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This study explores friction stir processing (FSP) of Al-6061 aluminum alloy
reinforced with alumina nanoparticles, analyzing the effects of processing
parameters—including transverse speed, rotational speed, and number of
passes—on ultimate tensile strength, yield strength, natural frequencies, and
damping ratios. Using a CNC milling machine, FSP was conducted at rotational
speeds of 900, 1100, 1300, and 1500 rpm, with traverse speeds of 10, 15, and 20
mm/min. An advanced machine learning model, SRS-optimized long short-term
memory (LSTME), was utilized to predict the properties of the processed material,
achieving high R? values of 0.911 for ultimate strength, 0.951 for yield strength,
0.953 for natural frequency, and 0.985 for damping ratio. Key findings indicate that
FSP improves damping characteristics and mechanical properties, with maximum
damping effectiveness observed at 900 rpm across all passes. Alumina
nanoparticles enhanced damping capabilities, while increased rotational speeds
promoted grain refinement, resulting in a stronger, more deformation-resistant
material. The LSTME model outperformed other machine learning approaches,
reaching R? values between 0.965 and 0.993 in training and 0.911 to 0.987 in
testing. These results demonstrate the efficacy of combining FSP with machine
learning to optimize material properties for high-performance applications.

2025MIM Research Group. All rights reserved.

1. Introduction

Drilling The advancement of composite materials has been crucial in enhancing several engineering
disciplines because of its distinctive capacity to amalgamate qualities from diverse materials,
yielding components that are stronger, lighter, and more resilient. Initially, composites were
fundamental amalgamations created to satisfy basic structural requirements [1]. With
technological improvements, composites have developed to include various matrix and reinforcing
materials, resulting in high-performance composites appropriate for aerospace, automotive, and
marine applications [2]. The use of composites has markedly increased, rendering these materials
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indispensable in sectors that need lightweight and high-strength characteristics [3]. Aluminum-
based composites have gained prominence owing to their superior strength-to-weight ratio,
corrosion resistance, and thermal characteristics. Al-6061, a widely used aluminum alloy, is
recognized for its adaptability in structural applications. Al-6061 composites, when augmented
with ceramic particles or fibers, are appropriate for high-stress applications in automotive,
aerospace, and industrial equipment, where durability and performance are paramount [4].
Traditional techniques for producing metal matrix composites (MMCs) include casting, powder
metallurgy, and extrusion. These technologies are well-established; nonetheless, they often need
elevated temperatures, and protracted procedures, and may encounter challenges in attaining
uniform reinforcement distribution. Casting is economical and prevalent; yet, it may result in
complications with reinforcement distribution owing to density disparities between the matrix and
reinforcement phases [5]. To address the constraints of conventional techniques, innovative
manufacturing methods, such as Friction Stir Processing (FSP), have been developed. FSP is a solid-
state method that improves mechanical qualities by producing a precise microstructure without
melting the material. Friction Stir Processing (FSP) enables meticulous regulation of the
distribution of reinforcement particles inside the Al-6061 composite matrix [6]. This procedure
generates a homogenous composite with superior mechanical characteristics and higher wear
resistance by the application of targeted frictional heat and plastic deformation.

The advancement of composite materials has transformed engineering by presenting alternatives
to conventional metals and alloys, delivering a distinctive amalgamation of qualities from both the
matrix and reinforcement components [7]. Initially, composites were basic amalgamations of
materials intended to fulfill certain structural or functional requirements. Technological
breakthroughs have led to the evolution of composites, facilitating the creation of high-strength,
lightweight, and durable materials [8]. This progress has catalyzed extensive acceptance across
sectors, particularly in applications where weight reduction and superior mechanical strength are
critical. Composites are used in several sectors, including aircraft, automotive, sports equipment,
and medical devices. They are progressively preferred over traditional materials because of their
superior mechanical qualities, corrosion resistance, and capacity for customization [9]. These
materials are designed to provide superior performance while minimizing component weight, a
characteristic that is especially advantageous in transportation sectors focused on fuel economy
and emissions reduction. Aluminum composites have established a unique role within metal matrix
composites (MMCs). Although MMCs may use diverse matrices such as titanium, magnesium, and
copper, aluminum-based composites are mostly favored owing to aluminum’s low density,
superior corrosion resistance, and advantageous cost-to-performance ratio [10]. Titanium-based
composites provide elevated strength and thermal resistance; yet, they are associated with
increased prices and density [11]. Magnesium composites have lightweight properties but are
deficient in mechanical strength compared to aluminum [12]. Aluminum composites provide a
harmonious combination of strength, weight, and cost, making them a flexible option across several
sectors. Aluminum composites are extensively used in industries where weight and durability are
essential considerations [13]. In the aerospace sector, they are used in structural components such
as wings and fuselage sections [14]. Aluminum composites are used in vehicle production for
engine components, wheels, and brake systems, enhancing fuel economy and performance [15].
Aluminum composites are advantageous for the maritime and electronics sectors because to their
corrosion resistance and thermal stability, rendering them suitable for components subjected to
severe conditions or necessitating efficient heat dissipation [16].

Al-6061 is a highly flexible and extensively used aluminum alloy, esteemed for its superior
mechanical qualities, weldability, and resistance to corrosion. Al-6061, categorized under the 6xxx
family of aluminum alloys, is mostly alloyed with magnesium and silicon, resulting in a distinctive
amalgamation of strength, toughness, and favorable machinability. This alloy is used in diverse
industrial applications, including aerospace and automotive components, as well as structural
elements in construction, owing to its capacity for facile forming, welding, and heat treatment to
improve its mechanical characteristics [17]. Al-6061 is used in components such as frames,
pipelines, maritime fittings, and recreational equipment, where strength, lightweight properties,
and durability are critical [18]. The Al-2024 alloy, belonging to the 2xxx class, is mostly alloyed with
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copper, imparting it remarkable strength and fatigue resistance [19]. The Al-7075 alloy is
recognized for its remarkable strength; it is an aluminum-zinc alloy that almost matches the
strength of some steels while being much lighter. Although Al-7075 exhibits worse corrosion
resistance compared to Al-6061, it is often used in applications demanding optimal strength with
lowest weight [20]. The Al-5052 alloy is part of the 5xxx family, recognized for its superior
corrosion resistance, especially in marine settings, attributed to its elevated magnesium
concentration [21]. Al-3003, a widely used aluminum alloy, is alloyed with manganese, offering
moderate strength and superior corrosion resistance [22]. Al-6063, like to Al-6061, belongs to the
6xxx class but is mostly selected for its enhanced extrudability and visual appeal. It is often used
for architectural and decorative purposes, including window frames, door frames, and metal
furnishings. Despite possessing inferior strength compared to Al-6061, Al-6063's superior
corrosion resistance and exceptional anodizing characteristics make it appropriate for outdoor and
ornamental uses. Every aluminum alloy provides a unique equilibrium of characteristics, including
strength, corrosion resistance, formability, and machinability, making aluminum alloys essential in
contemporary industries. Al-6061 is widely preferred for its varied performance; nevertheless,
other alloys such as Al-2024, Al-7075, Al-5052, Al-3003, and Al-6063 are also essential in specific
applications within the aerospace, marine, automotive, and architectural industries.

The investigation used a CNC milling machine to examine the influence of processing factors,
including feed rate, number of passes, and rotational speed, on critical material characteristics such
as ultimate strength, yield strength, natural frequencies, and damping ratios of the samples [23].
These qualities are essential for evaluating material performance in applications necessitating
mechanical robustness and dynamic stability. Conventional modeling techniques often fail to
accurately represent the intricate, nonlinear relationships among these factors, particularly when
forecasting dynamic attributes such as natural frequencies and damping ratios [24]. To address
these issues, an advanced machine learning approach called SRS-optimized Long Short-Term
Memory with Embedded Learning (LSTME) was used. The SRS-optimized LSTME model is
explicitly designed to process sequential data, making it suitable for capturing the complex
temporal patterns and relationships intrinsic to CNC milling operations [25]. This method
integrates the capabilities of Long Short-Term Memory (LSTM) networks, recognized for their
proficiency in managing time-series data, with Special Relativity Search (SRS) optimization. The
SRS component emphasizes frequency-domain analysis, enabling the model to enhance its
comprehension and prediction of reactions associated with the material's dynamic behavior,
including natural frequency and damping ratio. The integrated learning capacity of LSTME allows
the model to learn and adapt in real-time with the introduction of new data, hence improving its
accuracy and resilience [26]. The implementation of the SRS-optimized LSTME model commences
with a training phase, using previous data from CNC milling trials to elucidate the correlations
between processing parameters and material attributes. During the SRS optimization phase, the
model focuses on the spectral attributes that most profoundly affect dynamic responses. Upon
training, the model can precisely forecast ultimate and yield strengths, together with dynamic
characteristics such as natural frequencies and damping ratios, derived from fresh CNC milling
inputs. The model's performance is meticulously verified against experimental data, using accuracy
measures such as mean absolute error (MAE), root mean square error (RMSE), and R-squared (R?)
values to assess its prediction dependability. The benefits of using SRS-optimized LSTME in this
setting are substantial [27]. By including both temporal and spectral attributes of the CNC milling
process, the model attains superior prediction accuracy and adaptively modifies to fluctuating
milling settings, making it more adaptable than conventional machine learning techniques [28].
This methodology enables producers to forecast the mechanical and dynamic characteristics of
milled samples, so considerably reducing the need for comprehensive experimental testing,
resulting in time and cost savings. Moreover, the model's real-time predictive capabilities allows
immediate process modifications, so assuring uniform product quality. In conclusion, SRS-
optimized LSTME offers a comprehensive solution for comprehending and refining CNC milling
parameters, allowing businesses to attain specified material characteristics and improved process
regulation. In this work, Aluminium alloy 6061 (Al-6061) was used as the matrix material for metal
matrix composites (MMCs), with alumina (Al,03) serving as the reinforcing component [29]. Al-
6061/Alumina MMCs provide an advantageous amalgamation of lightweight, high strength, and
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wear resistance, rendering them appropriate for diverse applications across various sectors. These
composites improve mechanical qualities, including strength, stiffness, wear resistance, and
corrosion resistance, which are essential for rigorous operating settings. Furthermore, by adjusting
the volume percentage and dimensions of alumina reinforcement particles, the composite's density
may be decreased relative to steel, making it an optimal choice for lightweight applications. To
enhance these qualities, we used sophisticated machine learning techniques to forecast the optimal
processing parameters for Friction Stir Processing (FSP) of Al-6061 alloy augmented with alumina
nanoparticles. Our aim was to use machine learning to determine the ideal FSP conditions that
improve the mechanical performance and longevity of the composite [30]. This novel methodology
offers a data-driven resolution to enhance the efficiency and efficacy of the FSP process, resulting
in advanced Al-6061/alumina nanocomposites designed for  high-performance
applications. During the investigation, we examined the mechanical characteristics and dynamic
reactions of the treated materials under different FSP settings. Employing advanced machine
learning methods, namely a refined Long Short-Term Memory with Embedded Learning (LSTME)
model augmented by Spectral Response Surface (SRS) optimization, we precisely predicted the
mechanical properties of the samples. The LSTME-SRS model was meticulously assessed against
three other machine-learning algorithms to measure its predicted accuracy and overall
performance. This extensive modelling methodology has shown significant promise for improving
FSP parameters, hence aiding in the creation of high-performance Al-6061/Alumina MMCs
appropriate for lightweight and durable applications. In this work, Aluminum alloy 6061 (Al-6061)
was used as the matrix material for metal matrix composites (MMCs), with alumina (Al,03) serving
as the reinforcing component [31]. Al-6061/Alumina MMCs provide an advantageous
amalgamation of lightweight, high strength, and wear resistance, rendering them appropriate for
diverse applications across various sectors. These composites improve mechanical qualities,
including strength, stiffness, wear resistance, and corrosion resistance, which are essential for
rigorous operating conditions. Furthermore, by adjusting the volume percentage and dimensions
of alumina reinforcement particles, the composite's density may be decreased relative to steel,
making it an optimal choice for lightweight applications. To enhance these qualities, we used
sophisticated machine learning techniques to forecast the optimal processing parameters for
Friction Stir Processing (FSP) of Al-6061 alloy augmented with alumina nanoparticles [32]. The
aim of the study is to use machine learning to determine the ideal FSP conditions that improve the
mechanical performance and longevity of the composite. This novel methodology offers a data-
driven resolution to enhance the efficiency and efficacy of the FSP process, resulting in enhanced
Al-6061/alumina nanocomposites designed for high-performance applications. During the
investigation, we examined the mechanical characteristics and dynamic reactions of the treated
materials under several FSP settings. Employing advanced machine learning methods, namely a
refined Long Short-Term Memory with Embedded Learning (LSTME) model augmented by Spectral
Response Surface (SRS) optimization, we precisely predicted the mechanical properties of the
samples. The LSTME-SRS model was meticulously assessed in comparison to three other machine-
learning algorithms to determine its predicted accuracy and overall efficacy. This extensive
modeling methodology has shown significant promise for improving FSP parameters, hence aiding
in the creation of high-performance Al-6061/Alumina MMCs appropriate for lightweight and
durable applications.

2. Materials and Method

2.1 Matrix and Reinforcement

The base of the structure was a sheet of Al-6061 aluminum alloy, which had a thickness of 4 mm.
The Al;03 nanoparticle was used as reinforcement.

Table 1. Composition of Al-6061 alloy

Elements Al Mg Si Fe Cu Cr Mn

Wt.% 98.00 0.797 0.51 0.257 0.219 0.157 0.043
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Table 1 displays the outcomes of the chemical analysis performed on the aluminum alloy and the
FSP tool using a spectroscopic analyzer. The transmission electron microscopy (TEM) analysis
revealed that the reinforcing particles exhibited a high level of purity, measuring at 99.9 percent,
and had an average size of 16+5.6 nm as shown in Figure 1.

10kV X150 100pm 12 32 SEI

Fig.1. (a) Al;03 powder in typical form and (b) TEM Analysis of Al;03 nanoparticles

2.2 Composite Fabrication Method

Friction Stir Processing (FSP) is a solid-state joining method aimed at improving the microstructure
and characteristics of materials, especially metals such as aluminum. The procedure starts with the
production of an aluminum sheet, which is precisely machined to form longitudinal grooves that
will subsequently contain the reinforcing particles.

. —
‘; ff”%’

Al-6061 / Al203 FSP tool
Surface nanocomposite :

#

D25 mm

Fig. 2. (a) Tool specifications and (b) FSP processing on Base Alloy

For this particular FSP procedure, a tool with a tapered square form is used to provide excellent
contact with the aluminum matrix during processing. A CNC milling machine is configured with the
selected tool, which is then brought into contact with the prepared aluminum sheet. The tool
rotates at varying rates of 900, 1120, 1400, and 1800 revolutions per minute while traversing the
sheet at speeds of 10, 15, and 20 millimeters per minute. The interplay of rotational and
translational motion produces frictional heat and mechanical deformation, facilitating the effective
alteration of the microstructure in the treated areas. In accordance with the FSP procedure, surface
flaws are rectified by grinding with silicon carbide paper, using grit sizes ranging from 450 to 2200.
This stage is essential for attaining a polished surface, following which the ground samples are
rinsed with water to remove any abrasive residues or metallic particles.
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pulse Analyzer

Fixture

Fig. 3. Free impact vibration 3050 Pulse analyzer

The samples are subjected to an etching process using a solution of hydrofluoric acid, nitric acid,
and filtered water at room temperature to improve surface quality and expose microstructural
characteristics. The etching procedure is essential for elucidating the microstructure and
macrostructure of the treated materials. The samples are examined until the requisite surface
quality is achieved, guaranteeing comprehensive cleaning prior to analysis. Flat dog bone-shaped
samples are extracted from the middle of the treated zone for mechanical property assessment, in
compliance with ASTM requirements. The samples, constructed with precise dimensions, are
subjected to tensile testing using a Universal Testing Machine (UTM) with a maximum load capacity
of 100 kN, in compliance with ASTM B557 standards. The natural frequency and damping factor of
the composite surface are evaluated by free vibration analysis. Accelerometers are affixed to the
samples to assess their vibrational response over time, using a pulse data analyzer and an impact
hammer. Multiple repetitions of the free vibration tests are conducted to assure precision, using a
modal analysis tool to compute the Frequency Response Function (FRF), damping ratio, and
fundamental frequencies of the material. This thorough method not only improves the
comprehension of the aluminum-alumina composite but also offers insights into its long-term
performance and stability under operating settings.

2.3 Special Relativity Search Optimized Long Short-Term Memory Modelling

The Special Relativity Search Modelling Approach is a computational methodology designed to
analyze and predict the behavior of systems in high-velocity scenarios, where the principles of
special relativity become significant. The process begins with defining the physical system under
investigation and identifying the key parameters that influence its behavior, such as rotational
speed, number of passes, and transverse speed in friction stir processing.

Unfolding !
Hidden Layers |

Hidden |  EEEEEEE)
Layer '

Fig. 4. Systematic View of LSTME Network
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SRS modelling approach incorporates several key components that facilitate the analysis and
prediction of phenomena in high-velocity scenarios governed by the principles of special relativity.
Here are the essential components of the SRS approach:

2.3.1 Relativistic Equations

The foundation of the SRS approach is built upon the equations of special relativity, such as the
Lorentz transformations. These equations describe how measurements of time, length, and velocity
are affected for observers in different inertial frames, allowing for accurate modeling of relativistic
effects.

2.3.2. Parameter Identification:

Clearly defining and identifying the key parameters that influence the behavior of the system under
investigation is crucial. This includes variables such as velocity, energy, momentum, and mass,
which must be considered to understand how they interact within a relativistic framework.

Initiate | | [
‘ | | |Conﬂrudl$TMElJmngx, ’I [
| g
SRS Parameters Generate I : ) [
Selection Population X o Trained Calculate |
! : | o == I Model Fit, |
|, raini I ' '
Dataset W Tanne I |
Dataset | | |
| R E Ty R, et S —
| L g |
y top
| X Updation |__| Xp Condition [
| ’ !
_______________________ _1____A__4
T e _i _________________ 1
Training Optimal‘ Prediction of Performance |
Ditacet Configuration Output Evaluation :
| Computing Dataset 1__
End
Fig. 5. Special Relativity Search-based LSTME Network Model
2.3.3 Data Collection

Gathering data relevant to the system being modeled is a critical component. This may involve
experimental measurements or numerical simulations that reflect the system's behavior at
relativistic speeds. The quality and comprehensiveness of this data are vital for model accuracy.

2.3.4 Model Development:

In the SRS approach, a computational model is developed to represent the relationships between
input parameters and output behaviors based on the principles of special relativity. This model can
utilize techniques from statistics, machine learning, or traditional numerical methods to
approximate the system's response.

2.3.5 Optimization Techniques

The SRS approach employs optimization algorithms to explore the parameter space effectively. By
systematically varying input parameters, the model identifies optimal conditions that maximize or
minimize desired outcomes, such as efficiency or performance in relativistic contexts.
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2.3.6 Simulation and Analysis:

Once the model is established, simulations are conducted to predict system behavior under various
scenarios. This allows for the examination of how relativistic effects, such as time dilation and
length contraction, influence the outputs.

2.3.7 Validation

A critical step in the SRS approach involves validating the model's predictions against independent
experimental results or established theoretical benchmarks. This ensures that the model accurately
captures the dynamics of the relativistic system.

3. Results and Discussions

The study's findings, depicted in Figures 6-8, clearly establish a direct correlation between the FSP
Parameters and damping ratio. Nevertheless, the capacity to diminish vibrations can be improved
at a particular optimal rotational velocity.
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Fig. 6. Damping capacity of the samples at a traverse speed of 10 mm/min.

The data illustrates the influence of rotational speed (RPM) and the number of passes on the
damping ratio of an aluminum alloy processed through friction stir processing (FSP) at a consistent
traverse speed of 10 mm/min. At 1000 RPM, the damping ratio increases as the number of passes
rises, reaching 3.68% after three passes. Similarly, at 1200 RPM, the damping ratio improves with
additional passes, peaking at 3.43% with three passes. However, an interesting trend emerges at
1400 RPM, where the highest damping ratio of 4.62% occurs at two passes, suggesting an optimal
setting for vibration reduction at this speed. In contrast, at 1600 RPM, the damping ratio fluctuates
less significantly, increasing modestly with more passes but not reaching the levels observed at
1400 RPM. Overall, the findings indicate that both RPM and the number of passes play critical roles
in determining the damping ratio, with an optimal combination observed at 1400 RPM and two
passes [33]-[35].

The data at a traverse speed of 15 mm/min shows the impact of varying rotational speeds (RPM)
and the number of passes on the damping ratio. At 1000 RPM, the damping ratio increases
significantly with the second pass, reaching a peak of 4.74%, before slightly decreasing to 3.86%
with the third pass. This indicates an optimal damping performance at two passes. At 1200 RPM,
the damping ratio gradually improves with additional passes, increasing from 2.72% after the first
pass to 3.27% after the third pass. For 1400 RPM, the damping ratio initially dips to 3.34% at two
passes but rises to 4.43% at three passes, suggesting enhanced vibration reduction with increased
processing passes at this speed. However, at 1600 RPM, the damping ratio does not follow a
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consistent trend; it begins at 3.09% for the first pass, drops to 2.41% at two passes, and rises to
3.37% at three passes.
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Fig. 7. Sample’s damping ratio at 15 mm/min traverse speed

The data at a traverse speed of 20 mm/min reveals how rotational speed (RPM) and the number of
passes affect the damping ratio. At 1000 RPM, the damping ratio increases significantly with two
passes, reaching 4.48%, before slightly decreasing to 3.02% with the third pass. This suggests an
optimal damping effect with two passes at this speed. For 1200 RPM, the damping ratio is initially
high at 3.47% for the first pass and reaches a maximum of 3.59% at two passes before dropping to
2.97% at the third pass. At 1400 RPM, there is a notable decrease from 3.11% after the first pass to
2.39% at two passes, with a slight recovery to 2.76% after the third pass.
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Fig. 8. Damping capacity of the samples at a traverse speed of 20 mm /min.
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Meanwhile, at 1600 RPM, the damping ratio gradually increases from 3.05% at one pass to 3.74%
at three passes, indicating improved damping properties with more passes at higher speeds.
Overall, these results show that both RPM and the number of passes influence the damping
performance, with the best performance observed at 1000 RPM with two passes and at 1600 RPM
with three passes under a traverse speed of 20 mm/min.

The samples' natural frequency drops according to the increase in the number of passes. The
instrument's recurring agitation causes the disintegration of material particles, leading to a loss in
stiffness and the subsequent generation of this phenomenon. On the other hand, increasing the
number of passes leads to samples that have a greater damping ratio. The agitating movement
enhances the grain structure, hence augmenting the presence of imperfections and enhancing its
efficacy in catching and absorbing vibrations. Similarly, when the number of passes grows, the
sample loss factor also increases. The reason for the increase in frictional losses is due to the
presence of a more precise grain structure. The loss factor, on the other hand, quantifies the amount
of energy that is converted into heat during vibration. Also, the retained modulus of samples drops
with increasing pass count. Deterioration of the grain structure, which results in reduced elasticity,
is a likely cause. If we increase the number of passes, we get a similar trend in the samples' loss
modulus. The fundamental rationale for this occurrence is provided by the loss modulus, which
measures the energy dissipation that occurs during vibration; materials with finer grain patterns
show bigger levels of frictional losses.

Table 2. Significant process parameters of the FSP Process [36-38]

Rotational Numberof  Transverse Damping

Speed Passes Speed Ratio (Q) Loss Factor Shear Modulus
1100 rpm 3 20 mm/min 2.98 0.058 26.12 MPa
900 rpm 3 15 mm/min 3.57 0.072 25.91 MPa

Table 2 provides a concise overview of the variations in the dynamic characteristics of the samples
at various RPMs. Rotational speed plays a crucial role in determining the heat generation and
plastic deformation during the Friction Stir Processing (FSP) process. At a higher rotational speed
0f 1100 rpm, the damping ratio is lower (2.98%) compared to 3.57% at 900 rpm. This reduction in
damping ratio at higher speeds can be attributed to the increased thermal input, which may result
in finer grain structures but potentially reduces the material's ability to dissipate energy. The loss
factor, which represents the material's capacity to absorb vibrational energy, is also lower at 1100
rpm (0.058) than at 900 rpm (0.072), indicating that slower rotational speeds may enhance energy
dissipation. In both cases, three passes were used. Multiple passes generally improve the
homogeneity of the processed zone and help in refining the microstructure further. A refined and
homogeneous microstructure often leads to improved mechanical properties, such as better
damping characteristics and enhanced shear modulus. Thus, conducting multiple passes ensures a
more uniform material structure, leading to consistent mechanical property results across different
speeds. The transverse or traverse speed, which represents the tool's movement along the
workpiece, influences the heat input and material flow characteristics. A slower traverse speed (15
mm/min) allows for more heat accumulation, potentially resulting in a softer, more ductile
material, as seen with the higher damping ratio (3.57%) and loss factor (0.072) at this speed. In
contrast, a faster traverse speed (20 mm/min) reduces the heat input per unit length, leading to a
relatively lower damping ratio (2.98%) and loss factor (0.058). This difference is because the lower
heat input at higher traverse speeds tends to produce a stiffer material structure, slightly
decreasing its ability to dissipate vibrational energy. The shear modulus values are relatively close
for both conditions (26.12 MPa at 1100 rpm and 25.91 MPa at 900 rpm), though a slight increase
is observed at the higher speed of 1100 rpm. This suggests that the stiffer material structure
obtained at higher rotational and transverse speeds may slightly enhance the shear modulus.
However, the difference is not substantial, indicating that the FSP process has a limited but positive
impact on shear modulus at these parameter settings.
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3.1 Mechanical Properties

In friction stir surface processing (FSP), the primary mechanism that strengthens the material is
grain refinement. By using a rotating tool to generate heat and mechanical deformation, FSP
produces a fine, uniform grain structure, which directly impacts the mechanical properties of the
material. Initially, the Al-6061 alloy has a relatively coarse grain structure, with an average grain
size of about 142 um and an aspect ratio of 32.3%. Grain size and aspect ratio are key factors in
determining the mechanical behavior of metals: smaller, more equiaxed (rounded) grains generally
improve strength and ductility. After three passes of FSP, the grain size is reduced to just 12.92 pm,
and the aspect ratio increases to 91.8%, indicating that the grains are now more uniform and
compact. This fine-grained structure enhances the material’s mechanical performance by creating
more grain boundaries, which act as barriers to dislocation movement (dislocations are defects in
the crystal structure that lead to deformation).
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Fig. 9. Optical microscope analysis (a) Base Alloy and (b) FSP-ed Composite
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The microstructure images in Figure 9 confirm this refinement, showing that FSP successfully
produces a finer grain structure. This refined microstructure has a direct impact on the material's
ultimate tensile strength (UTS) and yield strength (YS). The findings suggest that as the rotational
speed of the FSP tool increases, more heat is generated, which facilitates dynamic
recrystallization—a process where the grains are continuously broken down and reformed into
smaller grains. The combination of heat and mechanical action at higher speeds accelerates this
process, leading to a more uniform microstructure and, consequently, stronger material properties.
Higher rotational speeds not only refine the grain structure but also improve the material's
resistance to deformation, enhancing its yield strength. A finer microstructure limits dislocation
motion and requires greater force to initiate plastic deformation, thereby increasing yield strength.
This makes the material stronger and more durable, as it can withstand greater forces before it
starts to deform. In summary, the increased rotational speeds in FSP contribute to a more refined
grain structure, which strengthens the material by impeding dislocation movement, enhancing
both UTS and YS.

The observed decrease in yield strength (YS) and ultimate tensile strength (UTS) with an increasing
number of FSP passes can be understood in terms of the effects of excessive grain refinement and
heat input. In FSP, each pass of the tool applies heat and mechanical agitation to the material,
breaking down grains and refining the microstructure. However, after a certain point, too many
passes can lead to over-processing of the material. With repeated agitation, the grains can become
excessively fragmented, which may lead to the formation of ultra-fine or even amorphous regions
that lack the cohesive crystal structure needed to maintain high strength. In a finely grained
microstructure, dislocations (defects within the crystal lattice) have a harder time moving, which
generally improves strength. However, if the grains become too small or disordered, the material
may lose its ability to effectively carry loads due to compromised grain boundaries, which weakens
its structural integrity and leads to a reduction in YS and UTS. Similarly, reducing the feed rate (i.e.,
slowing down the tool's movement across the surface) increases the duration of heat exposure per
unit area. This slower rate of travel means that heat dissipates more slowly, allowing for prolonged
thermal exposure. When the material remains hot for too long, it can cause excessive grain growth
or even coarsening in some cases, leading to a reduction in strength. Prolonged heating also reduces
the effectiveness of grain boundary strengthening, as it allows grains to relax or reorient in ways
that make them less resistant to deformation [39]-[41].
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3.2 Predicted Results

The research effort focuses on employing four distinct machine-learning models to predict specific
features of processed data, including Ultimate Tensile Strength (UTS), Yield Strength (YS), natural
frequency, and damping ratio.
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Fig. 12. Training process of experimental and predicted data

The first model is an independent Long Short-Term Memory (LSTM) model, which learns to make
predictions based solely on the input data without any additional optimization techniques. The
following three models build upon the LSTM framework by incorporating various optimization
approaches. These optimized models include LSTME-FHO, which enhances the LSTM with the
Firefly Algorithm, LSTME-SRS that utilizes Particle Swarm Optimization, and LSTME-DMOA, which
applies the Differential Multi-Objective Algorithm for optimization.
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Fig. 13. Testing process of experimental and predicted data

To evaluate the models' performance, empirical data is divided into two parts: 70% of the data is
allocated for training the models, allowing them to learn patterns and adjust their parameters,
while the remaining 30% is reserved for testing, which assesses how well the trained models can
predict outcomes for unseen data. The effectiveness of each model is measured using three
accuracy metrics: Root Mean Square Error (RMSE), which quantifies the difference between
predicted and actual values; Coefficient of Determination (R?), reflecting the proportion of variance
in the dependent variable explained by the independent variables; and Mean Absolute Error (MAE),
which indicates the average absolute differences between predictions and actual values. Through
this research, the aim is to enhance prediction accuracy for important engineering characteristics
by exploring the capabilities of various machine-learning models and their optimization technique.
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The findings of the research demonstrate a strong correlation between the experimentally acquired
data and the predicted outcomes generated by the machine learning models. Among the models
tested, the LSTME-SRS model outperformed all others, indicating its effectiveness in making
accurate predictions. It was followed closely by the LSTME-DMOA and LSTME-FHO models, which
also showed commendable performance. In contrast, the independent LSTM model consistently
exhibited the least alignment with the experimental data during both the training and testing
phases, indicating its limitations in capturing the underlying patterns in the data. Furthermore, an
analysis of absolute errors revealed that the LSTME-SRS model maintained the lowest error across
all characteristics examined, reinforcing its superior predictive power. This consistent
performance supports the earlier findings of strong correlation. Additionally, when comparing the
absolute errors of the LSTME-SRS model with those of the LSTM model, it was noted that the errors
produced by the LSTME-DMOA and LSTME-FHO models were relatively small, although they did
not surpass the accuracy of the LSTME-SRS.
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Fig. 15. Testing processing error of experimental and predicted data
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Overall, these results highlight the efficacy of optimization techniques in enhancing the predictive
capabilities of LSTM models, particularly the advantages offered by the LSTME-SRS approach. The
LSTME-SRS algorithm exhibits exceptional efficacy in accurately predicting various attributes of
processed data, as evidenced by its ability to generate minimal absolute error in predictions. The
results of this study indicate that LSTME-SRS consistently outperforms the other models in terms
of predictive accuracy, highlighting its capability to effectively anticipate the features of the
processed data.
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Fig. 16. QQ plots for damping ratio during training and testing of data
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Fig.17. QQ plots for ultimate tensile strength during training and testing of data

When comparing the QQ (Quantile-Quantile) plots illustrated in Figures 16-19, it becomes apparent
that there is a stronger correlation between the predicted and actual data for the LSTME-DMOA
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and LSTME-FHO models when assessed against the LSTME-SRS model. This suggests that while
LSTME-SRS remains the top performer, the LSTME-DMOA and LSTME-FHO models also establish a
relatively robust relationship with the experimental data. The QQ plots provide a visual
representation of how closely the predicted values align with the actual values, reinforcing the
findings that LSTME-SRS is superior in accuracy, but indicating that the other two models still
maintain meaningful predictive capabilities.
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Fig. 18: QQ plots for ultimate yield strength during training and testing of data
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Fig. 19. QQ plots for natural frequency during training and testing of data

The predictive accuracy of the LSTME-SRS model is evidenced by the close proximity of its
predicted outcomes—represented in yellow—to the diagonal lines on the plot, which typically
signify ideal predictions where the predicted values match the actual experimental results
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perfectly. In contrast, the predictions generated by the independent LSTM model, depicted in a light
green, show a greater deviation from these diagonal lines, highlighting its poorer performance and
accuracy. This noticeable disparity in prediction accuracy further reinforces the conclusion that
the LSTME-SRS model significantly outperforms the independent LSTM, LSTME-FHO, and LSTME-
DMOA models. The assessment of model performance through various metrics—such as the
coefficient of determination (R?), mean absolute error (MAE), and root mean square error
(RMSE)—further substantiates the findings. These metrics quantitatively confirm that LSTME-SRS
consistently yields higher accuracy, characterized by lower error values and a stronger fit to the
experimental data, distinguishing it as the most reliable model among those tested[1], [42], [43].

Table 3 presents the results in a concise format for your convenience. The provided data highlights
the performance metrics of four machine learning models—LSTME-SRS, LSTME-FHO, LSTME-
DMOA, and the independent LSTM model—across four different predictive tasks: damping ratio
(€), natural frequency, ultimate tensile strength (UTS), and yield strength (YS). The metrics
evaluated include the coefficient of determination (R?), root mean square error (RMSE), and mean
absolute error (MAE) for both training and testing datasets. For the damping ratio, the LSTME-SRS
model achieved an impressive R? value of 0.992 during training, indicating a strong fit to the data,
and maintained a high R? of 0.985 during testing. Its RMSE and MAE values were also the lowest
among all models, demonstrating superior predictive accuracy. The LSTME-DMOA model followed
closely with an R? of 0.999 in training, although its RMSE and MAE were slightly higher, indicating
some discrepancy in predictions. The LSTME-FHO model, while still effective, showed lower
performance, particularly in testing with an R? of 0.823, highlighting its limitations in capturing the
damping ratio accurately. In stark contrast, the independent LSTM model exhibited the weakest
performance, with the lowest R? values and highest error metrics across both training and testing
phases.

Table 3. Machine-learning model and performance measures

. Training Data Testing Data
Properties Models R? RMSE  MAE RZ  RMSE  MAE
LSTME-SRS 0992 0.172  0.138 0985 0258 0.227
Damping LSTME-FHO 0988 0374 0307 0823 0459 0.405
ratio () LSTME-DMOA 0999 0387 0316 0977 0589  0.499
LSTME 0746  0.688 0564 0724 0.629 0.5336
Natural LSTME-SRS 0977 2803 2221 0952 2.684 2463

LSTME-FHO 0.964 5.756 4.456 0.710 4.692  3.805

Fre&;f)ncy LSTME-DMOA 0923 5582 4413 0845 5846 4.876
LSTME 0668 6.674 5234 0541 5837 4.959

Ultimate LSTME-SRS 0964 12384 9687 0911 22.706 19277
Tensile LSTME-FHO 0899 16783 1392 0704 65103 30.723
Strength LSTME-DMOA  0.895 17.003 14367 0885 49306 41.109
(MPa) LSTME 0788 40766 34120 0.721 80.692 68.359
LSTME-SRS 0966 10.824 8497 0953 19583 17.439

Yield Strength ~ LSTME-FHO 0902 15367 12518 0.756 40.784 33.336
(MPa) LSTME-DMOA 0943 15.062 12573 00934 24.016 20.947
LSTME 0882 30.660 25271 0.861 55.020 44.185

In predicting natural frequency, the LSTME-SRS model again led the pack with an R? of 0.977 during
training and 0.952 in testing, along with relatively low RMSE and MAE values. The LSTME-FHO and
LSTME-DMOA models performed adequately but had noticeably higher errors, indicating a greater
challenge in accurately predicting this characteristic compared to the damping ratio. The
independent LSTM model struggled here as well, with a low R? of 0.541 in testing. When assessing
ultimate tensile strength, the LSTME-SRS model continued to perform strongly with an R? of 0.964
in training, although the RMSE and MAE were considerably higher than in previous metrics,
suggesting the inherent complexity of this prediction task. The LSTME-FHO and LSTME-DMOA
models showed significant errors during testing, especially the LSTME-FHO, which had an RMSE of
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65.103, indicating a poor fit for UTS predictions. Again, the independent LSTM model showed the
least effectiveness, reflected in its high error metrics. Lastly, for yield strength, the LSTME-SRS
model again outperformed the others with an R? of 0.966 in training and 0.953 in testing, coupled
with lower RMSE and MAE values, affirming its reliability. The LSTME-DMOA model also performed
well, though it showed a slight increase in error metrics compared to its training performance. The
independent LSTM model's performance remained consistently poor across all tasks. Overall, the
results clearly indicate that the LSTME-SRS model is the most effective among the models tested,
achieving high R? values and low error metrics across various characteristics. The integration of
optimization techniques in models like LSTME-FHO and LSTME-DMOA enhances predictive
accuracy compared to the independent LSTM model, yet they still fall short of the performance
demonstrated by LSTME-SRS, particularly in more complex prediction tasks like ultimate tensile
strength and yield strength.

4. Conclusions

The study introduces a novel approach to predicting the mechanical properties of aluminum alloys
processed through friction stir processing (FSP) by employing a Special Relativity Search
Optimized Long Short-Term Memory (LSTME-SRS) model. This study employed a CNC milling
machine to conduct friction stir processing on Al-6061 aluminum alloy, utilizing aluminum oxide
nanoparticles as reinforcements. The incorporation of alumina nanoparticles and controlled
adjustments to FSP parameters, such as rotational speed and the number of passes, significantly
impacted the material’'s damping capacity, yield strength, and tensile strength. Using a machine
learning approach, specifically the SRS-optimized LSTME model, provided highly accurate
predictions of these properties, which validated the experimental findings and highlighted the
effectiveness of the optimization. The following conclusions were mentioned as follows:

e The highest damping capability was achieved with a rotational speed of 900 rpm and a
traverse speed of 15 mm/min, where the damping ratio (¢) reached 3.57, and the loss factor
was 0.072.

e This optimal condition allowed the material to absorb and mitigate vibrations more
effectively, largely due to a fine and evenly dispersed grain structure, enhanced by alumina
nanoparticle reinforcement.

o Higher rotational speeds led to increased thermal energy, which refined the grain structure
and made the material stronger yet less rigid.

o The shear modulus decreased to 25.91 MPa at 900 rpm and further dropped at higher
rotational speeds, indicating a balance between strength and flexibility as rotational speed
increased.

e Increased rotational speeds improved yield strength (YS) and ultimate tensile strength
(UTS). The optimized LSTME model achieved R? values of 0.953 for YS and 0.911 for UTS,
demonstrating a strong correlation between speed and material strength. This improvement
results from grain refinement, which increased resistance to deformation.

o The SRS-optimized LSTME model excelled in prediction accuracy, outperforming other
models with R? values between 0.911 and 0.992 for UTS, YS, natural frequency, and damping
ratio.

e The SRS optimization reduced the root mean square error (RMSE) and mean absolute error
(MAE) by up to 71.86% and 71.61%, respectively. This demonstrates the model’s robustness
in forecasting material properties effectively.

e More friction-stir processing passes led to a reduction in natural frequency and stiffness,
while increasing the damping ratio and loss modulus. With more passes, energy dissipation
during vibrations increased, as reflected by a rise in the loss modulus, which indicates more
effective damping capability. Each pass further refined the grain structure, enhancing the
presence of microscopic imperfections that improved vibration absorption.

o With increased RPM, there was a noted rise in damping capacity, as the refined grain
structure introduced by higher rotational speeds enabled the material to better absorb and
dissipate energy. The data suggest that higher thermal energy generation during FSP aids
grain breakdown, yielding a finely tuned microstructure ideal for high damping applications.
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The friction-stir processing led to significant grain refinement, reducing the average grain
size from an initial 142 pm to 12.92 pm after three FSP passes, and increasing the aspect ratio
from 32.3% to 91.8%. This transformation in microstructure substantially improved the
material’s strength and deformation resistance.

5. Applications

Al-6061/alumina composites are suitable for airplane frames, fuselage structures, and
engine parts due to their lightweight and high strength. The LSTME-SRS model predicts and
optimizes mechanical parameters, improving performance and fuel economy.

Advanced composites increase vehicle performance by decreasing weight and preserving
strength and durability. Structural components, chassis sections, and body panels may
benefit from improved damping for ride comfort and noise reduction.

High-performance sporting equipment including bicycle frames, golf clubs, and tennis
rackets used advanced composites. Composites' lightweight and enhanced mechanical
qualities help shock absorption and vibration damping.

Construction companies use the study's findings to create lightweight, robust materials for
buildings, bridges, and other infrastructure. Processing parameters enhance mechanical
properties for safer and more efficient designs.

Al-6061/alumina composites are suited for maritime applications such as boat hulls and
harsh environment components because of their corrosion resistance and mechanical
strength. These materials are optimized for marine durability and performance using
predictive modeling.

Aluminum composites' biocompatibility and mechanical qualities are used to make medical
devices and implants. Predicting and controlling material qualities may improve surgical
equipment and prostheses.

Manufacturing processes may use the LSTME-SRS model to anticipate and optimize FSP
parameters in real time. This boosts manufacturing efficiency, eliminates waste, and
increases product quality.

6. Future Perspective

The LSTME-SRS model can be applied to other metal matrix composites (MMCs) and
materials besides Al-6061. This demonstrates the model's versatility across numerous
material systems, perhaps leading to practical applications.

Real-time industrial process input may increase predictive model accuracy and adaptability.
This connectivity would allow real-time processing setting changes during FSP, improving
material properties and production efficiency.

Tool geometry, cooling methods, and post-processing treatments may affect composite
mechanical properties in future study. Understanding these components may enhance
material performance.

Long-term studies on treated materials' durability and fatigue resistance in various
environments would provide light on their practical performance. This may help assess the
durability and reliability of composite components.

Hybrid reinforcing systems that combine alumina with nanoparticles or fibers may improve
composite mechanical properties. To increase performance, research may focus on
reinforcement interactions.

Machine learning advances may improve LSTME-SRS predictions. Novel algorithms and
hybrid models may enhance material quality and processing predictions.
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