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Several natural and manufactured flow systems exhibit scale-invariance or self-
similarity, despite appearing to be disordered. This study focuses on the laminar
flow of non-Newtonian fluids through self-similar systems of tubes with porous
walls (intrinsic permeability much less than 10-4 m2). Two arrangements of tubes
are discussed: a dendritic flow structure and a bundle of tubes. The size of these
arrangements is described as a function of structural parameters for both

Keywords: straight and tortuous tubes, and the flow resistance is obtained as a function of

structural parameters and fluid properties. Among other findings, it is shown
Flow systems; that the prefractal dimension of dendritic networks for maximum flow access is
Scale-invariance; dependent on the size constraint chosen to design the network. Results also
Self-similarity; show that as the prefractal dimensions of diameters and lengths rise, so does the

Prefractal dimension;
Flow resistance;
Non-newtonian fluids

overall size of the dendritic network and tube bundle system. In contrast, it is
observed that the flow resistance diminishes as the prefractal dimension for
diameters increases, whereas for tortuous tubes the flow resistance increases as
the prefractal dimension for lengths increases. The approaches presented in this
paper have numerous potential applications, including fluxes in biological
systems, microfluidic media, and hydrology.

© 2025 MIM Research Group. All rights reserved.

1. Introduction

Fluid flow through complex networks of pores/tubes is common both in man-made and
natural systems [1-3]. Fluid properties and the geometry through which the fluid circulates
are crucial to establish the characteristics of the flow [3]. Therefore, diffusion coefficients
and viscosities are properties of ample practical interest as well as the internal shape and
structure of flow sites and their connectivity between them. In systems with specific
geometries, the Euclidean dimension is insufficient to properly represent the system,
hence the concept of prefractal was established [4-7]. Thus, for systems that have
statistical self-similarity across a variety of scales, a measure of the complexity of the
lengths/times that characterize these systems is obtained based on the so-called prefractal
dimension. Prefractals are characterized by power laws with non-integer or integer
exponents [4,5]. These scale-invariant systems are ubiquitous in nature and feature
diverse man-made systems.

From a fundamental perspective, fluid flow in permeable media raises interesting
challenges, particularly concerning the prefractal geometry of open space. Several
attempts have been made to explain how the prefractal features of media affect fluid flow
[7-10]. These attempts can be divided into two categories: one related to the flow
represented by conventional flow equations through a prefractal open space, and the other
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to the flow network related to a continuum flow driven by nonconventional (prefractal)
flow equations. A comprehensive review of the recent development of prefractal design of
flow systems is provided by Babadagli [11].

This paper is based on the methodology presented in the articles of Miguel et al. [12,13]
and presents analytical models for two different configurations: one composed of a self-
similar dendritic network of porous tubes, and the other composed of a self-similar
arrangement of porous tubes embedded in a porous material (intrinsic permeability less
than 10-* m?), whose dimensions follow scaling laws. Our study considers non-Newtonian
fluid flows and relies on the power law approach (Ostwald de Waele fluid) to estimate the
variations in the fluid viscosity due to the applied shear rate. Power-law fluids are used in
a variety of applications, including biological flow systems, microfluidic media, and
engineering systems.

2. Theory
2.1. Fluid Flow Through a Tube with Porous Wall

Consider a time-independent laminar flow, axisymmetric through a cylindrical tube with
rigid and impervious wall. According to Navier-Stokes equations, the flow of a Newtonian
fluid is given by;

dp/dz _ 8s,
W o ™

which is known as the Hagen-Poiseuille equation. Here Q is the volumetric flow rate, sris
a shape factor (16/7), D is the diameter, z is a space variable, p is the pressure, and p is the
dynamic viscosity.

Now consider that the tube's wall is made of pores and has constant intrinsic permeability.
Assuming that the exterior pressure is considered constant (i.e., a reference pressure pext
= 0), the permeation flow is not constant due to the tube's inner pressure. Differentiating
Eq. (1) yields;

dQ_ o' dp ]
dz  8ps, dz’ (2)

As the Darcy law governs the creeping fluid flow through the wall, the fluid flow variation
along the tube is given by;

@ LT (3)

where Kk is the intrinsic permeability and 1 is the wall thickness. Substitution of Eq. (3) into
Eq. (2) yields;

d’p 8rms.k

o =0 4
iz DI P (4)

which has a solution of the form p(z)= aiexp(-bz)+a: exp(bz), where ai, az and b are
constants [14]. Middleman [15] and Vassilieff [16] noticed that the pressure with respect
to the axial position experiences a slight curve. Since the properties of the fluid and the
geometric characteristics of the tube are constant, both the above solution or a parabolic
pressure solution of type p(z)=ci+cz2 z+c3z? can be applied [15]. Accounting for the
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continuity equation, and that dp/dz=8s,uQ, /D* and at inlet the pressure is pin, the

pressure variation along the length of the tube can be written as;

8s;1Q, 3k (p,pD*-64uLQ,
p(2)~ p, = —tidn g 14 K [ PupD ALY, |, (5)
oD 2Q,\ 3D’ —64ukL
The pressure difference between the outlet and the inlet of the tube is;
8s,uLQ, |, 3Lk ( p,,oD*-64uLQ,
P = P = — | 1+ o — % (6)
pD 2Q, | 3D°—64ukL

Note that the Hagen-Poiseuille equation is obtained when the intrinsic permeability of the
tube walls is zero.

(@ (b)
Fig. 1. The base system consists of a tube that splits into two tubes (a) to form a
network of dendritic tubes (b)

2.2. Flow through Bifurcated Tubes of a Newtonian Fluid

Consider a symmetric configuration composed of a tube that bifurcates into two daughter
tubes (Fig. 1a). Defining the flow resistance as the ratio between fluid flow and pressure
difference, the total flow resistance of the configuration of tubes is [6];

1
R= Rm +E Rd (7)
with;
S 3L k( p,pD?-64 )
Ro = fg‘:_m {“ 2L'Qn (pg/[)ﬁ m_64ﬂtm? ] ﬂ (8)
m in m H I-rn
S, uL - pDI-32uL,(Q, -
Rd — fﬂA d 1+ 3Ldk pm,dp d3 H d(Q|Zn Qk) (9)
Dy Qn.-Q) 3D: —64ukL>

where the subscripts m and d mean parent and daughter tubes, respectively. The total size
of this bifurcated system is given by;
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S =s,D"L, +2s.D'L, (10)

where w takes a value of 1 or 2 for the lateral area and volume, respectively, and ss is a
shape factor equal to & for the lateral area and to ©/4 for the volume. Consider that this
bifurcated flow system is repeated over multiple spatial scales (Fig. 1b). Since self-
similarity is a characterizing property, two crucial characteristics of the flow network are
observed: the bifurcation of tubes and the decrease in the diameter of tubes (and cross-
sectional area) from one level to the next in the tree. This can be approached by;

D,=a’'D, j=12,.n (11)

where the scaling factor for diameters or magnification factor o (a constant for the
dendritic network) can be related to the number of bifurcating tubes n and the prefractal
dimension draccording to;

d (12)

where ¢, is a constant. This power-law relationship ensures that the design of the tubes
appears the same across different length scales of observation. A measure of the change of
n can be obtained by differentiating Eq. (11) with respect to Dj;

dn db,
=—d, —* (13)

n o 'ip,
This result shows that n and Dj vary in opposite ways, that is, when one of them increases

the other decreases. As a result, a self-similar dendritic network of tubes is composed of a
few large-diameter tubes and many small-diameter tubes.

The diameter of the tubes that comprise each bifurcation level is related to the flow
resistance. For a minimum flow resistance under space constraint, the following
relationship must be verified [6];

R oD, R
- +—=0
oD, oD, D,

(14)

with the 0Dm/0D4a obtained from the space constraint given by Eq. (10). According to Egs.
(7), (10), and (14), the relationship between daughter and parent diameters for minimum
flow resistance is given by;

1
2
[28672(;:ka“)2 —3552,uKL% D +36D¢ + gé” P, LmkD;} (64ukL; —3D3)

D 2
Zd in : 2 4w (]_ 5)
D, [ 40960(4KL})* —35524KL; D] +36D5 + 27 p(Q,, — Q) Py s LiKD] |2 (64 kL%, —3D)

Eq. (14) is implicit and needs to be solved iteratively. For k<10* m? the previous
equation's k-dependent terms are significantly less than the other terms and can be
ignored (refer to the results of section 3.1). Then, the previous equation can be expressed
as;
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D, =

—_4a _ 2 4+w

3 (16)
Using a similar process and replacing D by L in Eq. (14), the optimal length ratio (i.e., length
ratio for minimum flow resistance) is given by;

L, W
a4 — 2 4+w 17
. (17)

2.3. Flow through Bifurcated Tubes of a non-Newtonian Fluid

Because of its effectiveness and simplicity, we use the Hagen-Poiseuille equation (laminar
flow) and a power law to account for variations in fluid viscosity caused by the applied
shear rate. The Ostwald de Waele power law is a well-known model because a wide variety
of problems were solved based on this approach. For k<<10-* m?, the flow resistance of a
single tube can be obtained as;

23x+4 [SX +1Jx KL
o 4, - (18)

- 3+l
D

where Q is the volumetric flow rate, K is the consistency of fluid, and y is the fluid behavior
index (y<1 the fluid is named pseudoplastic or shear thinning, ¥>1 the fluid is called
dilatant or shear thickening, and for y=1 the Newtonian fluid is obtained).

The resistance of a system composed of a parent tube that branches into 2 symmetric
daughter tubes is;

R (3X+1T KQx—l |:23x+4 Lm D21+4 Ld :|

4X 7 g 3L

(19)

Dy

Using a methodology akin to that described in the preceding section, the optimal size ratios
for a tube that splits into two tubes (Fig. 1a) are;

-(x+1)
& — 23xfw+l (20)
Dm
L 3y2-3y-2
—d — 2 3y +w+l (21)
Lm

Note that when y=1 the allometric relations for Newtonian fluids (Egs. 16 and 17) are
obtained.

2.3.1 Geometric Characteristics for Minimum Flow Resistance and Prefractal Dimension

The ratio of diameters and lengths for the least resistance of fluid flow under surface area
and volume constraints is illustrated by the allometric Egs. (20) and (21). Egs. (11), (12),
(20) and (21) provide the following definition of the prefractal dimension;

C3y+w+l

d
© x+1

(22)
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3y+w+l

:2+31—3;{2 (23)

fL

According to these equations, both the prefractal dimension for diameters (dm) and lengths
(ds) depend on the constraints of the system and the fluid behavior index. For example, dm
for a Newtonian fluid is 2.5 or 3.0, depending on whether the constraint is the tube's lateral
area or volume, respectively.

The total size and the total resistance of the bifurcated system of tubes (Egs. 10 and 19, Fig.
1a) can be written in terms of prefractal dimensions as;

1,l,i
S=sDyL, [1+2 do ] (24)
%1 x 31+4+M—i
RoKQT L (Bl [y e, 25)
" D, 4y

For example, for a network composed of j-levels of bifurcated tubes (Fig. 1b), the total size

of tubes is given by;
w j+1
. ZH[DIJ
LD,

w1 j+1
1 { 1—[2%““]
i :
S:ZSSZIDiWLi :SngvLo—WZSngvLoﬁ (26)
i=0 1- 2|_1{D1j 1-2 dp dff
L, ( D,

where dm and da. are given by Egs. (22) and (23), respectively.
2.4. Fluid Flow Through Self-Similar Arrangement of Tubes

Consider a system composed of tubes with varied cross-sectional diameters (Fig. 2). Let L
be the length of the material which has a self-similar distribution of tubes with diameters
ranging from minimum diameters Dmin and maximum diameters Dmax (i.€., Dmin<D< Dmax
and Dmin<<< Dmax). Using an approach similar to those shown in the previous section (Eq.
11 and 12), we can write [4,12,13];

D = /Dy (27)

with the scaling factor for diameters given by;

1

f=N(D) (28)

where N is the number of tubes having a diameter equal to or greater than D.
Differentiating this equation yields;

dN(=D) dD

NGD)  UPD_ (29)

This equation, like Eq. (13), shows that the number of tubes in the flow system reduces as
the diameter increases. As a consequence, a self-similar arrangement of tubes consists of
many small-diameter tubes and a small number of larger-diameter tubes [4].
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Fig. 2. Self-similar arrangement of tubes that are independent of one another

2.4.1 Size and Fluid Flow Resistance of An Arrangement of Straight Tubes
Consider that the arrangement of tubes in the Fig. 2 is composed of straight-length tubes.
Taking into account Egs. (27) to (29), the total volume of the tubes is given by;

Dinax Dinax o oy
s=[,"sD’L(dN(2 D))= [ ™'s,L.dxD;5 "D* *"dD (30)

'min

Integrating the previous equation yields;

Ss Lcd fD Dr?'nax D i >l
S = 1— min
3-d D Dmax (3 1)

Using a similar process, for k<<10-4 m? the total flow resistance of the arrangement of tubes
is given by;
1 2(3-dp)+l
b C,Ap“d,Dpe D 7
Q=[,"~

D 1

‘min —

Lz

and the flow resistance is;

dD (32)

2L (430D

R= QL - Cal ReG Dy
1 vt ) 1 wag 2 ) (33)
Zczde D3+” 1_[DminJ * Zcﬂtde DS+” 1_[Dminj ‘
1(4_de)+1 h max ,},’(4—de)+1 e Dmax
with;
x(x-1) -
ot (37( +1] 2 K2t
4y (34)
Cr = 2-3001) 1L
2 % p2—x
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22(4*3){) szfx

x
nz_XD:;x[sx +1j K (35)
4y

Reyr =

where Rewmr is the Metzner-Reed Reynolds number, and S and R are the total size of the
tubes and the total resistance of the tubes, respectively.

2.4.2 Size and Fluid Flow Resistance of An Arrangement of Tortuous Tubes

Tortuous describes the sinuosity of the tube in space, and tortuosity can be defined as the
ratio of tube curve length over the line distance between the two ends. Consider that the
tubes' length is tortuous rather than straight (L>Lc). Tube diameters satisfy Eqgs. (27) and
(28), whereas the following scaling equations describe tube lengths that follow self-
similarity [13];

L=6L, (36)

with the scaling factor given by;

Q(LR] (37)

C

where ds. is the prefractal dimension of the tortuous tubes. In this case, the total volume of
the tortuous tubes is given by;

Drnax dy
s=[ "slL"dpD

'min

dtD*1D3*de*dtLdD (38)

max
After integration, the above equation yields;

S Ld,Ld D3—d,L - 4-dp—dy
g D = max 1- Dmm (39)
4—d,—d, D

max

The resistance can be obtained in the same manner as described in the preceding section.
Assuming that the intrinsic permeability is much less than 10-4 m?;

1 2680)dn
Dnx  C Aplde D:ww;?lD i
Q=f, Tw 4D (40)
L*

and the total flow resistance is;

2L (30D

— QX?lLC — CR LC Re:ﬂ;?l Dmax b
N W’ d 1) (41)
dy 4-d [ dy A-dp+—
Zczde D3+7 1_[ Dmin j “ ZCZdTD D3+7 l—[ Dmin ] ‘
Z(4 er)+de D 1(4_dﬂ3)+de Dinax

It should be noted that for tubes of non-tortuous length, the prefractal dimension ds. is 1,
and Egs. (31) and (33) are obtained again.
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3. Results and Discussion

3.1. Fluid Flow in Porous Wall Bifurcated Tubes Designed with Minimum Flow
Resistance

Fig. 3 illustrates how the ratio of the daughter tube to the parent-daughter tube diameters
(Fig. 1a), for minimum flow resistance, varies with the k, w, and La/Lm. Regardless of the
intrinsic permeability of the walls and the ratio between the lengths of the daughter tubes
and the parent tube, we may conclude that Da/Dm depends on w which represents the type
of space constraint imposed on the system. Additionally, for an intrinsic permeability of
less than 10-* m?, Da/Dm remains independent of La/Lm. Then, the ratio of diameters that is
only dependent on the constraint w is given by Da/Dm=2%/*v (for k<10-4 m2).
Additionally, it should be mentioned that for volume constraint (w=2) the ratio of the
diameters Da/Dm is larger than for lateral area constraint (w=1).

0.80
w=2
0.76
w=1
£
[m)
~
o
[m]
0.72
0.68
1.E11  1.E10 1.E-09 1.E-08 1.E07 1.E06 1.E-065 1.E-04 1.E03

k (m?)

Fig. 3. Optimal ratio between the diameters of daughter and parent tubes versus the
intrinsic permeability of porous wall (Eq. 15)

1.0
,_.EOS w=2 _ ‘,: -
5 w=1 - ™
- - -

E | _a-=- -t .-

[a) T w=2 .- -
3 06 -
0™ ==

0.4

0.5 0.7 0.9 1.1 1.3
x

Fig. 4. Ratios between the diameters of daughter and parent tubes Da/Dm (—, Eq. 20)
and between the lengths of daughter and parent tubes La/Lm (---, Eq. 21) versus fluid
behavior index y and the geometric constraint w
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e
Vd
rd
3 w=2 e i
. =~ —
o - » 7
o w=1 -
a - -~
'Ci_ —_ - - -
-— -
2 - - -_— -
W — =
— I
wel ——— 7
1
0.5 0.6 0.7 0.8 0.9 1.0 11
L

Fig. 5. Prefractal dimension for diameters dm (—, Eq. 22 ) and lengths da. (---, Eq. 23)
versus fluid behavior index y and the geometric constraint w

For branching systems designed with minimum flow resistance, Figs. 4 and 5 depict the
variation of the size ratios and the prefractal dimensions with respect to the fluid behavior
index yx and the geometric factor w. Fig. 4 indicates that the diameter and length ratios are
greater for volume constraint than lateral area constraint. Besides, the length ratio grows
with the fluid behavior index, but the diameter ratio remains relatively constant. The same
tendency of variation with w and ¢ recorded for the size ratios occurs for the prefractal
dimensions dm and da. (Fig. 5).

3.2. Fluid Flow Through a Dendritic Network of Tubes

Consider now the design's base unit for dendritic flow networks, which consists of a parent
tube that bifurcates into two daughter tubes. Figs. 6 and 7 show the dimensionless total
size (Eq. 24) and the dimensionless total flow resistance (Eq. 25). Fig. 6 indicates that
increasing the prefractal dimension for diameters or the prefractal dimension for lengths
increases the network's overall size.

Fig. 6. Dimensionless total size of network versus the prefractal dimensions (dmand
dn) and the geometric constraints (w=1 (---) and w=2 (-))
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1.4E+03

1.2E+03

1.0E+03

8.0E+02

:, B.0E+02

4.0E+02

TR/KQEs{L/ D)

=06 4 _.

1=0.6 dlL""I.ﬂ

0.0E+00
10 15 20 25 3.0

Fig. 7. Dimensionless total flow resistance of network versus the prefractal dimensions
(dmand da) and the fluid behavior index .

The system size is larger when the constraint is the lateral area. However, the
dimensionless total flow resistance decreases as the prefractal dimension for diameters
increases, and it increases as the prefractal dimension for lengths increases (Fig. 7). An
increase in the fluid behavior index also increases dimensionless resistance.

3.3. Fluid Flow Fluid Through Self-Similar Arrangement of Tubes

For the system depicted in Fig. 2, Egs. (39) and (41) are plotted in Figs. 8 and 9. The
dimensionless total size of tubes increases as the prefractal dimensions (dm and dn)
increase. It is also worth noting that only when the tube diameter's fractal dimension
exceeds two does the da. become significant. Regarding the dimensionless flow resistance
of the system of tubes, the increase in prefractal dimensions (dfp or dfi.) raises the total
dimensionless resistance. Furthermore, the dimensionless resistance to flow increases for
fluids with a higher fluid behavior index.

1.E+02

=
“p LEs01
=
-
5
3
o
o' 1E+00
—
w
1.E-01
1.0 15 20 25 30
de

Fig. 8. Dimensionless total size of tubes versus the prefractal dimensions (dmand ds.)
and the geometric constraints (w=1 (---) and w=2 (-))

2263



Miguel / Research on Engineering Structures & Materials 11(5) (2025) 2253-2266

3ediLizyr-1
R, Dy QAT L
o

-

1.0 15 20 2.5 3.0

de

Fig. 9. Dimensionless total flow resistance of tubes versus the prefractal dimensions
(dmand dn) and the fluid behavior index .

Variations in the prefractal dimension of biological systems are often linked to changes in
the way they operate. The above figures may be useful in understanding why changes in
the prefractal dimension of biological systems may be connected with changes in the
system's operation.

The prevalence of osteoporosis, for example, is related to an increase in prefractal
dimension [17]. Healthy bones have a prefractal dimension of about 2.60, while severe
osteoporosis has a prefractal value of around 2.95. This means that a larger prefractal
dimension results in a larger size of empty spaces (Figs. 6 and 8). Thus, as the prefractal
dimension rises, the open space expands, which may contribute to a decrease in structural
strength, but it's not the only issue. The ability to produce blood cells is also compromised
(less material, more open gaps), which is also a major concern.

Understanding other conditions can be aided by a similar perception based on Figs. 6 and
8. Cardiomyopathy is a condition affecting the cardiac muscle (myocardial). In this case,
the muscle walls of the heart chambers are gradually wearing down in terms of structure
and function. It is connected with an increase in prefractal dimension [18] and causes
difficulty in blood pumping by the heart, resulting in extended intervals between beats
(heart failure). It is also important to note that a full understanding of the concept of
prefractal dimension and its determination may be useful for distinguishing hypertrophic
cardiomyopathy from an athlete's heart, as echocardiography and cardiac magnetic
resonance fail to discriminate between the two in some circumstances [19].

Emphysema is characterized by a reduction in prefractal dimension [20]. Figs. 7 and 9
show that when the prefractal dimension decreases, the resistance to fluid flow increases.
In other words, under the same pressure, the airflow is reduced, resulting in shortness of
breath and fatigue. Low peribronchial emphysema with a prefractal dimension of about
2.7 is associated with increased mortality risk [20], which corresponds to an increase in
flow resistance of more than 10% (Fig. 7).

4. Conclusions

Length scale-invariance property characterize many natural and manufactured flow
systems. The evaluation of their size and flow resistance is significant and of importance
in multi-disciplinary fields. The prefractal theory is appropriated to obtain important
insights into the design of these systems. Here, we consider flows of power-law fluids
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(Ostwald-de Waele fluid) through porous tubes, and two different flow systems
characterized by length scale invariance properties are investigated. First, the highest
porosity limit of the walls of porous tubes that can be regarded as having an insignificant
impact on the optimal ratio between the sizes of daughter and parent tubes is investigated.
Then, a system consisting of Y-shaped tubes - a dendritic flow network - is analyzed. This
flow system is characterized by a scaling law between the diameters of the parent tube and
the daughter tubes, and the magnification factor of this law is related to the prefractal
dimension. Taking as a goal the maximum fluid transport (i.e., minimum flow resistance),
and assuming the space occupied by the network is a constant, the value of the prefractal
dimension is determined. Expressions for the total size of a network composed of several
levels of bifurcating tubes and for its flow resistance can be obtained.

In addition, a system composed of a bundle of tubes is studied. Tubes with tortuous lengths
are assumed to exhibit self-similar properties that are scale-independent and statistically
consistent at all levels. Thus, power laws are used to characterize the distribution of
diameters and lengths. Expressions for the total size and flow resistance are derived in
terms of prefractal dimensions.

In summary, these models, which account for the fluid properties and structural
characteristics observed in these self-similarity systems, may shed light on an
understanding of a variety of flow systems, including hydrology, microfluidic media, and
biological systems. The variation in the prefractal dimension that systems can exhibit with
the use and with certain illnesses is especially intriguing. A few cases of biological systems
are briefly examined.
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