑌𝑖,𝑐𝑎𝑙

̅̅ ̅̅ ̅̅ )

√∑𝑛
𝑖=1 (𝑌𝑖,𝑒𝑥𝑝 − 𝑌𝑖,𝑒𝑥𝑝

̅̅ ̅̅ ̅̅ ̅)
2

∑𝑛
𝑖=1 (𝑌𝑖,𝑐𝑎𝑙 − 𝑌𝑖,𝑐𝑎𝑙

̅̅ ̅̅ ̅̅ )
2

 
(3) 

The mean absolute error, MAE, as well as its normalized value, nMAE: 

𝑀𝐴𝐸 =
1

𝑛
∑

𝑛

𝑖=1
|𝑌𝑖,𝑐𝑎𝑙 − 𝑌𝑖,𝑒𝑥𝑝|        ;   𝑛𝑀𝐴𝐸 = 𝑀𝐴𝐸 𝑦̅⁄  

(4) 

The root-mean-square error, RMSE, as well as its normalized value, nRMSE: 

𝑅𝑀𝑆𝐸 = √
∑𝑛

𝑖=1 (𝑌𝑖,𝑐𝑎𝑙 − 𝑌𝑖,𝑒𝑥𝑝)2

𝑛
               ;   𝑛𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸 𝑦̅⁄  

(5) 

𝑆𝐸𝑃(%) =
𝑅𝑀𝑆𝐸

𝑌𝑒
× 100 

(6) 

Concerning a dataset comprising n data points, where Yi,exp, and Yi,cal correspond for the 
experimental and calculated fouling resistance values, and   ̅Yi,exp represents the mean of 
experimental data. 

3. Results and Discussion 

3.1. The Database's Division's Impact 

The entire database was divided into three sections to assess the performance of the three 
models: FFNN-MLP, SVM-RBF, and NARX. Section 1 had 174 training points (60%) and 116 
for testing (40%); Section 2 had 203 points for training (70%); and Section 3 had 232 
points for training (80%) and 58 for testing (20%). Table 2 presents the correlation 
coefficient (R) and the normalized root-mean-squared error (nRMSE) for predicting 
fouling resistance considering the database impact's division. The results show that the 
third section is the best division, giving better results than the other divisions for the test 
and training phases. The three models (SVM-RBF, FFNN-MLP, and NARX model) were used 
for predicting fouling resistance and compared with each other.  

In this study, the BFGS quasi-Newton [trainbfg] was used as the training algorithm for 
FNN-MLP, and Levenberg-Marquardt (LM) for NARX, while the Radial basis function (RBF) 
was used for the radial basis function (RBF). 
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Table 2. Impact of the database's partition for FNN-MLP 

Partitions  Database % nRMSE R 

1 Training: 174 points 60% 1.5970 0.99872 

Testing: 116 points 40% 1.3991 0.99904 
2 Training: 203 points 70% 1.3884 0.99901 

Testing: 87 points 30% 1.3630 0.99916 
3 Training: 232 points 80% 0.9694 0.99951 

Testing: 58 points 20% 1.0031 0.99961 

3.2. FNN-MLP Model 

The NN architecture for predicting fouling resistance was optimized using STATISTICA 
software, and this study uses the BFGS quasi-Newton, trainbfg, training algorithm. The 
optimal structure of the (FNN-MLP) model used to predict fouling resistance is the more 
detailed architecture presented in Table 3. 

Table 3. The main structure of the developed FNN-MLP network  

Training Technique Input layer Hidden layer Output layer 

BFGS quasi-Newton 
(trainbfg) 

Neurons Neurons Activation 
function 

Neurons Activation 
function 

06 20 Exponential 1 Sine 

The agreement between experimental and calculated fouling resistance in heat exchangers 
obtained by the FNN-MLP model optimal is excellent, with agreed vectors about the ideal 
[a (the slope), (y-intercept), (correlation coefficient)] = [0.9985, 1.50750, 0.99951] in the 
training phase and [a, b, R] = [1.0012, -1.52666, 0.99961] in the test phase (Fig. 5). 

  
(a) (b) 
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(c) 

Fig. 5. FNN-MLP Model Experimental vs. calculated fouling resistance: (a) train dataset, 
(b) test dataset, (c) total dataset 

3.3. NARX Model 

The NARX neural network architecture for predicting fouling resistance was optimized 
using MATLAB software; this study uses the Levenberg-Marquardt (LM) training 
algorithm. Intel(R) Core (TM) i5-8250U CPU @ 1.60GHz processor is used for this network. 
The optimal structure of the NARX model used to predict fouling resistance is the more 
detailed structure presented in Table 4.  

Table 4. Structure of the developed NARX model 

Training 
Technique 

Input layer Hidden layer Output layer 

the Levenberg-
Marquardt 

(LM) 

Neurons Neurons Activation 
function 

Neurons Activation 
function 

06 25 Hyperbolic 
Tangent 
(Tanh) 

1 Hyperbolic 
Tangent 
(Tanh) 

 

The number of layers was similar for input, hidden, and output, where it was one layer. 
The number of neurons in the input and hidden layers was 6 and 25, respectively, while it 
was 1 for the output layer.  

The choice of hyperbolic tangent activation function allows the neural network models to 
capture complex, nonlinear relationships within the fouling resistance prediction problem. 
By utilizing the hyperbolic tangent activation function, the selected models can effectively 
comprehend and represent intricate patterns in the data, enhancing their predictive 
abilities. 

The agreement between experimental and calculated fouling resistance in heat exchangers 
obtained by the optimal NARX model is excellent. The obtained regression and mean 
squared error (MSE) in the training and testing cases are presented in Fig. 6 and 7. The 
best-obtained value is 1.9318e-08 at epoch 26, a minimal value and about zero. 
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(a) (b) 

 
(c) 

Fig. 6. NARX model Experimental vs. calculated fouling resistance: (a) train dataset, (b) 
test dataset, (c) total dataset 

 

Fig. 7. MSE for the training, testing, and validation of the NARX model 
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The experimental fouling resistance from these Figures coincides and converges with the 
estimated one by the NARX neural network, where the obtained MSE is minimal and close 
to zero. In other words, the NARX model is an effective and perfect training method. 
Moreover, the experimental and the calculated fouling resistance were compared, as 
shown in Fig. 8. The results refer to perfect convergence and coinciding, which supports 
the fact that the NARX model works excellently. 

 

Fig. 8. Experimental fouling resistance and NARX model predicted comparison using 
all data 

3.4. SVM-RBF Model 

The SVM-RBF network gives a relationship of type nonlinear between the inputs (ti, to, ṁt, 
Ti, To, ṁs) and the output (fouling resistance).  For the prediction of the fouling resistance 
in the E101CBA heat exchanger using the SVM-RBF model, the same database used in the 
FNN-MLP model was selected. Table 5 shows the evaluation of the SVM-RBF model in 
terms of the number of support vector machines (N° SV), nRMSE, and R. The nRMSE of the 
SVM-RBF is 3.2591 %, 3.8652 %, and 3.3871 % for training, tasting, and overall phases, 
respectively. The SVM-RBF model's correlation coefficients for training, testing, and 
overall phases are 0.99555, 0.99551, and 0.99549, respectively. These correlation indices 
are getting near the ideal (R = 1). In addition, the RBF-kernel function is a better choice for 
describing the prediction of fouling resistance. 

Table 5. Evaluation of SVM-RBF model 

(SVM-RBF) model N° SV Phase nRMSE R 

C (10.00) 120 Training  3.2591 0.99555 

nu (0.500) Testing  3.8652 0.99551 

Gamma (0.150) Overall 3.3871 0.99549 

 

 Fig. 9 indicates a high convergence of the predicted fouling resistance to experimental sets 
where it is near ideal behavior (slope = 1, intercept = 0, R = 1). The correlation coefficient 
R and nRMSE results showed that the SVM-RBF model operated somewhat during the 
training and testing phases. Also, the overall phase shows the SVM-RBF model's predictive 
power, closely following the trend of the experimental data on fouling resistance, except in 
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a few instances where the differences between experimental and predicted values are 
notable. 

  
(a) (b) 

 
(c) 

Fig. 9. SVM-RBF model Experimental vs. calculated fouling resistance: (a) train dataset, 
(b) test dataset, (c) total dataset 

The results show that the FNN-MLP and the NARX models acquired the lowest nMAE, 
nRMSE, and SEP errors in the testing phase (0.7939, 1.0031, and 1.0027, respectively). It 
can be observed clearly in Table 6 that the FNN-MLP and the NARX-based models 
surpassed the SVM-RBF and RF models for predicting resistance to fouling. 

Table 6. The statistical evaluation of the model’s performance 

Errors 
FNN-MLP NARX SVM-RBF 

Training Testing Training Testing Training Testing 

R 0.99951 0.99961 0.9986 0.9985 0.9956 0.9955 

nMAE (%) 0.7706 0.7939 1.2589 1.2723 2.0541 2.4982 

nRMSE (%) 0.9694 1.0031 1.3611 1.4231 3.2591 3.8652 

SEP (%) 0.9696 1.0027 1.3508 1.4101 3.2497 3.8340 
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3.5. Sensitivity Analysis 

A sensitivity analysis employing the "Weight" approach was used to examine the impact of 
the input variables (Inlet Temperature, Outlet Temperature, Mass Flow in the Tube Side 
and Shell Side) on the output (fouling resistance). 

The "weight approach" in the sensitivity analysis was first used in the early 1990s by 
Garson [43] and then developed by Goh [44] to be widely used. It is usually used in 
experiments to give the relative significance (RI) of the input to the output of a neural 
network. It depends on dividing the connection's weights into the input-hidden 
connection's weights and the hidden-output connection's weights. Fig. 10 displays the 
contribution results. The most crucial variables that may affect the prediction of resistance 
fouling are the crude oil outlet temperature of 26.56% and the head reflux outlet 
temperature of 15.46%. The contributions of head reflux inlet temperature, crude oil inlet 
temperature, and head reflux Mass flux are not significantly different (almost the same 
contribution with RI = 15%), and crude oil mass flux has less effect with RI = 13%. Results 
of the sensitivity analysis show that all input parameters have a relative importance higher 
than > 12%, which explains the effect of the selected parameters on the output. 

 

Fig. 10. Relative importance (%) of input variables on fouling resistance 

3.6. Comparison with Other Models 

Comparisons with similar studies are crucial to the value of scientific research and give it 
the value of originality. Table 7 compares a specific category of previous studies that are 
similar or close in their input parameters to the current study—all selected studies aimed 
at predicting heat exchanger fouling. The comparative study indicates that FFNN-MLP and 
NARX represent the most accurate and reliable models in terms of predictive values. 

This superiority of the FFNN-MLP and NARX models in predicting the fouling resistance of 
heat exchangers can be attributed to the theoretical foundations of these two methods. 
Both models are mainly designed to deal with complex nonlinear relationships, especially 
those in which time has a significant influence. Heat exchangers depend on a complex 
mixture of inputs that interfere with each other, especially after a period of use. Fouling in 
the heat exchanger accumulate with prolonged use, especially with poor maintenance, and 
meads, especially on the side of the tube. Therefore, FFNN-MLP and NARX can give better 
results with all these nonlinear parameters. 
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The results obtained gave a clearer view of the prediction of fouling resistance in the 
atmospheric distillation (U100), which is the basic unit of an ALGIERS refinery and helped 
workers obtain a better performance for treating water which is injected at the E101 heat 
exchanger inlet. 

Table 7. Predicted fouling resistance comparison with previous studies 

Ref 
 

Input variables Prediction 
Variable 

Model 
Type 

Errors 
“R, R2, RMSE, MAE” 

Present 
work 

Inlet and outlet 
temperature of crude oil, 

mass flow of crude oil, 
inlet and outlet 

temperature of head 
reflux(RT) and mass flow 

of (RT) 

Fouling 
resistance 

FNN-MLP   
 
 

NARX 
 

SVM-RBF    

R=0.99961  
nRMSE=1.0031*10-2 

nMAE= 0.7939*10-2                            

R=0.9985  
nRMSE=1.4231*102  

nMAE= 1.2723*10-2     
R=0.9955 

nRMSE=3.8652*102 

nMAE= 2.4982*10-2                                                 

[45] Fluid temperature, 
surface temperature, 
operation time, fluid 
density, equivalent 

diameter, velocity, and 
oxygen content. 

Fouling 
factor 

GPR 
 

SVM 
 

Decision 
trees 

       Bagged 
trees 

         Linear 
regression 

R2=0,98770 
MSE=8,53.104 

MAE=5,35.10-3 
R2=0,97702 

MSE=1,65.10-3 
MAE=1,5.10-2 
R2=0,98664 

MSE=9,22.10-4 
MAE=8,84.10-3 

R2=0,98484 
MSE=1,15.10-3 
MAE=1,22.10-2 

R2=0,57753 
MSE=4,98.10-2 
MAE=4,65.10-2 

[46] Feed water temperature 
and flow rate, flue gas 

inlet and outlet 
temperatures,   blower A 

and B air supply rates, 
steam flow rate and 

oxygen amount 

Ash fouling 
resistance 

SVM R=0,985 
MSE=0.001126 

[47] Acid inlet and outlet 
temperature, acid volume 

flow and density, steam 
temperature and 
operation time. 

Fouling 
resistance 

ANN-MLP R2=0,995 
MSE=4.256×10–6 

[12] Fluid and surface 
temperatures, dissolved 
oxygen concentration, 
equivalent diameter, 

operation time, density, 
velocity. 

Fouling 
resistance in 

heat 
exchanger 

ANN-MLP R2=0,9778 
MSE=0.0355  

 

[48] Coal ash composition and 
structure parameters  

Fouling fact 
or index 

ANN 
 

R2=0,9996 
MSE=0,0073  MAE= 

2.308.10-2  
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4. Conclusions 

Heat exchanger modelling plays a very important role in the thermal analysis of heat 
exchangers. Artificial intelligence methods are powerful computer models that capture 
and represent complex input/output relationships. 

The study focused on fouling resistance prediction using conventional machine learning 
models such as feedforward networks multi-layer perceptron, NARX model and support 
vector machine radial basis function kernel (FFNN-MLP, NARX, and SVM-RBF) with 
supervised learning. The results indicated the fouling resistance's high train and prediction 
capacity with a higher correlation coefficient (R = 0.99961) and a very low root mean 
squared error (nRMSE = 1.0031%) for the testing phase. The prediction by FFNN-MLP 
correspondingly demonstrates a sound correlation between the fouling resistance 
experimental and predicted values, indicating that the FFNN-MLP model has superior 
predictive power. The analysis of sensitivity was calculated and verified that fouling 
resistance in heat exchanger is handled by three interactions which were arranged in 
dropping order: Cold-Outlet Temperature (Relative Importance RI = 26.56%), Hot-Outlet 
Temperature (RI = 15.46%), Hot-Inlet Temperature (RI = 54.35%), Cold-Inlet 
Temperature (15.09), Hot-Mass flux and Cold-Mass flux (14.65% and 12.9%, respectively). 
Furthermore, the study suggests that the FFNN-MLP model can be applied to predict 
fouling resistance in EA 101CBA heat exchangers or similar character conditions. 

In future work, other neural network approaches, such as Cascaded Forward NN, Radial 
basis function, and recurrent neural network, can be investigated. In addition, deep 
learning approaches will be investigated.  
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