
Data-driven prediction of mechanical properties in 

friction stir processed Al6061-Alumina composite 

using enhanced machine learning models 

Satish Saini, Neeraj Sharma, Ranjeev Kumar Chopra, Monika 

Mehra, Ravi Kumar,  Sushil Bhardwaj, Dinesh Kumar 

Online Publication Date: 10 December 2024 

URL:  http://www.jresm.org/archive/resm2024.438me0907rs.html 

DOI:  http://dx.doi.org/10.17515/resm2024.438me0907rs 

Journal Abbreviation: Res. Eng. Struct. Mater. 

To cite this article 

Saini S, Sharma N, Chopra R K, Mehra M, Kumar R,  Bhardwaj S, Kumar D.  Data-driven 

prediction of mechanical properties in friction stir processed Al6061-Alumina composite 

using enhanced machine learning models. Res. Eng. Struct. Mater., 2025; 11(5): 2097-2117. 

Disclaimer 

All the opinions and statements expressed in the papers are on the responsibility of author(s) 

and are not to be regarded as those of the journal of Research on Engineering Structures and 

Materials (RESM) organization or related parties. The publishers make no warranty, explicit 

or implied, or make any representation with respect to the contents of any article will be 

complete or accurate or up to date. The accuracy of any instructions, equations, or other 

information should be independently verified. The publisher and related parties shall not be 

liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or 

howsoever caused arising directly or indirectly in connection with use of the information 

given in the journal or related means. 

Published articles are freely available to users under the terms of 

Creative Commons Attribution ‐ NonCommercial 4.0 International Public 

License, as currently displayed at here (the “CC BY ‐ NC”). 

http://www.jresm.org/archive/resm2024.438me0907rs.html
http://dx.doi.org/10.17515/resm2024.438me0907rs
https://creativecommons.org/licenses/by-nc/4.0/legalcode


 

*Corresponding author: kumar.d041789@gmail.com  
aorcid.org/0000-0002-9194-3068:borcid.org/0009-0007-5244-4868; corcid.org/0009-0002-2929-4148;            
dorcid.org/0000-0008-4331-5033; eorcid.org/0000-0002-9112-3473; forcid.org/0000-0001-5184-3866; 
gorcid.org/0000-0003-1885-2431 
DOI: http://dx.doi.org/10.17515/resm2024.438me0907rs  
Res. Eng. Struct. Mat. Vol. 11 Iss. 5 (2025) 2097-2117                                                                       2097 

 

Research Article 

Data-driven prediction of mechanical properties in friction 
stir processed Al6061-Alumina composite using enhanced 
machine learning models  

Satish Saini 1,a, Neeraj Sharma *,2,b, Ranjeev Kumar Chopra 3,c, Monika Mehra 4,d,               
Ravi Kumar 5,e,  Sushil Bhardwaj 3,f, Dinesh Kumar 6,g 

1ECE Department, RIMT University, Punjab, India 
2Dept. of Information Technology, VPPCOE& VA, Sion, Mumbai, India 
3School of Computing, RIMT University, Punjab, India 
4ECE Department, Chandigarh University, Punjab, India 
5Department of Physics and Electronics, Hansraj College, University of Delhi, India 
6Dept. of Mechanical Eng., Maharishi Markandeshwar (Deemed to be University) Mullana, India 
 

Article Info  Abstract 

Article History:  This study explores friction stir processing (FSP) of Al-6061 aluminum alloy 
reinforced with alumina nanoparticles, analyzing the effects of processing 
parameters—including transverse speed, rotational speed, and number of 
passes—on ultimate tensile strength, yield strength, natural frequencies, and 
damping ratios. Using a CNC milling machine, FSP was conducted at rotational 
speeds of 900, 1100, 1300, and 1500 rpm, with traverse speeds of 10, 15, and 20 
mm/min. An advanced machine learning model, SRS-optimized long short-term 
memory (LSTME), was utilized to predict the properties of the processed material, 
achieving high R² values of 0.911 for ultimate strength, 0.951 for yield strength, 
0.953 for natural frequency, and 0.985 for damping ratio. Key findings indicate that 
FSP improves damping characteristics and mechanical properties, with maximum 
damping effectiveness observed at 900 rpm across all passes. Alumina 
nanoparticles enhanced damping capabilities, while increased rotational speeds 
promoted grain refinement, resulting in a stronger, more deformation-resistant 
material. The LSTME model outperformed other machine learning approaches, 
reaching R² values between 0.965 and 0.993 in training and 0.911 to 0.987 in 
testing. These results demonstrate the efficacy of combining FSP with machine 
learning to optimize material properties for high-performance applications.  
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1. Introduction 

Drilling The advancement of composite materials has been crucial in enhancing several engineering 
disciplines because of its distinctive capacity to amalgamate qualities from diverse materials, 
yielding components that are stronger, lighter, and more resilient. Initially, composites were 
fundamental amalgamations created to satisfy basic structural requirements [1]. With 
technological improvements, composites have developed to include various matrix and reinforcing 
materials, resulting in high-performance composites appropriate for aerospace, automotive, and 
marine applications [2]. The use of composites has markedly increased, rendering these materials 
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indispensable in sectors that need lightweight and high-strength characteristics [3]. Aluminum-
based composites have gained prominence owing to their superior strength-to-weight ratio, 
corrosion resistance, and thermal characteristics. Al-6061, a widely used aluminum alloy, is 
recognized for its adaptability in structural applications. Al-6061 composites, when augmented 
with ceramic particles or fibers, are appropriate for high-stress applications in automotive, 
aerospace, and industrial equipment, where durability and performance are paramount [4]. 
Traditional techniques for producing metal matrix composites (MMCs) include casting, powder 
metallurgy, and extrusion. These technologies are well-established; nonetheless, they often need 
elevated temperatures, and protracted procedures, and may encounter challenges in attaining 
uniform reinforcement distribution. Casting is economical and prevalent; yet, it may result in 
complications with reinforcement distribution owing to density disparities between the matrix and 
reinforcement phases [5]. To address the constraints of conventional techniques, innovative 
manufacturing methods, such as Friction Stir Processing (FSP), have been developed. FSP is a solid-
state method that improves mechanical qualities by producing a precise microstructure without 
melting the material. Friction Stir Processing (FSP) enables meticulous regulation of the 
distribution of reinforcement particles inside the Al-6061 composite matrix [6]. This procedure 
generates a homogenous composite with superior mechanical characteristics and higher wear 
resistance by the application of targeted frictional heat and plastic deformation. 

The advancement of composite materials has transformed engineering by presenting alternatives 
to conventional metals and alloys, delivering a distinctive amalgamation of qualities from both the 
matrix and reinforcement components [7]. Initially, composites were basic amalgamations of 
materials intended to fulfill certain structural or functional requirements. Technological 
breakthroughs have led to the evolution of composites, facilitating the creation of high-strength, 
lightweight, and durable materials [8]. This progress has catalyzed extensive acceptance across 
sectors, particularly in applications where weight reduction and superior mechanical strength are 
critical. Composites are used in several sectors, including aircraft, automotive, sports equipment, 
and medical devices. They are progressively preferred over traditional materials because of their 
superior mechanical qualities, corrosion resistance, and capacity for customization [9]. These 
materials are designed to provide superior performance while minimizing component weight, a 
characteristic that is especially advantageous in transportation sectors focused on fuel economy 
and emissions reduction. Aluminum composites have established a unique role within metal matrix 
composites (MMCs). Although MMCs may use diverse matrices such as titanium, magnesium, and 
copper, aluminum-based composites are mostly favored owing to aluminum’s low density, 
superior corrosion resistance, and advantageous cost-to-performance ratio [10]. Titanium-based 
composites provide elevated strength and thermal resistance; yet, they are associated with 
increased prices and density [11]. Magnesium composites have lightweight properties but are 
deficient in mechanical strength compared to aluminum [12]. Aluminum composites provide a 
harmonious combination of strength, weight, and cost, making them a flexible option across several 
sectors. Aluminum composites are extensively used in industries where weight and durability are 
essential considerations [13]. In the aerospace sector, they are used in structural components such 
as wings and fuselage sections [14]. Aluminum composites are used in vehicle production for 
engine components, wheels, and brake systems, enhancing fuel economy and performance [15]. 
Aluminum composites are advantageous for the maritime and electronics sectors because to their 
corrosion resistance and thermal stability, rendering them suitable for components subjected to 
severe conditions or necessitating efficient heat dissipation [16]. 

Al-6061 is a highly flexible and extensively used aluminum alloy, esteemed for its superior 
mechanical qualities, weldability, and resistance to corrosion. Al-6061, categorized under the 6xxx 
family of aluminum alloys, is mostly alloyed with magnesium and silicon, resulting in a distinctive 
amalgamation of strength, toughness, and favorable machinability. This alloy is used in diverse 
industrial applications, including aerospace and automotive components, as well as structural 
elements in construction, owing to its capacity for facile forming, welding, and heat treatment to 
improve its mechanical characteristics [17]. Al-6061 is used in components such as frames, 
pipelines, maritime fittings, and recreational equipment, where strength, lightweight properties, 
and durability are critical [18]. The Al-2024 alloy, belonging to the 2xxx class, is mostly alloyed with 
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copper, imparting it remarkable strength and fatigue resistance [19].  The Al-7075 alloy is 
recognized for its remarkable strength; it is an aluminum-zinc alloy that almost matches the 
strength of some steels while being much lighter. Although Al-7075 exhibits worse corrosion 
resistance compared to Al-6061, it is often used in applications demanding optimal strength with 
lowest weight [20]. The Al-5052 alloy is part of the 5xxx family, recognized for its superior 
corrosion resistance, especially in marine settings, attributed to its elevated magnesium 
concentration [21]. Al-3003, a widely used aluminum alloy, is alloyed with manganese, offering 
moderate strength and superior corrosion resistance [22]. Al-6063, like to Al-6061, belongs to the 
6xxx class but is mostly selected for its enhanced extrudability and visual appeal. It is often used 
for architectural and decorative purposes, including window frames, door frames, and metal 
furnishings. Despite possessing inferior strength compared to Al-6061, Al-6063's superior 
corrosion resistance and exceptional anodizing characteristics make it appropriate for outdoor and 
ornamental uses. Every aluminum alloy provides a unique equilibrium of characteristics, including 
strength, corrosion resistance, formability, and machinability, making aluminum alloys essential in 
contemporary industries. Al-6061 is widely preferred for its varied performance; nevertheless, 
other alloys such as Al-2024, Al-7075, Al-5052, Al-3003, and Al-6063 are also essential in specific 
applications within the aerospace, marine, automotive, and architectural industries. 

The investigation used a CNC milling machine to examine the influence of processing factors, 
including feed rate, number of passes, and rotational speed, on critical material characteristics such 
as ultimate strength, yield strength, natural frequencies, and damping ratios of the samples [23]. 
These qualities are essential for evaluating material performance in applications necessitating 
mechanical robustness and dynamic stability. Conventional modeling techniques often fail to 
accurately represent the intricate, nonlinear relationships among these factors, particularly when 
forecasting dynamic attributes such as natural frequencies and damping ratios [24]. To address 
these issues, an advanced machine learning approach called SRS-optimized Long Short-Term 
Memory with Embedded Learning (LSTME) was used. The SRS-optimized LSTME model is 
explicitly designed to process sequential data, making it suitable for capturing the complex 
temporal patterns and relationships intrinsic to CNC milling operations [25]. This method 
integrates the capabilities of Long Short-Term Memory (LSTM) networks, recognized for their 
proficiency in managing time-series data, with Special Relativity Search (SRS) optimization. The 
SRS component emphasizes frequency-domain analysis, enabling the model to enhance its 
comprehension and prediction of reactions associated with the material's dynamic behavior, 
including natural frequency and damping ratio. The integrated learning capacity of LSTME allows 
the model to learn and adapt in real-time with the introduction of new data, hence improving its 
accuracy and resilience [26].  The implementation of the SRS-optimized LSTME model commences 
with a training phase, using previous data from CNC milling trials to elucidate the correlations 
between processing parameters and material attributes. During the SRS optimization phase, the 
model focuses on the spectral attributes that most profoundly affect dynamic responses. Upon 
training, the model can precisely forecast ultimate and yield strengths, together with dynamic 
characteristics such as natural frequencies and damping ratios, derived from fresh CNC milling 
inputs. The model's performance is meticulously verified against experimental data, using accuracy 
measures such as mean absolute error (MAE), root mean square error (RMSE), and R-squared (R²) 
values to assess its prediction dependability.  The benefits of using SRS-optimized LSTME in this 
setting are substantial [27]. By including both temporal and spectral attributes of the CNC milling 
process, the model attains superior prediction accuracy and adaptively modifies to fluctuating 
milling settings, making it more adaptable than conventional machine learning techniques [28]. 
This methodology enables producers to forecast the mechanical and dynamic characteristics of 
milled samples, so considerably reducing the need for comprehensive experimental testing, 
resulting in time and cost savings. Moreover, the model's real-time predictive capabilities allows 
immediate process modifications, so assuring uniform product quality. In conclusion, SRS-
optimized LSTME offers a comprehensive solution for comprehending and refining CNC milling 
parameters, allowing businesses to attain specified material characteristics and improved process 
regulation. In this work, Aluminium alloy 6061 (Al-6061) was used as the matrix material for metal 
matrix composites (MMCs), with alumina (Al₂O₃) serving as the reinforcing component [29]. Al-
6061/Alumina MMCs provide an advantageous amalgamation of lightweight, high strength, and 
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wear resistance, rendering them appropriate for diverse applications across various sectors. These 
composites improve mechanical qualities, including strength, stiffness, wear resistance, and 
corrosion resistance, which are essential for rigorous operating settings. Furthermore, by adjusting 
the volume percentage and dimensions of alumina reinforcement particles, the composite's density 
may be decreased relative to steel, making it an optimal choice for lightweight applications. To 
enhance these qualities, we used sophisticated machine learning techniques to forecast the optimal 
processing parameters for Friction Stir Processing (FSP) of Al-6061 alloy augmented with alumina 
nanoparticles. Our aim was to use machine learning to determine the ideal FSP conditions that 
improve the mechanical performance and longevity of the composite [30]. This novel methodology 
offers a data-driven resolution to enhance the efficiency and efficacy of the FSP process, resulting 
in advanced Al-6061/alumina nanocomposites designed for high-performance 
applications. During the investigation, we examined the mechanical characteristics and dynamic 
reactions of the treated materials under different FSP settings. Employing advanced machine 
learning methods, namely a refined Long Short-Term Memory with Embedded Learning (LSTME) 
model augmented by Spectral Response Surface (SRS) optimization, we precisely predicted the 
mechanical properties of the samples. The LSTME-SRS model was meticulously assessed against 
three other machine-learning algorithms to measure its predicted accuracy and overall 
performance. This extensive modelling methodology has shown significant promise for improving 
FSP parameters, hence aiding in the creation of high-performance Al-6061/Alumina MMCs 
appropriate for lightweight and durable applications. In this work, Aluminum alloy 6061 (Al-6061) 
was used as the matrix material for metal matrix composites (MMCs), with alumina (Al₂O₃) serving 
as the reinforcing component [31]. Al-6061/Alumina MMCs provide an advantageous 
amalgamation of lightweight, high strength, and wear resistance, rendering them appropriate for 
diverse applications across various sectors. These composites improve mechanical qualities, 
including strength, stiffness, wear resistance, and corrosion resistance, which are essential for 
rigorous operating conditions. Furthermore, by adjusting the volume percentage and dimensions 
of alumina reinforcement particles, the composite's density may be decreased relative to steel, 
making it an optimal choice for lightweight applications. To enhance these qualities, we used 
sophisticated machine learning techniques to forecast the optimal processing parameters for 
Friction Stir Processing (FSP) of Al-6061 alloy augmented with alumina nanoparticles [32]. The 
aim of the study is to use machine learning to determine the ideal FSP conditions that improve the 
mechanical performance and longevity of the composite. This novel methodology offers a data-
driven resolution to enhance the efficiency and efficacy of the FSP process, resulting in enhanced 
Al-6061/alumina nanocomposites designed for high-performance applications.  During the 
investigation, we examined the mechanical characteristics and dynamic reactions of the treated 
materials under several FSP settings. Employing advanced machine learning methods, namely a 
refined Long Short-Term Memory with Embedded Learning (LSTME) model augmented by Spectral 
Response Surface (SRS) optimization, we precisely predicted the mechanical properties of the 
samples. The LSTME-SRS model was meticulously assessed in comparison to three other machine-
learning algorithms to determine its predicted accuracy and overall efficacy. This extensive 
modeling methodology has shown significant promise for improving FSP parameters, hence aiding 
in the creation of high-performance Al-6061/Alumina MMCs appropriate for lightweight and 
durable applications. 

2. Materials and Method 

2.1 Matrix and Reinforcement 

The base of the structure was a sheet of Al-6061 aluminum alloy, which had a thickness of 4 mm. 
The Al2O3 nanoparticle was used as reinforcement.  

Table 1. Composition of Al-6061 alloy 

Elements Al Mg Si Fe Cu Cr Mn 

Wt.% 98.00 0.797 0.51 0.257 0.219 0.157 0.043 
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Table 1 displays the outcomes of the chemical analysis performed on the aluminum alloy and the 
FSP tool using a spectroscopic analyzer. The transmission electron microscopy (TEM) analysis 
revealed that the reinforcing particles exhibited a high level of purity, measuring at 99.9 percent, 
and had an average size of 16±5.6 nm as shown in Figure 1. 

  

Fig.1. (a) Al2O3 powder in typical form and (b) TEM Analysis of Al2O3 nanoparticles 

2.2 Composite Fabrication Method 

Friction Stir Processing (FSP) is a solid-state joining method aimed at improving the microstructure 
and characteristics of materials, especially metals such as aluminum. The procedure starts with the 
production of an aluminum sheet, which is precisely machined to form longitudinal grooves that 
will subsequently contain the reinforcing particles.  

  

Fig. 2. (a) Tool specifications and (b) FSP processing on Base Alloy 

For this particular FSP procedure, a tool with a tapered square form is used to provide excellent 
contact with the aluminum matrix during processing. A CNC milling machine is configured with the 
selected tool, which is then brought into contact with the prepared aluminum sheet. The tool 
rotates at varying rates of 900, 1120, 1400, and 1800 revolutions per minute while traversing the 
sheet at speeds of 10, 15, and 20 millimeters per minute. The interplay of rotational and 
translational motion produces frictional heat and mechanical deformation, facilitating the effective 
alteration of the microstructure in the treated areas. In accordance with the FSP procedure, surface 
flaws are rectified by grinding with silicon carbide paper, using grit sizes ranging from 450 to 2200. 
This stage is essential for attaining a polished surface, following which the ground samples are 
rinsed with water to remove any abrasive residues or metallic particles.  
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Fig. 3. Free impact vibration 3050 Pulse analyzer 

The samples are subjected to an etching process using a solution of hydrofluoric acid, nitric acid, 
and filtered water at room temperature to improve surface quality and expose microstructural 
characteristics. The etching procedure is essential for elucidating the microstructure and 
macrostructure of the treated materials. The samples are examined until the requisite surface 
quality is achieved, guaranteeing comprehensive cleaning prior to analysis. Flat dog bone-shaped 
samples are extracted from the middle of the treated zone for mechanical property assessment, in 
compliance with ASTM requirements. The samples, constructed with precise dimensions, are 
subjected to tensile testing using a Universal Testing Machine (UTM) with a maximum load capacity 
of 100 kN, in compliance with ASTM B557 standards. The natural frequency and damping factor of 
the composite surface are evaluated by free vibration analysis. Accelerometers are affixed to the 
samples to assess their vibrational response over time, using a pulse data analyzer and an impact 
hammer. Multiple repetitions of the free vibration tests are conducted to assure precision, using a 
modal analysis tool to compute the Frequency Response Function (FRF), damping ratio, and 
fundamental frequencies of the material. This thorough method not only improves the 
comprehension of the aluminum-alumina composite but also offers insights into its long-term 
performance and stability under operating settings. 

2.3 Special Relativity Search Optimized Long Short-Term Memory Modelling  

The Special Relativity Search Modelling Approach is a computational methodology designed to 
analyze and predict the behavior of systems in high-velocity scenarios, where the principles of 
special relativity become significant. The process begins with defining the physical system under 
investigation and identifying the key parameters that influence its behavior, such as rotational 
speed, number of passes, and transverse speed in friction stir processing.  

 

Fig. 4. Systematic View of LSTME Network  
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SRS modelling approach incorporates several key components that facilitate the analysis and 
prediction of phenomena in high-velocity scenarios governed by the principles of special relativity. 
Here are the essential components of the SRS approach: 

2.3.1 Relativistic Equations 

The foundation of the SRS approach is built upon the equations of special relativity, such as the 
Lorentz transformations. These equations describe how measurements of time, length, and velocity 
are affected for observers in different inertial frames, allowing for accurate modeling of relativistic 
effects. 

2.3.2. Parameter Identification:  

Clearly defining and identifying the key parameters that influence the behavior of the system under 
investigation is crucial. This includes variables such as velocity, energy, momentum, and mass, 
which must be considered to understand how they interact within a relativistic framework. 

 

Fig. 5. Special Relativity Search-based LSTME Network Model 

2.3.3 Data Collection  

Gathering data relevant to the system being modeled is a critical component. This may involve 
experimental measurements or numerical simulations that reflect the system's behavior at 
relativistic speeds. The quality and comprehensiveness of this data are vital for model accuracy. 

2.3.4 Model Development: 

 In the SRS approach, a computational model is developed to represent the relationships between 
input parameters and output behaviors based on the principles of special relativity. This model can 
utilize techniques from statistics, machine learning, or traditional numerical methods to 
approximate the system's response. 

2.3.5 Optimization Techniques 

The SRS approach employs optimization algorithms to explore the parameter space effectively. By 
systematically varying input parameters, the model identifies optimal conditions that maximize or 
minimize desired outcomes, such as efficiency or performance in relativistic contexts. 
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2.3.6 Simulation and Analysis:  

Once the model is established, simulations are conducted to predict system behavior under various 
scenarios. This allows for the examination of how relativistic effects, such as time dilation and 
length contraction, influence the outputs. 

2.3.7 Validation 

A critical step in the SRS approach involves validating the model's predictions against independent 
experimental results or established theoretical benchmarks. This ensures that the model accurately 
captures the dynamics of the relativistic system. 

3. Results and Discussions 

The study's findings, depicted in Figures 6-8, clearly establish a direct correlation between the FSP 
Parameters and damping ratio. Nevertheless, the capacity to diminish vibrations can be improved 
at a particular optimal rotational velocity.  

 

Fig. 6. Damping capacity of the samples at a traverse speed of 10 mm/min. 

The data illustrates the influence of rotational speed (RPM) and the number of passes on the 
damping ratio of an aluminum alloy processed through friction stir processing (FSP) at a consistent 
traverse speed of 10 mm/min. At 1000 RPM, the damping ratio increases as the number of passes 
rises, reaching 3.68% after three passes. Similarly, at 1200 RPM, the damping ratio improves with 
additional passes, peaking at 3.43% with three passes. However, an interesting trend emerges at 
1400 RPM, where the highest damping ratio of 4.62% occurs at two passes, suggesting an optimal 
setting for vibration reduction at this speed. In contrast, at 1600 RPM, the damping ratio fluctuates 
less significantly, increasing modestly with more passes but not reaching the levels observed at 
1400 RPM. Overall, the findings indicate that both RPM and the number of passes play critical roles 
in determining the damping ratio, with an optimal combination observed at 1400 RPM and two 
passes [33]–[35]. 

The data at a traverse speed of 15 mm/min shows the impact of varying rotational speeds (RPM) 
and the number of passes on the damping ratio. At 1000 RPM, the damping ratio increases 
significantly with the second pass, reaching a peak of 4.74%, before slightly decreasing to 3.86% 
with the third pass. This indicates an optimal damping performance at two passes. At 1200 RPM, 
the damping ratio gradually improves with additional passes, increasing from 2.72% after the first 
pass to 3.27% after the third pass. For 1400 RPM, the damping ratio initially dips to 3.34% at two 
passes but rises to 4.43% at three passes, suggesting enhanced vibration reduction with increased 
processing passes at this speed. However, at 1600 RPM, the damping ratio does not follow a 
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consistent trend; it begins at 3.09% for the first pass, drops to 2.41% at two passes, and rises to 
3.37% at three passes.  

 

Fig. 7. Sample’s damping ratio at 15 mm/min traverse speed 

The data at a traverse speed of 20 mm/min reveals how rotational speed (RPM) and the number of 
passes affect the damping ratio. At 1000 RPM, the damping ratio increases significantly with two 
passes, reaching 4.48%, before slightly decreasing to 3.02% with the third pass. This suggests an 
optimal damping effect with two passes at this speed. For 1200 RPM, the damping ratio is initially 
high at 3.47% for the first pass and reaches a maximum of 3.59% at two passes before dropping to 
2.97% at the third pass. At 1400 RPM, there is a notable decrease from 3.11% after the first pass to 
2.39% at two passes, with a slight recovery to 2.76% after the third pass. 

 

Fig. 8. Damping capacity of the samples at a traverse speed of 20 mm/min. 
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Meanwhile, at 1600 RPM, the damping ratio gradually increases from 3.05% at one pass to 3.74% 
at three passes, indicating improved damping properties with more passes at higher speeds. 
Overall, these results show that both RPM and the number of passes influence the damping 
performance, with the best performance observed at 1000 RPM with two passes and at 1600 RPM 
with three passes under a traverse speed of 20 mm/min. 

The samples' natural frequency drops according to the increase in the number of passes. The 
instrument's recurring agitation causes the disintegration of material particles, leading to a loss in 
stiffness and the subsequent generation of this phenomenon. On the other hand, increasing the 
number of passes leads to samples that have a greater damping ratio. The agitating movement 
enhances the grain structure, hence augmenting the presence of imperfections and enhancing its 
efficacy in catching and absorbing vibrations. Similarly, when the number of passes grows, the 
sample loss factor also increases. The reason for the increase in frictional losses is due to the 
presence of a more precise grain structure. The loss factor, on the other hand, quantifies the amount 
of energy that is converted into heat during vibration. Also, the retained modulus of samples drops 
with increasing pass count. Deterioration of the grain structure, which results in reduced elasticity, 
is a likely cause. If we increase the number of passes, we get a similar trend in the samples' loss 
modulus. The fundamental rationale for this occurrence is provided by the loss modulus, which 
measures the energy dissipation that occurs during vibration; materials with finer grain patterns 
show bigger levels of frictional losses. 

Table 2. Significant process parameters of the FSP Process [36-38] 

Rotational 
Speed 

Number of 
Passes 

Transverse 
Speed 

Damping 
Ratio (ζ) 

Loss Factor Shear Modulus 

1100 rpm 3 20 mm/min 2.98 0.058 26.12 MPa 
900 rpm 3 15 mm/min 3.57 0.072 25.91 MPa 

 

Table 2 provides a concise overview of the variations in the dynamic characteristics of the samples 
at various RPMs. Rotational speed plays a crucial role in determining the heat generation and 
plastic deformation during the Friction Stir Processing (FSP) process. At a higher rotational speed 
of 1100 rpm, the damping ratio is lower (2.98%) compared to 3.57% at 900 rpm. This reduction in 
damping ratio at higher speeds can be attributed to the increased thermal input, which may result 
in finer grain structures but potentially reduces the material's ability to dissipate energy. The loss 
factor, which represents the material's capacity to absorb vibrational energy, is also lower at 1100 
rpm (0.058) than at 900 rpm (0.072), indicating that slower rotational speeds may enhance energy 
dissipation. In both cases, three passes were used. Multiple passes generally improve the 
homogeneity of the processed zone and help in refining the microstructure further. A refined and 
homogeneous microstructure often leads to improved mechanical properties, such as better 
damping characteristics and enhanced shear modulus. Thus, conducting multiple passes ensures a 
more uniform material structure, leading to consistent mechanical property results across different 
speeds. The transverse or traverse speed, which represents the tool's movement along the 
workpiece, influences the heat input and material flow characteristics. A slower traverse speed (15 
mm/min) allows for more heat accumulation, potentially resulting in a softer, more ductile 
material, as seen with the higher damping ratio (3.57%) and loss factor (0.072) at this speed. In 
contrast, a faster traverse speed (20 mm/min) reduces the heat input per unit length, leading to a 
relatively lower damping ratio (2.98%) and loss factor (0.058). This difference is because the lower 
heat input at higher traverse speeds tends to produce a stiffer material structure, slightly 
decreasing its ability to dissipate vibrational energy. The shear modulus values are relatively close 
for both conditions (26.12 MPa at 1100 rpm and 25.91 MPa at 900 rpm), though a slight increase 
is observed at the higher speed of 1100 rpm. This suggests that the stiffer material structure 
obtained at higher rotational and transverse speeds may slightly enhance the shear modulus. 
However, the difference is not substantial, indicating that the FSP process has a limited but positive 
impact on shear modulus at these parameter settings. 
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3.1 Mechanical Properties 

In friction stir surface processing (FSP), the primary mechanism that strengthens the material is 
grain refinement. By using a rotating tool to generate heat and mechanical deformation, FSP 
produces a fine, uniform grain structure, which directly impacts the mechanical properties of the 
material. Initially, the Al-6061 alloy has a relatively coarse grain structure, with an average grain 
size of about 142 μm and an aspect ratio of 32.3%. Grain size and aspect ratio are key factors in 
determining the mechanical behavior of metals: smaller, more equiaxed (rounded) grains generally 
improve strength and ductility. After three passes of FSP, the grain size is reduced to just 12.92 μm, 
and the aspect ratio increases to 91.8%, indicating that the grains are now more uniform and 
compact. This fine-grained structure enhances the material’s mechanical performance by creating 
more grain boundaries, which act as barriers to dislocation movement (dislocations are defects in 
the crystal structure that lead to deformation). 

  

Fig. 9. Optical microscope analysis (a) Base Alloy and (b) FSP-ed Composite 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 10. Tensile Strength of the specimens at different RPM (a) 900 RPM, (b) 1100 RPM, (c) 
1300 RPM and (d) 1500 RPM 
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The microstructure images in Figure 9 confirm this refinement, showing that FSP successfully 
produces a finer grain structure. This refined microstructure has a direct impact on the material's 
ultimate tensile strength (UTS) and yield strength (YS). The findings suggest that as the rotational 
speed of the FSP tool increases, more heat is generated, which facilitates dynamic 
recrystallization—a process where the grains are continuously broken down and reformed into 
smaller grains.  The combination of heat and mechanical action at higher speeds accelerates this 
process, leading to a more uniform microstructure and, consequently, stronger material properties. 
Higher rotational speeds not only refine the grain structure but also improve the material's 
resistance to deformation, enhancing its yield strength. A finer microstructure limits dislocation 
motion and requires greater force to initiate plastic deformation, thereby increasing yield strength. 
This makes the material stronger and more durable, as it can withstand greater forces before it 
starts to deform. In summary, the increased rotational speeds in FSP contribute to a more refined 
grain structure, which strengthens the material by impeding dislocation movement, enhancing 
both UTS and YS.  

The observed decrease in yield strength (YS) and ultimate tensile strength (UTS) with an increasing 
number of FSP passes can be understood in terms of the effects of excessive grain refinement and 
heat input. In FSP, each pass of the tool applies heat and mechanical agitation to the material, 
breaking down grains and refining the microstructure. However, after a certain point, too many 
passes can lead to over-processing of the material. With repeated agitation, the grains can become 
excessively fragmented, which may lead to the formation of ultra-fine or even amorphous regions 
that lack the cohesive crystal structure needed to maintain high strength. In a finely grained 
microstructure, dislocations (defects within the crystal lattice) have a harder time moving, which 
generally improves strength. However, if the grains become too small or disordered, the material 
may lose its ability to effectively carry loads due to compromised grain boundaries, which weakens 
its structural integrity and leads to a reduction in YS and UTS. Similarly, reducing the feed rate (i.e., 
slowing down the tool's movement across the surface) increases the duration of heat exposure per 
unit area. This slower rate of travel means that heat dissipates more slowly, allowing for prolonged 
thermal exposure. When the material remains hot for too long, it can cause excessive grain growth 
or even coarsening in some cases, leading to a reduction in strength. Prolonged heating also reduces 
the effectiveness of grain boundary strengthening, as it allows grains to relax or reorient in ways 
that make them less resistant to deformation [39]–[41]. 

   

Fig. 11. Yield Strength of the specimens at different RPM and no. of pass 

  3.2 Predicted Results 

The research effort focuses on employing four distinct machine-learning models to predict specific 
features of processed data, including Ultimate Tensile Strength (UTS), Yield Strength (YS), natural 
frequency, and damping ratio.  
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Fig. 12. Training process of experimental and predicted data 

The first model is an independent Long Short-Term Memory (LSTM) model, which learns to make 
predictions based solely on the input data without any additional optimization techniques. The 
following three models build upon the LSTM framework by incorporating various optimization 
approaches. These optimized models include LSTME-FHO, which enhances the LSTM with the 
Firefly Algorithm, LSTME-SRS that utilizes Particle Swarm Optimization, and LSTME-DMOA, which 
applies the Differential Multi-Objective Algorithm for optimization.  

 

Fig. 13. Testing process of experimental and predicted data 

To evaluate the models' performance, empirical data is divided into two parts: 70% of the data is 
allocated for training the models, allowing them to learn patterns and adjust their parameters, 
while the remaining 30% is reserved for testing, which assesses how well the trained models can 
predict outcomes for unseen data. The effectiveness of each model is measured using three 
accuracy metrics: Root Mean Square Error (RMSE), which quantifies the difference between 
predicted and actual values; Coefficient of Determination (R²), reflecting the proportion of variance 
in the dependent variable explained by the independent variables; and Mean Absolute Error (MAE), 
which indicates the average absolute differences between predictions and actual values. Through 
this research, the aim is to enhance prediction accuracy for important engineering characteristics 
by exploring the capabilities of various machine-learning models and their optimization technique. 
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Fig. 14. Training processing error of experimental and predicted data 

The findings of the research demonstrate a strong correlation between the experimentally acquired 
data and the predicted outcomes generated by the machine learning models. Among the models 
tested, the LSTME-SRS model outperformed all others, indicating its effectiveness in making 
accurate predictions. It was followed closely by the LSTME-DMOA and LSTME-FHO models, which 
also showed commendable performance. In contrast, the independent LSTM model consistently 
exhibited the least alignment with the experimental data during both the training and testing 
phases, indicating its limitations in capturing the underlying patterns in the data. Furthermore, an 
analysis of absolute errors revealed that the LSTME-SRS model maintained the lowest error across 
all characteristics examined, reinforcing its superior predictive power. This consistent 
performance supports the earlier findings of strong correlation. Additionally, when comparing the 
absolute errors of the LSTME-SRS model with those of the LSTM model, it was noted that the errors 
produced by the LSTME-DMOA and LSTME-FHO models were relatively small, although they did 
not surpass the accuracy of the LSTME-SRS.  

 

Fig. 15. Testing processing error of experimental and predicted data 
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Overall, these results highlight the efficacy of optimization techniques in enhancing the predictive 
capabilities of LSTM models, particularly the advantages offered by the LSTME-SRS approach. The 
LSTME-SRS algorithm exhibits exceptional efficacy in accurately predicting various attributes of 
processed data, as evidenced by its ability to generate minimal absolute error in predictions. The 
results of this study indicate that LSTME-SRS consistently outperforms the other models in terms 
of predictive accuracy, highlighting its capability to effectively anticipate the features of the 
processed data.  

 

Fig. 16. QQ plots for damping ratio during training and testing of data 

 

Fig.17. QQ plots for ultimate tensile strength during training and testing of data 

When comparing the QQ (Quantile-Quantile) plots illustrated in Figures 16-19, it becomes apparent 
that there is a stronger correlation between the predicted and actual data for the LSTME-DMOA 
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and LSTME-FHO models when assessed against the LSTME-SRS model. This suggests that while 
LSTME-SRS remains the top performer, the LSTME-DMOA and LSTME-FHO models also establish a 
relatively robust relationship with the experimental data. The QQ plots provide a visual 
representation of how closely the predicted values align with the actual values, reinforcing the 
findings that LSTME-SRS is superior in accuracy, but indicating that the other two models still 
maintain meaningful predictive capabilities.  

 

Fig. 18: QQ plots for ultimate yield strength during training and testing of data 

 

Fig. 19. QQ plots for natural frequency during training and testing of data 

 

The predictive accuracy of the LSTME-SRS model is evidenced by the close proximity of its 
predicted outcomes—represented in yellow—to the diagonal lines on the plot, which typically 
signify ideal predictions where the predicted values match the actual experimental results 
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perfectly. In contrast, the predictions generated by the independent LSTM model, depicted in a light 
green, show a greater deviation from these diagonal lines, highlighting its poorer performance and 
accuracy.  This noticeable disparity in prediction accuracy further reinforces the conclusion that 
the LSTME-SRS model significantly outperforms the independent LSTM, LSTME-FHO, and LSTME-
DMOA models. The assessment of model performance through various metrics—such as the 
coefficient of determination (R²), mean absolute error (MAE), and root mean square error 
(RMSE)—further substantiates the findings. These metrics quantitatively confirm that LSTME-SRS 
consistently yields higher accuracy, characterized by lower error values and a stronger fit to the 
experimental data, distinguishing it as the most reliable model among those tested[1], [42], [43].  

Table 3 presents the results in a concise format for your convenience. The provided data highlights 
the performance metrics of four machine learning models—LSTME-SRS, LSTME-FHO, LSTME-
DMOA, and the independent LSTM model—across four different predictive tasks: damping ratio 
(ζ), natural frequency, ultimate tensile strength (UTS), and yield strength (YS). The metrics 
evaluated include the coefficient of determination (R²), root mean square error (RMSE), and mean 
absolute error (MAE) for both training and testing datasets. For the damping ratio, the LSTME-SRS 
model achieved an impressive R² value of 0.992 during training, indicating a strong fit to the data, 
and maintained a high R² of 0.985 during testing. Its RMSE and MAE values were also the lowest 
among all models, demonstrating superior predictive accuracy. The LSTME-DMOA model followed 
closely with an R² of 0.999 in training, although its RMSE and MAE were slightly higher, indicating 
some discrepancy in predictions. The LSTME-FHO model, while still effective, showed lower 
performance, particularly in testing with an R² of 0.823, highlighting its limitations in capturing the 
damping ratio accurately. In stark contrast, the independent LSTM model exhibited the weakest 
performance, with the lowest R² values and highest error metrics across both training and testing 
phases.  

Table 3. Machine-learning model and performance measures 

Properties Models 
Training Data Testing Data 

R2 RMSE MAE R2 RMSE MAE 

Damping 
ratio (ζ) 

LSTME-SRS 0.992 0.172 0.138 0.985 0.258 0.227 
LSTME-FHO 0.988 0.374 0.307 0.823 0.459 0.405 

LSTME-DMOA 0.999 0.387 0.316 0.977 0.589 0.499 
LSTME 0.746 0.688 0.564 0.724 0.629 0.5336 

Natural 
Frequency 

(Hz) 

LSTME-SRS 0.977 2.803 2.221 0.952 2.684 2.463 
LSTME-FHO 0.964 5.756 4.456 0.710 4.692 3.805 

LSTME-DMOA 0.923 5.582 4.413 0.845 5.846 4.876 
LSTME 0.668 6.674 5.234 0.541 5.837 4.959 

Ultimate 
Tensile 

Strength 
(MPa) 

LSTME-SRS 0.964 12.384 9.687 0.911 22.706 19.277 
LSTME-FHO 0.899 16.783 1.392 0.704 65.103 30.723 

LSTME-DMOA 0.895 17.003 14.367 0.885 49.306 41.109 
LSTME 0.788 40.766 34.120 0.721 80.692 68.359 

Yield Strength 
(MPa) 

LSTME-SRS 0.966 10.824 8.497 0.953 19.583 17.439 
LSTME-FHO 0.902 15.367 12.518 0.756 40.784 33.336 

LSTME-DMOA 0.943 15.062 12.573 0.934 24.016 20.947 
LSTME 0.882 30.660 25.271 0.861 55.020 44.185 

 

In predicting natural frequency, the LSTME-SRS model again led the pack with an R² of 0.977 during 
training and 0.952 in testing, along with relatively low RMSE and MAE values. The LSTME-FHO and 
LSTME-DMOA models performed adequately but had noticeably higher errors, indicating a greater 
challenge in accurately predicting this characteristic compared to the damping ratio. The 
independent LSTM model struggled here as well, with a low R² of 0.541 in testing. When assessing 
ultimate tensile strength, the LSTME-SRS model continued to perform strongly with an R² of 0.964 
in training, although the RMSE and MAE were considerably higher than in previous metrics, 
suggesting the inherent complexity of this prediction task. The LSTME-FHO and LSTME-DMOA 
models showed significant errors during testing, especially the LSTME-FHO, which had an RMSE of 
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65.103, indicating a poor fit for UTS predictions. Again, the independent LSTM model showed the 
least effectiveness, reflected in its high error metrics. Lastly, for yield strength, the LSTME-SRS 
model again outperformed the others with an R² of 0.966 in training and 0.953 in testing, coupled 
with lower RMSE and MAE values, affirming its reliability. The LSTME-DMOA model also performed 
well, though it showed a slight increase in error metrics compared to its training performance. The 
independent LSTM model's performance remained consistently poor across all tasks. Overall, the 
results clearly indicate that the LSTME-SRS model is the most effective among the models tested, 
achieving high R² values and low error metrics across various characteristics. The integration of 
optimization techniques in models like LSTME-FHO and LSTME-DMOA enhances predictive 
accuracy compared to the independent LSTM model, yet they still fall short of the performance 
demonstrated by LSTME-SRS, particularly in more complex prediction tasks like ultimate tensile 
strength and yield strength. 

4. Conclusions 

The study introduces a novel approach to predicting the mechanical properties of aluminum alloys 
processed through friction stir processing (FSP) by employing a Special Relativity Search 
Optimized Long Short-Term Memory (LSTME-SRS) model. This study employed a CNC milling 
machine to conduct friction stir processing on Al-6061 aluminum alloy, utilizing aluminum oxide 
nanoparticles as reinforcements. The incorporation of alumina nanoparticles and controlled 
adjustments to FSP parameters, such as rotational speed and the number of passes, significantly 
impacted the material’s damping capacity, yield strength, and tensile strength. Using a machine 
learning approach, specifically the SRS-optimized LSTME model, provided highly accurate 
predictions of these properties, which validated the experimental findings and highlighted the 
effectiveness of the optimization. The following conclusions were mentioned as follows: 

• The highest damping capability was achieved with a rotational speed of 900 rpm and a 
traverse speed of 15 mm/min, where the damping ratio (ζ) reached 3.57, and the loss factor 
was 0.072.  

• This optimal condition allowed the material to absorb and mitigate vibrations more 
effectively, largely due to a fine and evenly dispersed grain structure, enhanced by alumina 
nanoparticle reinforcement. 

• Higher rotational speeds led to increased thermal energy, which refined the grain structure 
and made the material stronger yet less rigid.  

• The shear modulus decreased to 25.91 MPa at 900 rpm and further dropped at higher 
rotational speeds, indicating a balance between strength and flexibility as rotational speed 
increased. 

• Increased rotational speeds improved yield strength (YS) and ultimate tensile strength 
(UTS). The optimized LSTME model achieved R² values of 0.953 for YS and 0.911 for UTS, 
demonstrating a strong correlation between speed and material strength. This improvement 
results from grain refinement, which increased resistance to deformation. 

• The SRS-optimized LSTME model excelled in prediction accuracy, outperforming other 
models with R² values between 0.911 and 0.992 for UTS, YS, natural frequency, and damping 
ratio.  

• The SRS optimization reduced the root mean square error (RMSE) and mean absolute error 
(MAE) by up to 71.86% and 71.61%, respectively. This demonstrates the model’s robustness 
in forecasting material properties effectively. 

• More friction-stir processing passes led to a reduction in natural frequency and stiffness, 
while increasing the damping ratio and loss modulus. With more passes, energy dissipation 
during vibrations increased, as reflected by a rise in the loss modulus, which indicates more 
effective damping capability. Each pass further refined the grain structure, enhancing the 
presence of microscopic imperfections that improved vibration absorption. 

• With increased RPM, there was a noted rise in damping capacity, as the refined grain 
structure introduced by higher rotational speeds enabled the material to better absorb and 
dissipate energy. The data suggest that higher thermal energy generation during FSP aids 
grain breakdown, yielding a finely tuned microstructure ideal for high damping applications. 
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• The friction-stir processing led to significant grain refinement, reducing the average grain 
size from an initial 142 μm to 12.92 μm after three FSP passes, and increasing the aspect ratio 
from 32.3% to 91.8%. This transformation in microstructure substantially improved the 
material’s strength and deformation resistance. 

5. Applications 

• Al-6061/alumina composites are suitable for airplane frames, fuselage structures, and 
engine parts due to their lightweight and high strength. The LSTME-SRS model predicts and 
optimizes mechanical parameters, improving performance and fuel economy. 

• Advanced composites increase vehicle performance by decreasing weight and preserving 
strength and durability. Structural components, chassis sections, and body panels may 
benefit from improved damping for ride comfort and noise reduction. 

• High-performance sporting equipment including bicycle frames, golf clubs, and tennis 
rackets used advanced composites. Composites' lightweight and enhanced mechanical 
qualities help shock absorption and vibration damping. 

• Construction companies use the study's findings to create lightweight, robust materials for 
buildings, bridges, and other infrastructure. Processing parameters enhance mechanical 
properties for safer and more efficient designs. 

• Al-6061/alumina composites are suited for maritime applications such as boat hulls and 
harsh environment components because of their corrosion resistance and mechanical 
strength. These materials are optimized for marine durability and performance using 
predictive modeling. 

• Aluminum composites' biocompatibility and mechanical qualities are used to make medical 
devices and implants. Predicting and controlling material qualities may improve surgical 
equipment and prostheses. 

• Manufacturing processes may use the LSTME-SRS model to anticipate and optimize FSP 
parameters in real time. This boosts manufacturing efficiency, eliminates waste, and 
increases product quality. 

6. Future Perspective  

• The LSTME-SRS model can be applied to other metal matrix composites (MMCs) and 
materials besides Al-6061. This demonstrates the model's versatility across numerous 
material systems, perhaps leading to practical applications. 

• Real-time industrial process input may increase predictive model accuracy and adaptability. 
This connectivity would allow real-time processing setting changes during FSP, improving 
material properties and production efficiency. 

• Tool geometry, cooling methods, and post-processing treatments may affect composite 
mechanical properties in future study. Understanding these components may enhance 
material performance. 

• Long-term studies on treated materials' durability and fatigue resistance in various 
environments would provide light on their practical performance. This may help assess the 
durability and reliability of composite components. 

• Hybrid reinforcing systems that combine alumina with nanoparticles or fibers may improve 
composite mechanical properties. To increase performance, research may focus on 
reinforcement interactions. 

• Machine learning advances may improve LSTME-SRS predictions. Novel algorithms and 
hybrid models may enhance material quality and processing predictions. 
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