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 BBR test is commonly used to assess the low-temperature performance grade 
(PG) of asphalt binders, with the flexural-creep stiffness being a critical 
parameter calculated through this test. However, it has notable limitations that 
demand attention. The significant amount of asphalt binder needed for test 
specimens increases costs and resource consumption. Additionally, the complex 
and time-consuming specimen preparation process hinders testing efficiency 
and introduces result variability, affecting the accuracy and reliability of PG 
determinations. In recent years, machine learning (ML) has emerged as a 
promising substitute for predicting various engineering values. In this study, the 
primary focus was on harnessing super learner (SL) techniques to predict the 
creep stiffness of asphalt binders. The SL approach combines multiple ML 
algorithms to enhance predictive accuracy and reduce individual model biases. 
Bagging, boosting, and stacking algorithms were employed in the construction of 
these prediction models. To conduct the investigation, data from 1350 samples 
sourced from the Long-Term Pavement Performance (LTPP) website were 
utilized to explore the influence of six crucial variables on the creep stiffness of 
asphalt binders. The proposed method demonstrated high accuracy, nearing 
90% in the coefficient of determination. The Stacking model achieved a low Mean 
Absolute Percentage Error of 2.86% and robust Prediction Accuracy of 97.14% 
for randomly selected data points. Furthermore, the sensitivity analysis 
highlighted the significance of distinct input variables in influencing the creep 
stiffness of asphalt binders. Notably, the test temperature emerged as the most 
influential factor affecting creep stiffness, according to the conducted study. 
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1. Introduction 

The asphalt pavements undergo significant impacts from climatic changes, which, in turn, 
profoundly impact the performance of asphalt mixtures and the characteristics of asphalt 
binder. As temperatures fluctuate, these materials experience significant transformations 
that directly influence their properties and response to external stresses. As temperatures 
decrease, the asphalt binder experiences a critical transition from a plastic state to a solid 
state. In colder conditions, the binder becomes much stiffer and exhibits a lower resistance 
to flow, resulting in increased viscosity. This change in viscosity affects the overall 
flexibility and resilience of the asphalt mixture, making it less capable of accommodating 
dynamic loads and stresses induced by traffic. The reduced flexibility and increased 
stiffness of the asphalt binder in colder climates can lead to several performance issues for 
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the asphalt pavement. It becomes more susceptible to cracking and fracture due to its 
limited ability to absorb the energy from vehicular loads. Additionally, the reduced 
flowability of the binder makes it challenging for the pavement to self-heal or recover from 
minor damages caused by traffic, further contributing to the overall deterioration of the 
pavement structure [1].   

When asphalt pavements experience elevated tensile stress surpassing the movement 
resistance of the asphalt binder, it results in the formation of cracks within the binder, 
which eventually spread across the pavement surface. This phenomenon is known as low-
temperature cracking, leading to significant functional and structural failures in the 
pavements [2]. To study and address these cracks that may occur during the asphalt 
pavement's design life, a specialized test is conducted on the asphalt binder material. This 
specific test is conducted to assess the creep stiffness value at low temperatures, serving 
as a crucial indicator of the asphalt binder's resistance to low-temperature cracking. The 
creep stiffness measurement provides valuable insights into how well the binder can 
withstand tensile stresses caused by low temperatures without undergoing excessive 
deformation or cracking. This property is crucial for ensuring the long-term performance 
and durability of asphalt pavements, especially in regions with colder climates or 
significant temperature variations [3]. To assess the asphalt binder's resistance to low-
temperature cracking, a specialized test is conducted using an asphalt binder prismatic 
beam. The beam possesses specific dimensions, measuring 125 mm in length, 6.25 mm in 
height, and 12.5 mm in width. In the test, the prismatic beam is horizontally positioned in 
a cold fluid bath, and a constant load of 980 mN is applied at the midpoint of the beam. The 
deflection of the specimen is measured, and the creep stiffness is calculated using the 
actual load and specimen dimensions. The test is performed at various constant 
temperatures within the low-temperature range. At a loading time of 60 seconds, the creep 
stiffness and the corresponding m-value are derived. The m-value represents the absolute 
value of the slope of the stiffness versus time curve on a double logarithmic scale [4]. 

BBR has become the predominant testing method for assessing the low-temperature 
characteristics of asphalt binders, particularly those subjected to prolonged aging before 
undergoing BBR testing. Despite its widespread use, several authors have highlighted 
significant drawbacks associated with BBR testing, particularly concerning specimen 
preparation and testing conditions. One of the main drawbacks is the complexity and 
labour-intensive nature of preparing BBR test specimens. The process requires meticulous 
attention to detail and precise measurements to ensure accurate results. This can be time-
consuming and may introduce variability in the test outcomes due to inconsistencies in 
specimen preparation. Additionally, the testing conditions in BBR may not always fully 
represent the real-world environmental conditions that the asphalt binders encounter in 
the field. For instance, the test temperatures in BBR may not accurately mimic the wide 
range of temperature fluctuations experienced by pavements in different geographic 
locations and climates. This limitation can impact the relevance and applicability of BBR 
results to actual pavement performance [5-7]. The direct grading process to determine the 
PG of asphalt pavements involves using devices like the Dynamic Shear Rheometer (DSR) 
and BBR to directly measure pavement performance. However, this approach requires a 
substantial budget, presenting challenges for researchers and pavement laboratories in 
certain countries. To address these limitations, researchers have explored alternative 
methods for indirectly assessing pavement performance, which are more accessible and 
cost-effective. One such indirect estimation method involves leveraging weather data, 
particularly the maximum and minimum air temperatures in construction regions, as a 
basis for assessing the PG grade. By utilizing weather data, researchers can infer the 
performance characteristics of the pavement under varying temperature conditions. 
Additionally, some researchers have proposed an indirect estimation of the PG grade based 
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on pavement characteristics under "real-world conditions" while adhering to the 
specifications of traditional grading systems used in developed countries. This approach 
aims to find a balance between cost-effectiveness and accuracy in assessing the PG grade 
[8]. During the Strategic Highway Research Program (SHRP), there was a consideration to 
use the DSR with parallel plate geometry for the low-temperature PG system. However, it 
was eventually not selected for this purpose due to a significant challenge. Researchers 
have acknowledged that DSR measurements at temperatures below approximately 5 °C led 
to compliance errors in dynamic responses, particularly evident when employing the 
standard thin film binder geometry. To overcome this limitation and accurately measure 
the low-temperature rheological properties of asphalt binder, SHRP developed the BBR. 
The BBR test was specifically designed to assess the stiffness and creep behaviour of 
asphalt binders under low-temperature conditions. By using the BBR, researchers were 
able to obtain more reliable and consistent data related to the performance of asphalt 
binders at lower temperatures [9]. Recognizing the challenges and limitations associated 
with the BBR for low-temperature binder evaluation, some researchers have sought an 
alternative approach. As a result, they have endeavored to shift from BBR-based testing to 
a method exclusively reliant on DSR. In this new approach, the DSR is utilized for these 
evaluations, three distinct geometries were employed: torsion bar, 8-mm Parallel Plate, 
and 4-mm Parallel Plate. However, it is important to highlight that testing asphalt binder 
at extremely low temperatures, such as -30°C, can only be accomplished using the 4-mm 
plate geometry. This limitation arises from the torque capacity constraints of motors in 
typical commercially available DSRs. The use of the 4-mm plate geometry allows 
researchers to accurately measure the rheological properties of asphalt binders under 
these extreme low-temperature conditions, enabling a more comprehensive assessment of 
their performance in challenging environments [10-12]. Recently, the approach to 
determining the BBR equivalent low performance grade has centered on converting the 
complex shear modulus (G*(ω)) to creep compliance (D(t)). This conversion involves 
transforming data acquired in the DSR frequency domain into the BBR time domain. 
Various interconversion methods have been employed in these studies, and they are 
grounded in linear viscoelastic theory. On the other hand, approximation-based methods 
offer simplified procedures to approximate the interconversion from DSR frequency 
domain to BBR time domain [13,14]. Indeed, while the approximation-based 
interconversion methods may not offer the same level of precision as rigorous methods in 
recent years, there has been a growing trend among researchers to explore the application 
of ML for evaluating the rheological parameters of asphalt binders.  

ML techniques, such as regression, neural networks, and ensemble methods, have shown 
great promise in various engineering applications due to their ability to handle complex 
datasets and identify patterns that might not be easily discernible through traditional 
methods. In a research study, artificial neural network and self-validated ensemble 
modeling techniques were used to predict low-temperature fracture energy of asphalt 
mixtures and both methods showed high prediction accuracy [15]. In another study, new 
predictive models were developed to estimate the dynamic modulus and phase angle of 
asphalt concrete accurately. The models considered temperature and loading frequency as 
key factors, and statistical analysis revealed their effectiveness in providing precise 
estimations for these properties [16]. In other study, the Extreme Learning Machine (ELM) 
algorithm, optimized by Genetic Algorithm (GA), was employed to rapidly predict the low-
temperature rheological properties of styrenic block copolymer modified asphalt based on 
the raw material properties. The GA-ELM model outperformed traditional models, 
reducing errors by 68.97-81.48% [17]. Another research introduced a data-driven 
Convolutional Neural Network (CNN) model to forecast the phase angle behavior of 
asphalt concrete mixtures. The proposed CNN model achieves an impressive R2 score of 
0.90, indicating high accuracy in its predictions [18]. 
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From the existing literature, it can be observed that ML methods have not been extensively 
used to predict the creep stiffness, considering various factors such as test temperature, 
penetration, kinematic viscosity, and absolute viscosity (dynamic) also the occurrence of 
physical hardening during the storage of BBR specimens at constant low temperatures has 
been observed in multiple studies [19-20]. Because physical hardening changes the 
rheological properties of asphalt binders the inclusion of the mentioned parameters 
contributes to the attainment of more precise predictions of creep stiffness prediction. 
Additionally, most of the mentioned algorithms in previous studies are individual learning 
algorithms, whereas new SL techniques, which are more accurate, powerful, and robust, 
are gaining popularity. The core concept of SL techniques involves training multiple weak 
learners with the training data and then combining them to create a strong learner. These 
weak learners are based on individual learning algorithms. As a result, group learning 
models (strong learners) significantly enhance prediction accuracy and model robustness. 
Three primary groups of algorithms for group learning are bagging, boosting, and stacking, 
and their distinctions can be found in a review article [21]. Great potential for improving 
the prediction accuracy and reliability of creep stiffness in asphalt binders is offered 
through the utilization of these advanced SL methods. This is attributed to the presence of 
non-linearities and interactions between various factors on asphalt binders. In high-
dimensional feature spaces, a preference for nonlinear models such as bagging and 
boosting may arise for feature selection, regularization, and prediction, while simpler 
models like linear regression may suffice for fewer features [22]. 

The primary aim of this research is to develop a predictive model capable of forecasting 
creep stiffness in BBR Experiments using data collected from the LTPP dataset. The 
proposed model incorporates various factors that influence the rheological properties of 
the asphalt binder, primarily related to test conditions and binder properties. These 
influential factors include test temperature, penetration, kinematic viscosity, absolute 
viscosity (dynamic viscosity) and specific gravity. The model is constructed by training SL 
techniques with the collected data, resulting in a strong learner that can accurately predict 
the value of creep stiffness. Additionally, the research investigates the impact of key factors 
in the best model approach, such as the amount of training data, sensitivity, and the 
number of input variables. This comprehensive approach seeks to enhance the accuracy 
and reliability of predicting creep stiffness, contributing to a better understanding of 
asphalt binder behavior, and facilitating the design of more durable and resilient asphalt 
pavements. 

2. Methods 

ML techniques have proven highly advantageous in civil engineering, providing rapid and 
precise outcomes with minimal error rates. These ML methods can be categorized into 
three main groups: supervised learning, unsupervised learning (including clustering 
algorithms and Principal Component Analysis), and reinforcement learning. Supervised 
learning involves feeding the algorithm substantial volumes of labeled data containing 
input and output variables. By identifying patterns and learning from observations, the 
algorithm generates predictions until the error reaches an acceptable level. This type of 
learning can be further divided into two categories: classification and regression [23-24]. 
The diverse range of ML methods empowers civil engineering researchers to enhance 
efficiency and accuracy in their analyses and decision-making processes. In the context of 
predicting creep stiffness, a model is constructed using SL techniques trained with the 
collected data. This results in a robust learner capable of accurately forecasting creep 
stiffness values. Additionally, the research explores the impact of key factors in the best 
model approach, such as the amount of training data, sensitivity, and the number of input 
variables. 
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In contrast to the less powerful regression models previously used, this research focuses 
on harnessing the predictive capabilities of the SL approach to forecast creep stiffness in 
the BBR test. By combining and optimizing different base learners, the SL models aim to 
improve the accuracy and reliability of predictions for this important rheological property 
of asphalt binders. In this study, SL models were developed based on several ensemble 
methods, including Random Forest, Gradient Boosting Machine (GBM), Adaptive Boosting 
(AdaBoost), Extreme Gradient Boosting (XGBoost), Categorical gradient Boosting 
(CatBoost), and stacking, to estimate the Creep stiffness. Through a process of hyper-
parameter optimization, the optimal conditions for each ensemble algorithm were 
obtained using a grid search method to achieve the best performance. The effectiveness of 
the SL models was built using datasets collected from the LTPP database. A comparison 
was made regarding the performance of all models. Lower, Mean Squared Error (MSE), 
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and the higher R-squared 
(R2 score) indicated the superior performance of the SL models compared to other 
approaches, showcasing their robust predictive capabilities for estimating the Creep 
stiffness of asphalt binders. 

2.1. Super Learner Machine Learning Techniques 

The SL represents an ensemble machine learning algorithm that combines and utilizes 
various ensemble algorithms to achieve the best prediction model. Ensemble learning 
methods can be categorized into three distinct groups: bagging, boosting, and stacking, as 
depicted in Figure 1. All these methods were employed in our study. Initially, the bagging 
method, specifically the Random Forest algorithm, was employed. Subsequently, the 
boosting method, including GBM, AdaBoost, XGBoost, and Catboost, was incorporated. 
Ultimately, a stacking ensemble model was utilized to address any weaknesses and 
leverage the inherent strengths of each individual model. The objective was to combine 
predictions from the contributing methods through a meta-model. The implementation of 
these ensemble learning strategies aimed to bolster the precision and resilience of our 
predictive models. 

 

Fig. 1. Flowchart of ensemble methods 

2.1.1 Random Forest 

Random Forest represents an ensemble learning technique based on bagging. It serves 
purposes in both regression and classification tasks. Random Forest entails the creation of 
multiple individual binary decision trees, each incorporating an element of randomness. 
This stochastic element encourages the trees to produce independent estimates, despite 
being constructed using a deterministic algorithm and a training dataset [25].  
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        2.1.2 Gradient Boosting Machine (GBM) 

GBM utilizes the gradient descent technique to construct models, taking into account the 
negative partial derivatives of the loss function. The initial model is adapted to fit the 
original data more effectively and is subsequently refined to address residuals and 
overcome limitations of the preceding model. This iterative process continues until a 
convergence criterion is satisfied [26]. 

        2.1.3 Extreme Gradient Boosting (XGBoost) 

XGBoost, a prominent boosting technique, expands on the principles of GBM. It involves 
the sequential development of regression trees, with each successive tree trained on the 
residuals of the preceding one. This approach effectively mitigates overfitting and 
enhances computational efficiency. Employing a level-wise learning strategy, XGBoost 
prioritizes splits that result in the most significant reduction in loss at each leaf [27]. 

        2.1.4 Adaptive Boosting (AdaBoost) 

AdaBoost employs multiple decision tree regressors as weak learners, extracting insights 
from diverse attributes within the dataset. The core idea behind AdaBoost revolves around 
iteratively updating parameters linked to a specific set of functions. This incremental 
incorporation of new trees fosters the creation of a resilient learner with improved 
predictive abilities [28]. 

        2.1.5 Categorical Gradient Boosting (CatBoost) 

CatBoost utilizes the entire dataset for training and introduces random permutations to 
each example. It introduces a novel method for computing leaf values during the selection 
of tree structures, effectively tackling the biased gradient challenges commonly faced by 
traditional boosting algorithms. Through these enhancements, CatBoost notably enhances 
model performance and the capacity to generalize [29]. 

        2.1.5 Stacking 

In contrast to bagging and boosting, stacking combines several classifiers or regressors 
produced by different machine learning algorithms, functioning across various levels or 
layers. Given the potential for the stacking ensemble model to generate various 
permutations via different ML algorithms, this research prioritized the application of this 
SL method. Here, linear regression was utilized as the meta-learner to amalgamate 
different algorithms, with the aim of achieving heightened accuracy [30]. 

3. Data Collection and Processing 

The data utilized in this study were sourced from the LTPP website, a component of the 
Strategic Highway Research Program (SHRP). The chosen factors for investigation 
encompass test temperature, penetration, kinematic viscosity, absolute viscosity, and 
specific gravity. A comprehensive dataset consisting of 1350 data points was gathered, 
encompassing the specified input variables. To ensure the dataset's quality, missing data 
and outliers were filtered out, resulting in a final dataset of 1202 records of Creep stiffness 
values. The descriptive statistics of the influential parameters used for modelling are 
presented in Table 1. 
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Table 1. Statistical properties of dataset 

ID Data  Unit mean std min max 

1 Flexural Creep Stiffness  MPa 265.92 148.56 36.00 775.00 

2 M_Value  - 0.32 0.06 0.15 0.5 

3 BBR Test Temprature  °C -17.71 4.62 -30.00 -6.00 

4 PENETRATION_77F  mm 34 19 1.00 114.00 

5 PENETRATION_115F  mm 182 89.45 5.00 449.00 

6 ABSOLUTE_VISC_140F  cP 5.28 1.42 5.50 1.24e+06 

7 KINEMATIC_VISC_275F  cSt 1087.72 790.62 212.00 4553.00 

8 SPECIFIC_GRAVITY  g/cm3 1.04 0.01 1.00 1.09 

      

 

Fig. 2. Pair plot of some variable in dataset 

Data visualization is a powerful and essential tool for gaining insights into qualitative data. 
By utilizing visualization techniques, we can effectively extract valuable information from 
datasets and detect patterns, outliers, and other irregularities. pair plots were utilized to 
visualize the data distribution of the dataset in this paper. The data distribution was 
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visualized through these pair plots, as depicted in Figure 2, providing intriguing insights 
into the relationships between different variables and contributing to a deeper 
understanding of the data's structure. Informed decisions could be made and potential 
trends or anomalies that might influence the analysis and modeling process were 
identified through data visualization. A data splitting strategy was adopted to develop and 
assess our ML model. The dataset was divided into two segments: a training sample 
comprising 75 percent of the data and a test sample containing the remaining 25 percent. 
The training sample was used to construct and train the ML model using various SL 
techniques. These methods were utilized to uncover the underlying patterns and 
relationships between the input features, such as test temperature, m-value, penetration, 
kinematic viscosity, absolute viscosity, specific gravity, and the Creep stiffness. Once the 
model was trained, its performance was evaluated using the test sample, which had been 
withheld during the training phase. By the trained model, the ability to accurately predict 
the Creep stiffness based on the provided input data was assessed. Valuable insights into 
the model's generalization and its performance on previously unseen data were provided 
by this evaluation. This rigorous testing ensured that new data could be effectively handled 
by our model, enabling accurate predictions in real-world scenarios. 

4. Results and Discussion 

The main objective of this study was the development of accurate prediction models for 
estimating the Creep stiffness of BBR tests. To accomplish this, supervised ML algorithms 
were employed, with a specific emphasis on various ensemble models. Six ensemble 
models, including random forest, GBM, AdaBoost, XGBoost CatBoost and a stacking method 
combining elements of boosting and bagging, were implemented using the scikit-learn 
library in Python. The use of these SL models aimed to predict the Creep stiffness based on 
the rheological properties of various asphalt binders. By training each model with the 
labeled dataset, intricate relationships between the input features and their corresponding 
Creep stiffness values were learned. 

For the evaluation of the accuracy and effectiveness of these ML models, four widely used 
performance metrics, namely MSE, RMSE, MAE, and the R2 score, were employed. valuable 
insights into the models' performance in accurately predicting the Creep stiffness values 
and capturing the underlying patterns in the data were provided by these metrics. The MSE 
quantifies the average squared difference between the actual and predicted values, 
providing an overall measure of prediction accuracy. The RMSE, derived from MSE, 
represents the square root of the average squared error, offering a measure of prediction 
deviation relative to the actual values. The MAE calculates the average absolute difference 
between the actual and predicted values, providing a straightforward measure of the 
model's predictive errors. Furthermore, the R2 score statistic serves as a crucial indicator 
of how well the influence of an independent variable explains the variance in a dependent 
variable. It assists in determining the extent to which the variability in the Creep stiffness 
values can be attributed to the variations in the input features. 

In Figure 3, the visualization of the distribution of predicted results against actual results 
for all models presented and accompanied by the best fit line for the prediction 
distribution. Remarkably, R2 scores of 0.89, 0.886, and 0.885 were achieved by the 
Stacking, Random Forest, and GBM models, respectively, suggesting credible prediction 
outcomes. Deviation from the fit line was observed in some data points, notably in the 
calculations of AdaBoost and CatBoost. It is noteworthy that the dataset includes abrupt 
changes in specific values, negatively affecting the accuracy of sensitive algorithms such as 
AdaBoost and CatBoost. This resulted in lower R2 scores and higher MSE and RMSE for 
these models. In contrast, more accurate predictions on the test data were demonstrated 
by other algorithms, mainly due to their adeptness in capturing the nonlinear nature of the 
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dataset. Moreover, certain algorithms, especially those incorporating randomness (e.g., 
random forest), may yield slightly different results in each training iteration. This inherent 
variability can contribute to deviations. The reduced deviation observed in stacking can be 
attributed to its capacity to leverage the capabilities of a variety of well-performing models, 
resulting in predictions that surpass those of any single model in the ensemble. The non-
linear connection between Creep stiffness and other variables is indicated by this finding, 
considering the characteristics of the dataset and the intricate interplay of various factors. 

The metrics for all algorithms used in this study are presented in Table 2. The good 
performance of the stacking, Random Forest, and GBM models can be attributed to their 
adeptness in handling intricate and non-linear relationships between Creep stiffness and 
other variables. These models excel in addressing abrupt changes and nonlinearity within 
the dataset, resulting in more precise and accurate predictions. The lower MSE and RMSE 
values achieved by these two models further affirm their performance in capturing the 
intricate relationships between Creep stiffness and other variables. 

Table 2. SL models metrics 

Model MAE MSE RMSE R2 score 

Random forest 37.62 2795.42 52.87 0.886 

GBM 37.56 2829.75 53.19 0.885 

AdaBoost 47.07 3690.37 60.74 0.850 

XGBoost 42.13 3402.20 58.32 0.862 

CatBoost 39.10 2913.44 53.97 0.882 

Stacking 36.36 2479.14 49.79 0.899 

 

The accuracy results of all the models reinforce the notion that the transition from linear 
regression to ensemble models, specifically Boosting methods, enhances the capability to 
capture non-linear relationships present in the data. This, in turn, leads to significantly 
improved prediction accuracy for the targeted problem of estimating the Creep stiffness of 
asphalt binders. 

The lower R2 score of approximately 0.85 for the AdaBoost algorithm can be attributed to 
its sensitivity to outliers and noise in the data. AdaBoost, being an ensemble learning 
method, aims to sequentially fit weak learners to the data, with each subsequent model 
giving more weight to the misclassified points by the previous ones. This sensitivity to 
outliers and noise can lead to an overemphasis on capturing individual data points, causing 
the model to try fitting the noise in the data rather than generalizing the underlying 
patterns. As a result, the model may exhibit a lower R2 score, indicating that it does not 
explain as much of the variance in the dependent variable as desired. Robust preprocessing 
techniques, such as outlier removal or data cleaning, could potentially improve the 
performance of AdaBoost in scenarios where outliers and noise have a significant impact 
on the model's fitting process. 

A remarkable improvement is observed in all results obtained by the SL methods 
compared to the referencing work. The relationship between the predicted and actual 
values is closely aligned with the best fit line for the dataset in Figure 3. The radar plot 
depicted in Figure 4 provides a visual representation of the R2 score values attributed to 
each method. The shape exhibited in the radar plot notably demonstrates the closely 
clustered values of R2 score for each respective method, highlighting the similarity in their 
predictive performance. 
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Fig. 3. Predicted vs actual values of the flexural-creep stiffness for the different 
methods 

 

Fig .4. Radar plot of R2 score different methods 

In Figure 5, the feature importance of various factors selected for analysis was 
demonstrated. Given the best performance of GBM, it was selected to assess the feature 
importance of each factor. It is evident that the importance of the test temperature 
outweighs that of other factors, followed by penetration at 115°F, kinematic viscosity, and 
specific gravity, which exhibited higher significance in predicting the creep stiffness. 
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Fig. 5. Feature importance of GBM method 

Table 3. Random selected actual vs prediction values of flexural-creep stiffness (MPa) 

Actual Value Random Forest GBM AdaBoost XGBoost CatBoost Stacking 

189 216 202 235 191 218 192 

75.5 63 56 52 80 66 79 

76 72 63 61 79 66 73 

174 175 174 205 160 178 172 

249 262 224 245 203 233 235 

130 139 147 177 169 138 132 

199 221 201 214 230 202 202 

 

Table 3 presents the random display and comparison of the predicted values of the 
flexural-creep stiffness, obtained by various methods employed in this research, with the 
actual values from the test data. It is apparent that, in most cases, the prediction results are 
deemed acceptable; however, certain instances reveal that certain algorithms have 
generated values that are not considered satisfactory. This discrepancy could be attributed 
to the underfit of the algorithm for those specific values. The Stacking model achieved a 
low Mean Absolute Percentage Error (MAPE) of 2.86% and a high prediction accuracy of 
97.14%. The GBM model, while slightly less accurate, still demonstrated a respectable 
MAPE of 10.56% and a prediction accuracy of 89.44% for the selected data points. This 
performance is attributed to the intrinsic nature and characteristics of these algorithms, 
allowing them to converge towards the accurate prediction value through the creation of 
multiple sub-branches and hidden layers. 

5. Conclusions 

In this study, the application of various SL machine learning models for predicting the 
Creep stiffness of asphalt binders in BBR experiments was explored. The aim was to 
develop accurate and robust prediction models that could provide a better understanding 
of the rheological behavior of asphalt binders under low-temperature conditions. 
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Through an extensive analysis using a diverse dataset and various ensemble learning 
methods, including Random Forest, GBM, CatBoost, XGBoost, Adaboost, and Stacking, 
prediction models were successfully constructed that achieved high accuracy in predicting 
the Creep stiffness. Along with the best fit line for the prediction distribution. Notably, the 
Stacking, Random Forest, and GBM models achieved R2 scores of 0.89, 0.886, and 0.885, 
respectively, indicated the strong ability of these methods to capture complex and non-
linear relationships between the input variables and the target variable. 

The comparison of randomly selected actual vs. predicted values of flexural-creep stiffness 
across different methods reveals compelling performance metrics. The Stacking model 
stands out with a notably low Mean Absolute Percentage Error (MAPE) of 2.86% and an 
impressive prediction accuracy of 97.14%. on the other hand, the GBM model, while 
slightly less accurate, maintains a respectable performance, showcasing a MAPE of 10.56% 
and a prediction accuracy of 89.44% for the specific data points under consideration. 

The observed lower R2 score of approximately 0.85 in the AdaBoost algorithm can be 
ascribed to its susceptibility to outliers and noise within the dataset. This sensitivity to 
irregularities in the data poses a challenge, potentially leading to overemphasis on 
individual data points and thereby influencing the algorithm's overall performance 

Additionally, the importance of transitioning from conventional linear regression methods 
to ensemble learning techniques, particularly boosting methods, was emphasized in our 
research. These ensemble models were capable of handling non-linearity and abrupt 
changes within the dataset, resulting in improved prediction accuracy compared to 
traditional approaches like Linear Regression. The results of feature selection revealed 
that test temperature has an important effect on creep stiffness, leading to higher values. 

In conclusion, this research successfully applied ML techniques to predict the low-
temperature rheological properties of asphalt binders. The developed models showed 
promising results in accurately estimating the Creep stiffness, providing valuable insights 
for the design and engineering of more durable and resilient asphalt pavements. These 
findings contribute to the advancement of asphalt binder testing and characterization 
methods, paving the way for more efficient and sustainable infrastructure development in 
the field of civil engineering. Future studies can build upon this research by exploring 
additional factors and testing conditions to further enhance the predictive capabilities of 
ML models in asphalt binder evaluations. 
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