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 This study develops a new higher-order shear deformation theory (HSDT) to 
analyze the static behavior of functionally graded (FG) beams under various 
mechanical loading conditions. The new theory is meticulously designed to 
effectively represent complexities in stress, strain, and deformation analysis, 
with a focus on maintaining or enhancing accuracy while reducing the 
computational burden for practical applications. The material properties of the 
FG beams are assumed to vary continuously across the thickness as per a power 
law distribution (P-FGM). The governing equilibrium equations are derived 
using the principle of virtual work. Navier’s solution method is then utilized to 
obtain the analytical solutions. Extensive numerical studies are conducted to 
study the influences of key geometric and material parameters on the static 
response. The deflection, axial stress and tangential stress distributions are 
computed for different combinations of length-to- thickness ratio, material 
grading index, and applied loads. The results are validated by comparison with 
existing literature where good agreement is observed, demonstrating the 
accuracy of the proposed HSDT formulation. Parametric analyses provide useful 
insights into the individual and coupled effects of beam slenderness, material 
inhomogeneity and transverse loading on the static performance of P-FGM 
beams. This study enhances understanding of the structural behavior of FG 
beams through an efficient and accurate analytical approach. 
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1. Introduction 

Functionally graded materials (FGMs) comprise a class of advanced composites 
distinguished by continuous spatial variations in composition and microstructure, 
resulting in corresponding property gradients across the volume [1,2]. This concept 
enables tailored optimization of material response and functionality by customizing the 
microstructural distribution. FGMs serve to mitigate challenges arising from the use of 
composite materials with abrupt interfaces in harsh conditions. These issues encompass 
stress singularities, property mismatches, inadequate adhesion, and delamination [3]. 
Owing to these advantages, FGMs have garnered substantial interest and adoption across 
diverse fields such as civil engineering, aerospace, automotive industry, general 
engineering applications, nuclear power plants, and more [4,5]. The graded morphology 

mailto:haithem.boumediri@umc.edu.dz
http://dx.doi.org/10.17515/resm2024.141me0104rs


Chitour et al. / Research on Engineering Structures & Materials x(x) (xxxx) xx-xx 

 

2 

provides new dimensions for designing next-generation materials to meet demanding 
thermomechanical requirements across an array of critical applications. 

Several researchers have dedicated their efforts to the mechanical analysis of Functionally 
Graded (FG) materials, specifically focusing on plates, beams, and shells. Their 
investigations have employed a range of theories and methods, encompassing both 
analytical and numerical approaches grounded in classical principles such as first-order 
shear deformation theory, higher-order shear deformation theories, and the Quasi-3D 
theory. In the context of FG beams, their studies have delved into the examination of free 
vibration and bending characteristics. Theoretical frameworks employed in these studies 
include well-established models such as the Euler-Bernoulli theory and the utilization of 
Timoshenko beam elements [6-9].  

U. Kumar Kar and J. Srinivas have pioneered an elasticity solution for a rotating micro-
beam subjected to thermo-mechanical loading. Their innovative approach incorporates bi-
directional functional grading with graphene nanoplatelets (FG-GNPs), showcasing the 
potential for enhanced structural performance in challenging environments [10]. Zenkour 
[11] provided a precise solution for plates composed of FGM using a generalized sinusoidal 
shear deformation theory. Pei-Liang B et al. [12] employed a new FEM framework to 
analyze the mechanical responses of nanobeams made of axially functionally-graded 
material (FGM) under different boundary conditions. Chitour et al. [13] introduced a novel 
hyperbolic quasi-3D shear deformation plate theory for analyzing the bending behavior of 
functionally graded sandwich plate structures submitted to sinusoidal loads, while Chikh 
et al. [14] investigated the static response and free vibration of a functionally graded beam 
on elastic foundations. Thai et al. [15] explored the free vibration and bending of FG beams 
using higher-order beam theories, and a refined plate theory was developed for examining 
thermoelastic effects and wave propagation in functionally graded plates. 

Ongoing research extends to dynamic analysis [16,17], stability behavior [18,19], and 
formulation of theories considering additional effects like porosity [20]. Investigations into 
beams with variable thickness and nonuniform geometries have also been undertaken [21-
22]. Simultaneously, the sustained research focus on FGM beams in the mechanics, 
materials, and structures communities highlights their potential for tailored gradation 
patterns and advanced responses. This ongoing interest underscores the pivotal role FGMs 
play in advancing material science and structural design methodologies across various 
engineering applications [23-27].  

This study unfolds through two integral components: a comprehensive comparative 
analysis and an in-depth parametric investigation. The primary objective of the 
comparative study is to elucidate and validate the precision and efficiency of the employed 
high-order shear deformation theory by systematically contrasting it with existing 
theories. In contrast, the parametric study systematically dissects the mechanical behavior 
of functionally graded beams under a spectrum of mechanical loads. It meticulously 
considers various factors, such as the material index (k) linked to the power-law 
distribution of Young's modulus, the thickness ratio (L/h) of the beams, and the specific 
beam type. This approach empowers the comparative evaluation, ensuring the theoretical 
formulation's accuracy is substantiated against alternative methodologies. Additionally, 
the parametric studies methodically delve into examining the influences of parameters, 
including the power-law distribution index, thickness ratio, beam configuration, and 
loading conditions, on the mechanical response of FGM beams. The study explores the 
coupled effects of material gradation, geometry, and external stimuli on static and dynamic 
performance metrics, providing a nuanced understanding of the interplay between these 
influential factors. This multi-faceted approach enhances the study's comprehensiveness 
and contributes to advancing the understanding of functionally graded beams' intricate 
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mechanical behavior. The integration of a comparative framework and a thorough 
parametric exploration not only substantiates the theory's precision but also provides 
valuable insights into the nuanced factors influencing the mechanical response of 
functionally graded beams 

2. Geometry of A Functionally Graded Beams 

  An FG beam possesses a length (L) and a rectangular cross-section denoted by b × h, 
where (b) represents the width and (h) corresponds to the height [15]. The coordinates x, 
y, and z correspond to the length, width, and height of the beam, respectively, as depicted 
in Figure 1. 

 

Fig. 1. Geometry and coordinate system of FG beam 

The effective material properties of FGM beams, including Young's modulus (E) and mass 
density (ρ) that undergo smooth variations solely in the z direction. are expressed by 
[28]: 
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The FGMs' volume fraction is assumed to conform to a power-law function along the 
thickness direction.    

3. Displacement Field and Constitutive Equations 

In this study, the emphasis is on investigating the displacement model of FG beams. A high-
order shear strain theory, commonly known as the refined theory, is utilized to represent 
the model. The representation of the displacement model is encapsulated in the following 
equation: 
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uo, w and θ Are the three unknown displacement of the mid-plane of the FG beams. The 
specific form of the shape function f(z) is assumed by Himeur et al [29]: 
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The kinematic relations corresponding to the displacement field described in Equation (3), 
relying on the principles of small-strain elasticity theory, are expressed as follows: 
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Where: 
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Based on 2D displacement field expressed in Eq. (5), the linear constitutive relations of 
FGM beams are assumed as: 
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4. Displacement Field and Constitutive Equations 

The principal equations of equilibrium are employing the concept of virtual displacements 
as follows Merdaci et al [30]: 

      = + −  =  
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(9) 

Through the integration of Equations (5) and (7) into Equation (9) across the thickness of 
the beams, a rephrased representation of Equation (9) is as follows: 
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Where q is the distributed transverse load. The stress resultants Nxx, Mxx, Sxx and Qxz are 
defined by: 
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By substituting Equation (5) and Equation (7) into Equation (11), the stress and moment 
resultants Nxx, Mxx, Sxx and Qxz are defined as follows 
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Where the stiffness components are given as follows 
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By performing integration by parts on Equation (10) and setting  (𝛿𝑢0, 𝛿𝑤0, 𝛿𝜃) equal to 
zero, the principal differential equations from Equation (14) are obtained: 
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By inserting Equation (12) and Equation (13) into Equation (14), the principal equations 
are expressed as follows: 
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5. Analytical Solution 

Beams are typically categorized based on the type of support they receive. In the case of 
simply supported FG beams, the analytical solution to the partial differential equation is 
achieved using the Navier method, which relies on the double Fourier series. The variables 
u0, v0 and θ, can be expressed by assuming the following variations. 
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Where λ=mπ/a; Um, Wm and Xm represent arbitrary parameters to be determined. Also, 
the transverse load q is expanded in a Fourier series as: 
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The values of 𝑞𝑚 using Equation  (17) are set as follows: 

• Sinusoidally distributed load 

= =,0 1q q mm  
(18) 

• Uniform distributed load 
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( )( )
4 0 sin 0.02 / 2
q

q m lm
m




=
 

(20) 

  
• Central concentrated load  

( )
4 0 sin / 2 ; 0 0

Q
q m Q q lm

a
= =  (21) 

By substituting Equation (16) and Equation (17) into Equation (22), the resulting 
equations are as follows:  
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The elements Lij are expressed as follows: 
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6. Numerical Results and Discussion 

The analysis focuses on the bending behavior response of simply-supported FG beams 
under various loading conditions, encompassing sinusoidal distributed, uniform, central 
patch, and concentrated loads. Multiple parametric studies are undertaken, and the 
obtained solutions are juxtaposed with available data from existing literature. The present 
FGM beams investigated in this study consist of a composite blend comprising Alumina 
(Al2O3) as the ceramic phase and Aluminum (Al) as the metal phase. The mechanical 
properties, including Young’s modulus and Poisson’s ratio, are specified in Table 1. To 
facilitate the analysis, the vertical displacement and stresses of the beams under various 
distributed loads (q) are expressed in non-dimensional terms. This allows for a more 
convenient comparison and understanding of the results. 

Table 1.  Material properties used in the FG Beams [31] 

Properties Alumina (Al2O3) Aluminum (Al) 

Young’s modulus E (GPa) 380 70 
Poisson’s ratio ν 0.3 0.3 

6.1 Validation of The Results 

Tables 2, 3, and 4 provide the non-dimensional numerical results for the deflection, axial, 
and tangential stress of the Functionally Graded Material (FGM) beams under uniform and 
sinusoidal loads. These results are presented for various values of the power law index (k). 
The model excels in comparison to other shear deformation theories, specifically for thick 
beams and those with a higher power law index, due to its inclusion of thickness stretching 
effects. The findings indicate that a higher power law index results in a greater stiffness for 
FGM beams, resulting in reduced deflection and stress under uniform load. This 
understanding is vital for customizing FGM beams for specific purposes, as a higher power 
law index offers advantages such as increased stiffness and the ability to withstand higher 
axial loads. 

Table 2.  The maximum non-dimensional central deflection of FG SS beams (under 
uniform distribution load) 

L/h Method 
K 

0 0.5 1 2 5 10 

5 

Chikh Abdelbaki [32] 3.1654 4.8285  6.2594  8.0675  9.8271  10.9375  

Li et al. [33] 3.1657 4.8292 6.2599 8.0602 9.7802 10.8979 

Present 3.1653 4.8285 6.2594 8.0682 9.8317 10.9400 

20 
Chikh Abdelbaki [32] 2.8962 4.4644 5.8049 7.4420 8.8181  9.6905  
Li et al. [33] 2.8962 4.4645 5.8049 7.4415 8.8151 9.6879 

Present 2.8963 4.4642 5.8052 7.4419 8.8181 9.6906 
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Table 3.  The maximum non-dimensional axial stresses of FG SS beams (subjected to an 
evenly distributed load) 

L/h Method 
K 

0 0.5 1 2 5 10 

5 
Chikh Abdelbaki [32] 3.8017  4.9920  5.8831  6.8819  8.1095  9.7111  
Li et al. [33] 3.8020 4.9925 5.8837 6.8812 8.1030  9.7063  
Present 3.8035 4.9943 5.8877 6.8853 8.1146 9.7158 

20 
Chikh Abdelbaki [32] 15.0129  19.7003  23.2052  27.0989  31.8127  38.1383  
Li et al. [33] 15.0130 19.7005 23.2054 27.0989 31.8112 38.1372  
Present 15.0133 19.7008 23.2059 27.1001 31.8136 38.1398 

Table 4.  The maximum non-dimensional tangential stresses of FG SS beams (Subjected to 
a load uniformly distributed) 

L/h Method 
K 

0 0.5 1 2 5 10 

5 
Chikh Abdelbaki [32] 0.7312 0.7484 0.7312 0.6685 0.5883 0.6445 
Li et al. [33] 0.7500 0.7676 0.7500 0.6787 0.5790 0.6436 
Present 0.7422 0.7592 0.7428 0.6802 0.6008 0.6570 

20 
Chikh Abdelbaki [32] 0.7429 0.7599 0.7429 0.6802 0.5998 0.6572 
Li et al. [33] 0.7500 0.7676 0.7500 0.6787 0.5790 0.6436 
Present 0.7565 0.7695 0.7540 0.6930 0.6130 0.6130 

Tables 5, 6, and 7 meticulously detail the outcomes for functionally graded (FG) beams 
subjected to sinusoidal loads, unraveling the nuanced effects of varying power law index 
values. The presentation extends beyond mere reporting, incorporating a comprehensive 
systematic comparison with results from established beam theories, such as Chikh 
Abdelbaki [32], Li et al. [33], L. Hadji et al. [34], Sayyad et al. [35], and Reddy [36]. This 
exhaustive evaluation underscores the precision and reliability of the proposed high-order 
shear deformation theory in predicting the static bending behavior of FG beams under 
sinusoidal loads. 

A granular analysis of the outcomes unveils insightful trends, particularly in the realm of 
deflection. Notably, there is a discernible increase in deflection with a rising volume 
fraction index, as evidenced in both Table 2 and Table 5. This insight underscores the 
pronounced influence of the power law index on the bending behavior of FG beams. The 
correlation is further elucidated—a higher power law index corresponds to a higher 
concentration of metal in the beam, resulting in a decrease in the beam's stiffness. 
Consequently, the beam deflects more under the same load. Similarly, the in-plane normal 
stress (𝜎xx) consistently decreases with a diminishing volume fraction index (k), as 
observed in Table 3 and Table 6. This observation sheds light on the intricate relationship 
between the power law index and the distribution of normal stress within FG beams. The 
linkage becomes clearer—a lower power law index corresponds to a higher concentration 
of ceramic in the beam, which, having a lower modulus of elasticity than metal, leads to 
less stress under the same load. 

( )
3

100 , , , , 0, 0 .
4 2 2 20 00

E h l h l h hmw w xx xx xz xz
q l q lq l

   = = =
   
   
   

 (24) 

The examination of non-dimensional tangential stresses in Table 4 and Table 7 further 
enriches the understanding, revealing a decrement in these stresses as the volume fraction 
index (k) increases. These findings collectively contribute to a nuanced comprehension of 
the power law index's impact on various stress components within FG beams under 
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sinusoidal loads. The mechanistic connection emerges—a higher power law index 
translates to a higher concentration of metal in the beam, resulting in a higher shear 
modulus than ceramic and, consequently, less shear stress under the same load. 

Table 5.  The maximum non-dimensional central deflection of FG SS beams under a 
sinusoidal load  

L/h Method 
K 

0 1 5 10 

5 

Hadji et al. [34] 2.5019  4.9458 7.7715 8.6526 
Sayyad et al. [35]  2.5019  4.9441 7.7739 8.6539 
Reddy [36] 2.5020 4.9458 7.7723 8.6530 
Present 2.5019 4.9458 7.7752 8.6544 

20 

Hadji et al. [34] 2.2839 4.5774 6.9539 7.6421 
Sayyad et al. [35]  2.2839 4.5774 6.9541 7.6422 
Reddy [36] 2.2838 4.5773 6.9540 7.6421 
Present 2.2839 4.5776 6.9538 7.6425 

Table 6.  The maximum non-dimensional axial stresses of FG SS beams under a sinusoidal 
load. 

L/h Method 
K 
0 1 5 10 

5 

Hadji et al. [34] 3.0913 4.7851 6.6047 7.9069 
Sayyad et al. [35]  3.0922 4.7867 6.6079 7.9102 
Reddy [36] 3.0916 4.7857 6.6057 7.9080 
Present 3.0927 4.7877 6.6092 7.9118 

20 

Hadji et al. [34] 12.171 18.814 25.794 30.923 
Sayyad et al. [35]  12.171 18.814 25.795 30.923 
Reddy [36] 12.171 18.813 25.794 30.999 
Present 12.171 18.815 25.796 30.923 

Table 7.  The maximum non-dimensional tangential stresses of FG SS beams under a 
sinusoidal load. 

L/h Method 
K 

0 1 5 10 

5 

Hadji et al. [34] 0.4755 0.4755 0.3840 0.4208 
Sayyad et al. [35]  0.4800 0.5248 0.5274 0.4237 
Reddy [36] 0.4769 0.5243 0.5314 0.4226 
Present 0.4836 0.4836 0.3928 0.4294 

20 

Hadji et al. [34] 0.4760 0.4760 0.3847 0.4215 
Sayyad et al. [35]  0.4806 0.5245 0.5313 0.4263 
Reddy [36] 0.4774 0.5249 0.5323 0.4233 
Present 0.4842 0.4842 0.3934 0.4302 

The difference in deflection between the present method and other methods Chikh 
Abdelbaki [32] and Li et al. [33] as a function of the power law index k is illustrated in 
Figures 2 (a, b). The deviation between the deflections of FGM beams estimated by the 
present method and other methods depends on the power law index (k).  

The difference between methods for the estimated deflection values reaches a maximum 
of (0.0515 for L/h = 5 and 0.003 for L/h = 20) for k = 5. Between the present method and 
Li et al [32] method, the difference reaches up to 0.0046 for L/h = 5 and 0.0 for L/h = 20. 
Between the present method and Chikh Abdelbaki [32] method, the difference is 0.008 for 
L/h = 5 and 0.0004 for L/h = 20, both for a value of k < 2. The difference is insignificant 
between methods, with the gap not exceeding 0.008 for l/h = 5 and 0.0004 for L/h = 20. 
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Fig. 2. Difference of non-dimensional center deflections w between different methods 
as a function of the power-law index k of FG S-S beams under uniform load: (a) L/h=5, 

(b) L/h=20 

FG beams with side-to-thickness ratio L/h=5,20 is chosen in Figures 3 (a, b) and 4 (a, b). It 
can be seen that the deviation on the axial and tangential stress between the present model 
and previous one Chikh Abdelbaki [32] and Li et al. [33] is bigger for k>2 than that on for 
k<2. Moreover, it is also observed that the deviation on the axial and tangential stress 
between the present model and previous is effectively significant for thick FG s beams. The 
comparative analysis indicates a close correspondence between the results obtained from 
the proposed beam theory and the actual solutions, notably aligning well with the works 
of Chikh Abdelbaki [32] and Li et al. [33]. Consequently, the new beams theory can be 
applied to analyze the bending of FG beams.     

In Figures 5, 6, 7, and 8, the effect of various types of mechanical loads (sinusoidal 
distributed, uniform, central patch, and concentrated load) on non-dimensional center 
deflections and axial stress and transversal stress is depicted, for simply supported FG 
beams. Figure 5 gives the changing rules of the central deflection with the power law index 
k. Central deflection increases monotonically with the rising value of power law index k. 
Meanwhile, these curves would tend to be a steady value in a value of k=5. It means that, 
the increasing of power law index k (beam rich in metal) would reduce the mechanical 
resistance of structures, rather than increasing the central deflection. 
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Fig. 3. Difference of non-dimensional axial stress between different methods as a 
function of the power-law index k of FG S-S beams subjected to an evenly distributed 

load: (a) L/h=5, (b) L/h=20 
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Fig. 4. Difference of tangential stress between different methods as a function of the 

power-law index k of FG S-S beams subjected to a load uniformly distributed: (a) 
L/h=5, (b) L/h=20) 

 

Fig. 5. Variation of the non-dimensional central deflection w versus the power-law 
index k of FG beams (L/h=20) exposed to diverse mechanical loading types 
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Fig. 6. Variation of the non-dimensional deflection along the length direction (L/h =20, 
k=1) of FG beams subjected to various types of mechanical load 

 

 

Fig. 7. Effect of various types of mechanical loads on distribution of normal stresses 
across the thickness of the FG beam 
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Fig. 8. effect of various types of mechanical loads on distribution of transverse shear 

stress across the thickness of the FG beam 

7. Conclusions 
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higher power law indices, providing valuable insights into the nuanced structural behavior 
of FG beams. 

A pivotal finding in this study reveals that an augmentation in the power-law index (k) 
correlates with a reduction in mechanical resistance, attributed to an increased volume 
fraction of metal (Vm), without a proportionate rise in central deflection. This nuanced 
relationship between material composition and mechanical behavior underscores the 
intricate nature of FG beams. The proposed theory surpasses Higher-Order Shear 
Deformation Theory (HSDT) in accuracy and efficiency, especially in scenarios involving 
thick beams and higher power law indices where the thickness stretching effect is more 
pronounced. 

The numerical examples presented confirm the theory's accuracy in predicting deflections 
and stresses in FG beams subjected to uniformly distributed loads. Additionally, load type 
influences are explored, highlighting higher deflection and shear stress values under 
concentrated loads. In conclusion, the analytical solutions provided by the proposed high-
order theory constitute a robust framework for comprehensively analyzing the static 
bending of FG beams under various mechanical loads. The theory's reliability, accuracy, 
and computational efficiency position it as an invaluable tool for advancing research in 
composite materials and structural mechanics. 
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