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 Several natural and manufactured flow systems exhibit scale-invariance or self-
similarity, despite appearing to be disordered. This study focuses on the laminar 
flow of non-Newtonian fluids through self-similar systems of tubes with porous 
walls (intrinsic permeability much less than 10-4 m2). Two arrangements of tubes 
are discussed: a dendritic flow structure and a bundle of tubes. The size of these 
arrangements is described as a function of structural parameters for both 
straight and tortuous tubes, and the flow resistance is obtained as a function of 
structural parameters and fluid properties. Among other findings, it is shown 
that the prefractal dimension of dendritic networks for maximum flow access is 
dependent on the size constraint chosen to design the network. Results also 
show that as the prefractal dimensions of diameters and lengths rise, so does the 
overall size of the dendritic network and tube bundle system. In contrast, it is 
observed that the flow resistance diminishes as the prefractal dimension for 
diameters increases, whereas for tortuous tubes the flow resistance increases as 
the prefractal dimension for lengths increases. The approaches presented in this 
paper have numerous potential applications, including fluxes in biological 
systems, microfluidic media, and hydrology. 

 

© 2025 MIM Research Group. All rights reserved. 
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1. Introduction 

Fluid flow through complex networks of pores/tubes is common both in man-made and 
natural systems [1-3]. Fluid properties and the geometry through which the fluid circulates 
are crucial to establish the characteristics of the flow [3]. Therefore, diffusion coefficients 
and viscosities are properties of ample practical interest as well as the internal shape and 
structure of flow sites and their connectivity between them. In systems with specific 
geometries, the Euclidean dimension is insufficient to properly represent the system, 
hence the concept of prefractal was established [4-7]. Thus, for systems that have 
statistical self-similarity across a variety of scales, a measure of the complexity of the 
lengths/times that characterize these systems is obtained based on the so-called prefractal 
dimension. Prefractals are characterized by power laws with non-integer or integer 
exponents [4,5]. These scale-invariant systems are ubiquitous in nature and feature 
diverse man-made systems.  

From a fundamental perspective, fluid flow in permeable media raises interesting 
challenges, particularly concerning the prefractal geometry of open space. Several 
attempts have been made to explain how the prefractal features of media affect fluid flow 
[7-10]. These attempts can be divided into two categories: one related to the flow 
represented by conventional flow equations through a prefractal open space, and the other 
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to the flow network related to a continuum flow driven by nonconventional (prefractal) 
flow equations. A comprehensive review of the recent development of prefractal design of 
flow systems is provided by Babadagli [11].  

This paper is based on the methodology presented in the articles of Miguel et al. [12,13] 
and presents analytical models for two different configurations: one composed of a self-
similar dendritic network of porous tubes, and the other composed of a self-similar 
arrangement of porous tubes embedded in a porous material (intrinsic permeability less 
than 10-4 m2), whose dimensions follow scaling laws. Our study considers non-Newtonian 
fluid flows and relies on the power law approach (Ostwald de Waele fluid) to estimate the 
variations in the fluid viscosity due to the applied shear rate. Power-law fluids are used in 
a variety of applications, including biological flow systems, microfluidic media, and 
engineering systems. 

2. Theory    

2.1. Fluid Flow Through a Tube with Porous Wall 

Consider a time-independent laminar flow, axisymmetric through a cylindrical tube with 
rigid and impervious wall. According to Navier-Stokes equations, the flow of a Newtonian 
fluid is given by; 

f

4

8sdp/dz
=-

μQ D
 (1) 

which is known as the Hagen–Poiseuille equation. Here Q is the volumetric flow rate, sf is 
a shape factor (16/), D is the diameter, z is a space variable, p is the pressure, and  is the 
dynamic viscosity. 

Now consider that the tube's wall is made of pores and has constant intrinsic permeability. 
Assuming that the exterior pressure is considered constant (i.e., a reference pressure pext 
= 0), the permeation flow is not constant due to the tube's inner pressure. Differentiating 
Eq. (1) yields; 

4 2

2

f

dQ D d p
=-

dz 8μs dz

 
(2) 

As the Darcy law governs the creeping fluid flow through the wall, the fluid flow variation 
along the tube is given by; 

pdQdQ k p
= =-πD

dz dz μ l
 (3) 

where k is the intrinsic permeability and l is the wall thickness. Substitution of Eq. (3) into 
Eq. (2) yields; 

2

f

2 3

8πs kd p
- p 0

dz D l
=  (4) 

which has a solution of the form p(z)= a1exp(−bz)+a2 exp(bz), where a1, a2 and b are 
constants [14]. Middleman [15] and Vassilieff [16] noticed that the pressure with respect 
to the axial position experiences a slight curve. Since the properties of the fluid and the 
geometric characteristics of the tube are constant, both the above solution or a parabolic 
pressure solution of type p(z)=c1+c2 z+c3z2 can be applied [15]. Accounting for the 
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continuity equation, and that 4

f indp/dz=8s μQ /D  and at inlet the pressure is pin, the 

pressure variation along the length of the tube can be written as; 

4

4 3 2

8 p -643
( ) 1+

2 3D 64

  
− =   

−  

f in in in
in

in

s Q D LQk
p z p z z

D Q kL

  

 

 
(5) 

The pressure difference between the outlet and the inlet of the tube is; 

4

4 3 2

8 p -643
1+

2 3D 64

  
− =   

−  

f in in in
L in

in

s LQ D LQLk
p p

D Q kL

  

 

 
(6) 

Note that the Hagen-Poiseuille equation is obtained when the intrinsic permeability of the 
tube walls is zero. 

 
(a) 

 
(b) 

Fig. 1. The base system consists of a tube that splits into two tubes (a) to form a 
network of dendritic tubes (b) 

2.2. Flow through Bifurcated Tubes of a Newtonian Fluid 

Consider a symmetric configuration composed of a tube that bifurcates into two daughter 
tubes (Fig. 1a). Defining the flow resistance as the ratio between fluid flow and pressure 
difference, the total flow resistance of the configuration of tubes is [6]; 

1

2
= +m dR R R  (7) 

with; 

4

4 3 2

3 p -64
1+

2 3D 64

  
=   

−  

f m m in m m in
m

m in m m

s L L k D L Q
R

D Q kL

  



 
(8) 

4

,

4 3 2

p -32 ( )3
1+

( ) 3D 64

  − 
=   

− −   

f d in d d d in kd
d

d in k d d

s L D L Q QL k
R

D Q Q kL

  



 
(9) 

where the subscripts m and d mean parent and daughter tubes, respectively. The total size 
of this bifurcated system is given by;  
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2= +w w

s m m s d dS s D L s D L  (10) 

where w takes a value of 1 or 2 for the lateral area and volume, respectively, and ss is a 
shape factor equal to  for the lateral area and to /4 for the volume. Consider that this 
bifurcated flow system is repeated over multiple spatial scales (Fig. 1b). Since self-
similarity is a characterizing property, two crucial characteristics of the flow network are 
observed: the bifurcation of tubes and the decrease in the diameter of tubes (and cross-
sectional area) from one level to the next in the tree. This can be approached by; 

0 1,2,...= =j

jD D j n  (11) 

where the scaling factor for diameters or magnification factor  (a constant for the 
dendritic network) can be related to the number of bifurcating tubes n and the prefractal 
dimension df according to; 

1
−

= fd

oc n  (12) 

where co is a constant. This power-law relationship ensures that the design of the tubes 
appears the same across different length scales of observation. A measure of the change of 
n can be obtained by differentiating Eq. (11) with respect to Dj ; 

= −
j

f

j

dDdn
d

n jD

 
(13) 

This result shows that n and Dj vary in opposite ways, that is, when one of them increases 
the other decreases. As a result, a self-similar dendritic network of tubes is composed of a 
few large-diameter tubes and many small-diameter tubes. 

The diameter of the tubes that comprise each bifurcation level is related to the flow 
resistance. For a minimum flow resistance under space constraint, the following 
relationship must be verified [6]; 

0m

m d d

DR R

D D D

 
+ =

  

 
(14) 

with the Dm/Dd obtained from the space constraint given by Eq. (10).  According to Eqs. 
(7), (10), and (14), the relationship between daughter and parent diameters for minimum 
flow resistance is given by; 

( )

( )

2
1 4
2

2 2 2 3 6 7 2 3

2

4
1

2 2 2 3 6 1 7 2 32
,

27
28672( ) 3552 36 p 64 3

2
2

40960( ) 3552 36 27 ( ) p 64 3

+

−
+

−

 
  − + + −    

=  
  − + + − −  
  

w

m m m m in m m d d

ind w

m
d d d d in k in d d d m m

kL kL D D L kD kL D
QD

D
kL kL D D Q Q L kD kL D


  

   

 

(15) 

Eq. (14) is implicit and needs to be solved iteratively. For k<10-4 m2, the previous 
equation's k-dependent terms are significantly less than the other terms and can be 
ignored (refer to the results of section 3.1). Then, the previous equation can be expressed 
as; 
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2

42
−

+=d w

m

D

D
 (16) 

Using a similar process and replacing D by L in Eq. (14), the optimal length ratio (i.e., length 
ratio for minimum flow resistance) is given by; 

1

42
w

d w

m

L

L

+
−

+=  (17) 

2.3. Flow through Bifurcated Tubes of a non-Newtonian Fluid 

Because of its effectiveness and simplicity, we use the Hagen-Poiseuille equation (laminar 
flow) and a power law to account for variations in fluid viscosity caused by the applied 
shear rate. The Ostwald de Waele power law is a well-known model because a wide variety 
of problems were solved based on this approach. For k<<10-4 m2, the flow resistance of a 
single tube can be obtained as; 

3 1

3 4

-1

3 1
2

4
KL

R Q
D

+



+





  +
 

 
=



 
(18) 

where Q is the volumetric flow rate, K is the consistency of fluid, and  is the fluid behavior 
index (<1 the fluid is named pseudoplastic or shear thinning, >1 the fluid is called 
dilatant or shear thickening, and for =1 the Newtonian fluid is obtained). 

The resistance of a system composed of a parent tube that branches into 2 symmetric 
daughter tubes is;  

3 1 3 1

3 4 2 41 2 23 1

4

m d

m d

L LKQ
R

D D
+ +

 + +−



  +
 = + 

      

 
(19) 

Using a methodology akin to that described in the preceding section, the optimal size ratios 
for a tube that splits into two tubes (Fig. 1a) are; 

( 1)

3 12 wd

m

D

D

− +

+ +=  (20) 

23 3 2

3 12 wd

m

L

L

 − −

+ +=  (21) 

Note that when =1 the allometric relations for Newtonian fluids (Eqs. 16 and 17) are 
obtained. 

2.3.1 Geometric Characteristics for Minimum Flow Resistance and Prefractal Dimension  

The ratio of diameters and lengths for the least resistance of fluid flow under surface area 
and volume constraints is illustrated by the allometric Eqs. (20) and (21).   Eqs. (11), (12), 
(20) and (21) provide the following definition of the prefractal dimension; 

3 1

1
fD

w
d

+ +
=

+





 
(22) 
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According to these equations, both the prefractal dimension for diameters (dfD) and lengths 
(dfL) depend on the constraints of the system and the fluid behavior index. For example, dfD 
for a Newtonian fluid is 2.5 or 3.0, depending on whether the constraint is the tube's lateral 
area or volume, respectively. 

The total size and the total resistance of the bifurcated system of tubes (Eqs. 10 and 19, Fig. 
1a) can be written in terms of prefractal dimensions as; 

1
1

1 2 fD fL

w

d dw

s m mS s D L
− − 

 = +
 
 

 
(24) 

3 1

3 1 1
1 3 43 1

1 2
4

fD fLd dm

m

LKQ
R

D
+

+− + + −



   +
 = +       

 
(25) 

For example, for a network composed of j-levels of bifurcated tubes (Fig. 1b), the total size 
of tubes is given by; 

1 1
1

1
1 1

0 0

0 0 0 0 1
1

0
1 1

0 0

1 2 1 2

2

1 21 2

fD L

fD L

j jw w

d df

j
i w w w

s i i s s ww
i d df

L D

L D
S s D L s D L s D L

L D

L D

+ +
− −

− −
=

    
  − −        

= = =
  

− −  
   


 

(26) 

where dfD and dfL are given by Eqs. (22) and (23), respectively.  

2.4. Fluid Flow Through Self-Similar Arrangement of Tubes 

Consider a system composed of tubes with varied cross-sectional diameters (Fig. 2). Let L 
be the length of the material which has a self-similar distribution of tubes with diameters 
ranging from minimum diameters Dmin and maximum diameters Dmax (i.e., DminD Dmax 
and Dmin<<< Dmax). Using an approach similar to those shown in the previous section (Eq. 
11 and 12), we can write [4,12,13]; 

max=D D  (27) 

with the scaling factor for diameters given by; 

1

( )
−

=  fDd
N D  (28) 

where N is the number of tubes having a diameter equal to or greater than D. 
Differentiating this equation yields;  

max

( )

( )


= −


fD

dN D dD
d

N D D

 
(29) 

This equation, like Eq. (13), shows that the number of tubes in the flow system reduces as 
the diameter increases. As a consequence, a self-similar arrangement of tubes consists of 
many small-diameter tubes and a small number of larger-diameter tubes [4]. 

2

3 1

2 3 3
fL

w
d

+ +
=

+ −



 

 
(23) 
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Fig. 2. Self-similar arrangement of tubes that are independent of one another 

2.4.1 Size and Fluid Flow Resistance of An Arrangement of Straight Tubes  

Consider that the arrangement of tubes in the Fig. 2 is composed of straight-length tubes.  
Taking into account Eqs. (27) to (29), the total volume of the tubes is given by; 

( )
max max

min min

1 22

max( ) fD fD
D D d d

s c s c fD
D D

S s D L dN D s L d D D dD
− −

=  = 
 (30) 

Integrating the previous equation yields; 

32

max min

max

1
3

fDd

s c fD

fD

s L d D D
S

d D

−  
 = −  

−    

 
(31) 

Using a similar process, for k<<10-4 m2 the total flow resistance of the arrangement of tubes 
is given by;  

max

min

(3 ) 11

1

max

1

fD

fD

d

d
D fD

D

c

c p d D D
Q dD

L

− +

−


= −



 




 (32) 

and the flow resistance is; 

( ) ( )

1 (4 3 )( 1)

1 2 2

max

1 1
4 41 1

3 3
min min

max max

max max

Re

1 1
4 1 4 1

fD fD

c R c MR

d d

fD fD

fD fD

Q L c L D
R

c d c dD D
D D

D Dd d

− − −

− − −

− + − +
+ +

= =
      

         − −         − + − +               

  

  

 

 
  

 

 

 

(33) 

with; 

( 1)
1

2
1 2

2(4 3 )( 1) 1

2 2

3 1

4

2

R

K

c

 −
−

−
− −

−  − −

− −

  +
  

 
=



 (34) 
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2(4 3 ) 2

2 4 3

max

2
Re

3 1

4

MR

Q

D K

−  −



− − 


=

  +
  

 

 

(35) 

where ReMR is the Metzner–Reed Reynolds number, and S and R are the total size of the 
tubes and the total resistance of the tubes, respectively. 

2.4.2 Size and Fluid Flow Resistance of An Arrangement of Tortuous Tubes  

Tortuous describes the sinuosity of the tube in space, and tortuosity can be defined as the 
ratio of tube curve length over the line distance between the two ends. Consider that the 
tubes' length is tortuous rather than straight (LLc). Tube diameters satisfy Eqs. (27) and 
(28), whereas the following scaling equations describe tube lengths that follow self-
similarity [13]; 

= cL L  (36) 

with the scaling factor given by; 

1−

 
=  
 

fLd

c

D

L


 
(37) 

where dfL is the prefractal dimension of the tortuous tubes. In this case, the total volume of 
the tortuous tubes is given by;  

max

min

1 3

max

fL fD fD fL
D d d d d

s c fD
D

S s L d D D dD
− − −

= 
 (38) 

After integration, the above equation yields; 

43

max min

max

1
4

fD fLfL fL
d dd d

s c fD

fD fL

s L d D D
S

d d D

− −−   
 = −  

− −    

 
(39) 

The resistance can be obtained in the same manner as described in the preceding section. 
Assuming that the intrinsic permeability is much less than 10-4 m2; 

max

min

(3 )1

1

max

fD fL

fD

fL

d d

d
D fD

dD

c

c p d D D
Q dD

L

− +

−


= −



 




 
(40) 

and the total flow resistance is; 

( ) ( )

1 (4 3 )( 1)

1 2 2

max

4 4
3 3

min min
max max

max max

Re

1 1
4 4

fL fL
fD fDfL fL

c R c MR

d d
d dd d

fD fD

fD fL fD fL

Q L c L D
R

c d c dD D
D D

D Dd d d d

− − −

− − −

− + − +
+ +

= =
      

         
− −         − + − +               

  

  

 

 
  

 

 

 

(41)  

 

It should be noted that for tubes of non-tortuous length, the prefractal dimension dfL is 1, 
and Eqs. (31) and (33) are obtained again.  
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3. Results and Discussion   

3.1. Fluid Flow in Porous Wall Bifurcated Tubes Designed with Minimum Flow 
Resistance 

Fig. 3 illustrates how the ratio of the daughter tube to the parent-daughter tube diameters 
(Fig. 1a), for minimum flow resistance, varies with the k, w, and Ld/Lm. Regardless of the 
intrinsic permeability of the walls and the ratio between the lengths of the daughter tubes 
and the parent tube, we may conclude that Dd/Dm depends on w which represents the type 
of space constraint imposed on the system. Additionally, for an intrinsic permeability of 
less than 10-4 m2, Dd/Dm remains independent of Ld/Lm. Then, the ratio of diameters that is 
only dependent on the constraint w is given by Dd/Dm=2-2/4+w (for k<10-4 m2). 
Additionally, it should be mentioned that for volume constraint (w=2) the ratio of the 
diameters Dd/Dm is larger than for lateral area constraint (w=1). 

 

Fig. 3. Optimal ratio between the diameters of daughter and parent tubes versus the 
intrinsic permeability of porous wall (Eq. 15) 

 

Fig. 4. Ratios between the diameters of daughter and parent tubes Dd/Dm  (___, Eq. 20) 
and between the lengths of daughter and parent tubes Ld/Lm (---, Eq. 21) versus fluid 

behavior index  and the geometric constraint w 
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Fig. 5. Prefractal dimension for diameters dfD (___, Eq. 22 ) and lengths dfL  (---, Eq. 23) 
versus fluid behavior index  and the geometric constraint w 

For branching systems designed with minimum flow resistance, Figs. 4 and 5 depict the 
variation of the size ratios and the prefractal dimensions with respect to the fluid behavior 
index   and the geometric factor w. Fig. 4 indicates that the diameter and length ratios are 
greater for volume constraint than lateral area constraint. Besides, the length ratio grows 
with the fluid behavior index, but the diameter ratio remains relatively constant. The same 
tendency of variation with w and   recorded for the size ratios occurs for the prefractal 
dimensions dfD and dfL (Fig. 5). 

3.2. Fluid Flow Through a Dendritic Network of Tubes   

Consider now the design's base unit for dendritic flow networks, which consists of a parent 
tube that bifurcates into two daughter tubes. Figs. 6 and 7 show the dimensionless total 
size (Eq. 24) and the dimensionless total flow resistance (Eq. 25).  Fig. 6 indicates that 
increasing the prefractal dimension for diameters or the prefractal dimension for lengths 
increases the network's overall size.  

 
  

Fig. 6. Dimensionless total size of network versus the prefractal dimensions (dfD and 
dfL) and the geometric constraints (w=1 (---) and w=2 (__))                              
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The system size is larger when the constraint is the lateral area. However, the 
dimensionless total flow resistance decreases as the prefractal dimension for diameters 
increases, and it increases as the prefractal dimension for lengths increases (Fig. 7). An 
increase in the fluid behavior index also increases dimensionless resistance. 

3.3. Fluid Flow Fluid Through Self-Similar Arrangement of Tubes 

For the system depicted in Fig. 2, Eqs. (39) and (41) are plotted in Figs. 8 and 9. The 
dimensionless total size of tubes increases as the prefractal dimensions (dfD and dfL) 
increase. It is also worth noting that only when the tube diameter's fractal dimension 
exceeds two does the dfL become significant. Regarding the dimensionless flow resistance 
of the system of tubes, the increase in prefractal dimensions (dfD or dfL) raises the total 
dimensionless resistance. Furthermore, the dimensionless resistance to flow increases for 
fluids with a higher fluid behavior index. 

 

Fig. 8. Dimensionless total size of tubes versus the prefractal dimensions (dfD and dfL) 
and the geometric constraints (w=1 (---) and w=2 (__))                              

 

Fig. 7. Dimensionless total flow resistance of network versus the prefractal dimensions 
(dfD and dfL) and the fluid behavior index . 
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Fig. 9. Dimensionless total flow resistance of tubes versus the prefractal dimensions 
(dfD and dfL) and the fluid behavior index . 

Variations in the prefractal dimension of biological systems are often linked to changes in 
the way they operate. The above figures may be useful in understanding why changes in 
the prefractal dimension of biological systems may be connected with changes in the 
system's operation. 

The prevalence of osteoporosis, for example, is related to an increase in prefractal 
dimension [17]. Healthy bones have a prefractal dimension of about 2.60, while severe 
osteoporosis has a prefractal value of around 2.95. This means that a larger prefractal 
dimension results in a larger size of empty spaces (Figs. 6 and 8).  Thus, as the prefractal 
dimension rises, the open space expands, which may contribute to a decrease in structural 
strength, but it's not the only issue. The ability to produce blood cells is also compromised 
(less material, more open gaps), which is also a major concern. 

Understanding other conditions can be aided by a similar perception based on Figs. 6 and 
8. Cardiomyopathy is a condition affecting the cardiac muscle (myocardial). In this case, 
the muscle walls of the heart chambers are gradually wearing down in terms of structure 
and function. It is connected with an increase in prefractal dimension [18] and causes 
difficulty in blood pumping by the heart, resulting in extended intervals between beats 
(heart failure). It is also important to note that a full understanding of the concept of 
prefractal dimension and its determination may be useful for distinguishing hypertrophic 
cardiomyopathy from an athlete's heart, as echocardiography and cardiac magnetic 
resonance fail to discriminate between the two in some circumstances [19]. 

Emphysema is characterized by a reduction in prefractal dimension [20]. Figs. 7 and 9 
show that when the prefractal dimension decreases, the resistance to fluid flow increases. 
In other words, under the same pressure, the airflow is reduced, resulting in shortness of 
breath and fatigue. Low peribronchial emphysema with a prefractal dimension of about 
2.7 is associated with increased mortality risk [20], which corresponds to an increase in 
flow resistance of more than 10% (Fig. 7). 

4. Conclusions 

Length scale-invariance property characterize many natural and manufactured flow 
systems. The evaluation of their size and flow resistance is significant and of importance 
in multi-disciplinary fields. The prefractal theory is appropriated to obtain important 
insights into the design of these systems. Here, we consider flows of power-law fluids 
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(Ostwald-de Waele fluid) through porous tubes, and two different flow systems 
characterized by length scale invariance properties are investigated. First, the highest 
porosity limit of the walls of porous tubes that can be regarded as having an insignificant 
impact on the optimal ratio between the sizes of daughter and parent tubes is investigated. 
Then, a system consisting of Y-shaped tubes – a dendritic flow network - is analyzed. This 
flow system is characterized by a scaling law between the diameters of the parent tube and 
the daughter tubes, and the magnification factor of this law is related to the prefractal 
dimension. Taking as a goal the maximum fluid transport (i.e., minimum flow resistance), 
and assuming the space occupied by the network is a constant, the value of the prefractal 
dimension is determined. Expressions for the total size of a network composed of several 
levels of bifurcating tubes and for its flow resistance can be obtained. 

In addition, a system composed of a bundle of tubes is studied. Tubes with tortuous lengths 
are assumed to exhibit self-similar properties that are scale-independent and statistically 
consistent at all levels. Thus, power laws are used to characterize the distribution of 
diameters and lengths. Expressions for the total size and flow resistance are derived in 
terms of prefractal dimensions. 

In summary, these models, which account for the fluid properties and structural 
characteristics observed in these self-similarity systems, may shed light on an 
understanding of a variety of flow systems, including hydrology, microfluidic media, and 
biological systems. The variation in the prefractal dimension that systems can exhibit with 
the use and with certain illnesses is especially intriguing. A few cases of biological systems 
are briefly examined. 
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