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Article Info  Abstract 

Article History:  Nickel super alloys have remarkable thermo mechanical capabilities, making them 
important in industries such as nuclear, chemical, petrochemical, and aerospace. 
Conversely its difficult machining and cause the poor surface finish and tool wear 
and so on. This study proposes optimizing machining parameters of Inconel 825 
such as cutting speed, feed, and depth of cut towards the responses such as surface 
roughness, tool flank wear, and cutting force. Optimization of process parameter 
for this study; the Taguchi Design of Experiments, Grey Relational Analysis, Fuzzy 
Logic, and Principal Component Analysis (PCA) were used. Experimental were 
conducted using an L9 orthogonal array and outcomes were evaluated using 
ANOVA towards the most influencing process parameter. Form the results 
indicated that the cutting is the most influencing compare with the other 
parameters. The optimal parameters for turning Inconel 825 were found to be 50 
m/min cutting speed, 0.2 mm/rev feed rate, and 0.6 mm depth of cut towards the 
machining responses. This results conduits towards the machining efficiency of 
Inconel 825 for industrial applications. 
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1. Introduction 

Nickel based super alloy were most essential materials in contemporary industrial owing to their 
superior mechanical properties and corrosion resistance at higher temperature [1]. Due to this 
properties and it is most suitable for many application such as aerospace, petrochemical, nuclear 
power and chemical industries[2].  Amongst these Inconel 825 has exceptional properties such as 
corrosion resistance and thermal stability [3]. It contains nickel, chromium, iron, molybdenum, 
copper and titanium enhancing the resistance to oxidation. However, while machining of Inconel 
825 is difficult in challenges in industrial environments [4]. Due to deprived machinability and 
often outcomes in higher cutting force, irregular surface and tool wear happen.  While Inconel 825 
is extoled for its routine in difficult operating environments; which remain a challenging such as 
higher work hardening rate, lower thermal conductivity, poor chip control and wear [5]. Hence 
optimization is required for better surface roughness, minimum tool degradation and reduction in 
operational cost [6]. These problems combine reduce the production rate but increase the 
manufacturing cost. Consequently, an optimization of machining parameters is most significant 
towards improve the machinability, reduction in surface defects and better tool life [7]  . Thakur et 
al. examined tool wear in Inconel 825 turning and discovered that flank wear increases with greater 
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cutting speeds and also studied on Inconel 718 and found that coated tools performs with respect 
to the cutting and fee force [8] . 

Senthilkumaar et al investigated surface roughness in relation to feed rate and discovered that 
larger feed rates, as well as lower speeds and deeper cuts, resulted in a higher material removal 
rate and surface polish [9].  Rajyalakshmi and Ramaiah studied the combination of Grey Relational 
Analysis (GRA) and Taguchi for WEDM optimization of Inconel 825, which shows that the 
improvement has been observed in machining [10]. Even though, the fuzzy logic results were 
autonomously and latest studies improvements of GRA in ambiguous machining conditions [11] . 
To overcome this principal compound analysis is the better choice towards the variable influencing 
machining responses [12] . Asiltürk and Akkus reported that the better outcome such as surface 
roughness and material removal rate in turning.  In Inconel 738 and Inconel 718, PCA optimization 
were used for better performance in machining but these not scientifically used to Inconel 825 [13].   
Lila Imani et al. examined both the Artificial Neural Networks (ANN) and Genetic Algorithms (GA) 
in Inconel 738; the outcome inveterate the ANN but the impediment in ANN and also deficiency in 
physical interpretability [14]. The traditional methods such as response surface methodology, GA 
and ANN were used in optimization towards turning. But these techniques require maximum 
experimentation and also need huge data. Taguchi combined with multi objective optimization had 
accepted owing to the accuracy and woks in limited experimental data’s and produce better results 
[15].   

Novelty of this research work was cohesive use of Taguchi Design of Experiments, Grey Fussy and 
PCA for optimization of machining parameters of Inconel 825 with limited earlier study in this 
background. Whereas the previous studies reported that single approaches, in this work 
distinctively combines these three approaches for multi response optimization. This cohesive 
approach enhances the prediction correctness for machining performances in respect with the 
machining parameters such as cutting speed, feed rate and depth of cut. These novel and effective 
findings improve the machinability of Inconel 825 while also facilitating the way for further 
materials. 

2. Materials and Methods  

Inconel 825, a nickel-based super alloy and  widely employed in a range of industries such as 
aerospace and automobile, etc., This study focuses on turning of Inconel 825 and optimization 
techniques were employed. Machined components will has 3mm layer of the outer surface been 
pre-machined to ensure excellent machining quality. The raw material consisted of bars 30 mm in 
diameter and 80 mm in length. It has largely composed of nickel, iron, and chromium. Fig. 1, shows 
the machined Inconel 825.  

 

Fig. 1. Inconel 825 

Based on previous research, three cutting parameters such as cutting speed, feed rate, and depth 
of cut were selected for this experimental work [4, 16, 17]. The CNC Super Jobber 500 LM machine, 
which has a 10 KW motor drive and an operating range of 30 to 300 rpm, was chosen due to its low. 
The trials were planned using Taguchi’s relational analysis. An L9 orthogonal array with 3 variables 
at three levels was used for optimization results. MINITAB 16 software was used for the Design of 
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Experiments, which generated the L9 orthogonal array and provided a wide range of potential 
cutting settings [18]. Table 1 presents the cutting parameter and their range. 

Table 1. Input process parameters and level 

Parameter Unit 
Level 

1 2 3 

Cutting Speed m/min 50 70 90 
Depth of cut mm 0.2 0.4 0.6 

Feed rate mm/rev 0.1 0.2 0.3 

3. Results and Discussions 

3.1 Taguchi Analysis 

Table 2 denotes the Taguchi L9 orthogonal array; the three-input parameter used in this study as 
cutting speed, feed rate and depth of cut and their three different level. The identifications of 
individual and interaction of the input parameter; which succeeding analysis of surface roughness, 
cutting force and flank wear in machining i.e., turning of Inconel 825.  

Table 2. Design of experiments (DoE) – L9 results 

Run 
Order 

Cutting 
Speed 

Depth 
of Cut 

Feed 
Rate 

Surface 
Roughnes

s (µm) 

Cutting 
Force 

(N) 

Flank 
wear 
(µm) 

S-N 
Ratio 

Std. 
Dev. 

Mean 

1 50 0.2 0.1 2.54 428.36 152.63 -3.21 215.98 194.51 

2 50 0.4 0.2 4.15 449.54 172.65 -2.77 224.88 208.78 

3 50 0.6 0.3 3.75 444.25 176.28 -2.63 221.97 208.09 

4 70 0.2 0.2 4.23 461.62 189.69 -2.45 230.05 218.51 

5 70 0.4 0.3 4.05 463.52 191.25 -2.44 231.04 219.61 

6 70 0.6 0.1 3.15 470.67 196.25 -2.44 234.94 223.36 

7 90 0.2 0.3 4.94 490.57 220.39 -2.02 243.33 238.63 

8 90 0.4 0.1 3.59 486.54 215.36 -2.14 242.08 235.16 

9 90 0.6 0.2 4.48 475.67 203.57 -2.25 236.54 227.91 
 

 Table 3. Analysis of variance (ANOVA) 

 

Source DF Contribution Seq SS Adj SS Adj MS F P 
S-N Ratio        

Cutting Speed 2 79.41% 0.80834 0.80834 0.40417 7.91 0.011 
Depth of Cut 2 2.49% 0.02534 0.02534 0.01267 0.25 0.080 

Feed Rate 2 8.06% 0.08204 0.08204 0.04102 0.80 0.055 
Residual Error 2 10.04% 0.10223 0.10223 0.05111   

Total 8 100.00% 1.01795     
Means        

Cutting Speed 2 87.09% 1365.03 1365.03 682.51 9.47 0.009 
Depth of Cut 2 1.55% 24.26 24.26 12.13 0.17 0.085 

Feed Rate 2 2.17% 33.96 33.96 16.98 0.24 0.080 
Residual Error 2 9.20% 144.14 144.14 72.07   

Total 8 100.00% 1567.39     
Std. Dev.        

Cutting Speed 2 87.89% 585.513 585.513 292.757 9.14 0.009 
Depth of Cut 2 1.87% 12.486 12.486 6.243 0.19 0.083 

Feed Rate 2 0.62% 4.132 4.132 2.066 0.06 0.093 
Residual Error 2 9.62% 64.086 64.086 32.043   

Total 8 100.00% 666.217     
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It designates the signal to noise ratio, standard deviation and mean values of nine readings; which 
supporting a complete estimation of process inconsistency and stability [19].  The results deliver 
the statistical analysis which including ANOVA and identify the furthermost influencing input 
parameter for machinability of Inconel 825.Table 3 reported that the ANOVA outcomes for the 
responses established on the signal to noise ratio (S-N ratio), standard deviation and mean. The 
results inferred that the cutting speed is the most influencing input process parameter among the 
other two; the contribution of the S-N ratio, standard deviation and mean are 79.41%, 87.09% and 
87.89% respectively. The influences of depth of cut and feed rate are suggestively minimum and 
indicated the lower impact on the responses. It is calculated through the delta values; which is the 
difference in the lowest and highest performance for all the input parameter. Form the table clearly 
indicates that the cutting speed is most influencing parameter for these three measures and 
followed by feed rate and depth of cut. Table 4 and Fig. 2, confirm that the rankings for the S-N ratio, 
standard deviation, and mean are A1B3C2, A1B3C2, and A1B2C3, respectively.  This ranking 
emphasizes the ANOVA outcomes; additional confirmation for cutting speed is the most influences 
on machining responses during the turning of Inconel 825. 

Table 4. Ranking for response 

 S-N Ratio Means Standard deviation 

Level 
Cutting 
Speed 

Depth 
of Cut 

Feed 
Rate 

Cutting 
Speed 

Depth 
of Cut 

Feed 
Rate 

Cutting 
Speed 

Depth of 
Cut 

Feed 
Rate 

1 -2.869 -2.558 -2.597 203.8 217.2 217.7 220.9 229.8 231.0 
2 -2.443 -2.451 -2.491 220.5 221.2 218.4 232.0 232.7 230.5 
3 -2.139 -2.441 -2.363 233.9 219.8 222.1 240.6 231.1 232.1 

Delta 0.731 0.117 0.233 30.1 4.0 4.4 19.7 2.9 1.6 
Rank 1 3 2 1 3 2 1 2 3 

 

  

 

Fig. 2. Residual Analysis (a) S-N Ratio, (b) Means, and (c) standard deviation 

These graphs are employed to authenticate the appropriateness of the Taguchi through the 
residual distribution.  The outlines in the graph recommend that the residuals are follows the 
normal trend but randomly distributed; which indicates that the experimental findings are fits with 
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the model and the designated parameter are statistically momentous [20]. It confirms the 
consistency of the experimental data and inference obtained from the Taguchi and ANOVA studies 
towards the turning of Inconel 825. 

3.2 Results of Grey Relational Analysis 

Grey relational analysis is often utilized in multi-response optimization situations.  This method is 
based on the relationship between sequences, specifically their difference or similarity.  This 
transforms multiple performances into a single grey relation grade for comparison and 
optimization. For larger the better as presented in Eq. (1). 

𝑥𝑖
∗(𝑘) =  

𝑥𝑖(𝑘) − 𝑚𝑖𝑛 𝑥𝑖 (𝑘)

𝑚𝑎𝑥 𝑥𝑖 (𝑘) −  𝑚𝑖𝑛 𝑥𝑖 (𝑘)
 (1) 

Where, xi(k): Original value of the kth response for the ith experiment, xi∗(k): Normalized value, 

min xi(k): Minimum value of the kth response, max xi(k): Maximum value of the kth response. 
When a lower value is better as shown in Eq. (2). 

𝑥𝑖
∗(𝑘) =  

𝑚𝑎𝑥 𝑥𝑖 (𝑘) −  𝑥𝑖(𝑘)

𝑚𝑎𝑥 𝑥𝑖 (𝑘) −  𝑚𝑖𝑛 𝑥𝑖 (𝑘)
 (2) 

The original sequence can be normalized by dividing all values by the series' first value if there is 
a target value to be reached. The following is an expression for the grey relational coefficient and 
can be written and given in Eq. (3).  

𝜁𝑖(𝑘) =  
𝛥𝑚𝑖𝑛 + 𝜁𝛥𝑚𝑎𝑥

𝛥𝑖(𝑘) + 𝜁𝛥𝑚𝑎𝑥
 (3) 

Where, ξi(k): Grey Relational Coefficient (GRC) for the ith experiment and kth response, Δi(k) - 
∣x0∗(k)−xi∗(k)∣: Absolute difference between the ideal normalized value and the actual normalized 
value, Δmin: Minimum of all Δi(k) values, Δmax: Maximum of all Δi(k) values, ζ:  Distinguishing 
coefficient. The GRC indicates how close a particular experimental result is to the ideal normalized 
result. The grey relational grade is can be written as and given in Eq. (4). 

𝛾𝑖 =  
1

𝑛
∑ 𝜁𝑖(𝑘)

𝑛

𝑘=1

  (4) 

where, γi: Grey Relational Grade (GRG) for the ith experiment, n: Total number of performance 
characteristics, ξi(k): Grey Relational Coefficient for the kth response. 

The GRG can also define as the weighted or unweighted mean of the GRCs for all the outcomes. It 
also supplies a single value on behalf of whole performance for multi objective optimization. The 
degree of influence that the comparison sequence can have on the reference sequence is shown by 
the grey relationship grade. The grey relational grade for the reference and comparison sequences 
would be higher than the other grey relational grades if the comparison sequence is considered to 
be more significant than the others [21, 22]. Table 5 shows the Sequence of grey relational analysis. 

It inferred that the responses variation with respect to the cutting speed, feed rate, and depth of 
cut. Particularly, the higher cutting speed results in higher cutting forces and tool wear and also 
poor machinability of Inconel 825. The S-N ratio and standard deviation are providing the process 
stability and response consistency which supports and succeeding ANOVA and multi response 
optimization studies. Based on the observation, out of the 27 trials, the sixth trial ran is the ideal 
one. The maximum value of GRG is found to be 0.8721 for the input conditions. The optimal 
conditions for cutting at 50 m/min, 0.2 mm/rev feed rate, and 0.6 mm depth of cut which produced 
3.52 µm surface roughness, 430.26 N cutting force, and 150.84 µm flank wear. A comparison 
sequence's grey relational grade associated with a reference would be greater than the further grey 
relational grade if that reference is deemed to be more essential than the others [23]. Fig. 3, shows 
the residual analysis for the outcomes such as flank wear, surface roughness and cutting force. 
These graphs are important in confirming the assumptions of randomness and normality in the 
experimental readings. It is follow the normal pattern and consistently distributed and also 
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confirming noise in the random system [20]. This also support the statistical reliability of the model 
used in this work and confirms that the input process parameters with respect to the responses. 
Form figure confirm that the Taguchi are valid and the outcomes are reliable for decision making.  

Table 5. Sequence of grey relational analysis 

 

Sl. 
No 

Cutting 
Speed 

(m/min) 

Depth 
of Cut 
(mm) 

Feed Rate 
(mm/rev) 

SR 
(µm) 

Cutting 
Force 

(N) 

Flank 
wear 
(µm) 

Grey Relational Coefficient 
(GRC) 

Grey 
Relational 

Grade 
(GRG) 

Rank 

Surface 
roughness 

Cutting 
force 

Flank 
wear 

1 50 0.2 0.1 2.54 428.36 152.63 0.5104 0.6666 0.904 0.6936 4 

2 50 0.4 0.1 2.62 456.25 168.34 0.4881 0.582 0.8011 0.6238 10 

3 50 0.6 0.1 2.86 480.61 175.06 0.7975 0.4182 1 0.7386 3 

4 50 0.2 0.2 3.84 440.34 162.58 0.4343 0.7821 0.8206 0.679 5 

5 50 0.4 0.2 4.15 449.54 172.65 0.5481 0.6524 0.8025 0.6677 7 

6 50 0.6 0.2 3.52 430.26 150.84 0.7206 1 0.8957 0.8721 1 

7 50 0.2 0.3 4.28 445.35 170.67 0.4038 0.7057 0.7642 0.6246 9 

8 50 0.4 0.3 3.95 435.58 164.52 0.4589 0.8718 0.7028 0.6779 6 

9 50 0.6 0.3 3.75 444.25 176.28 1 0.7212 0.829 0.8501 2 

10 70 0.2 0.1 2.85 454.64 185.36 0.4248 0.5975 0.5385 0.5203 13 

11 70 0.4 0.1 2.96 462.38 190.54 0.4739 0.5298 0.5289 0.5108 15 

12 70 0.6 0.1 3.15 470.67 196.25 0.8811 0.4725 0.5623 0.6386 8 

13 70 0.2 0.2 4.23 461.62 189.69 0.4001 0.5358 0.5052 0.4803 17 

14 70 0.4 0.2 4.64 472.64 198.57 0.4495 0.4606 0.5018 0.4706 16 

15 70 0.6 0.2 4.45 458.38 180.69 0.6514 0.5627 0.5732 0.5958 11 

16 70 0.2 0.3 4.56 475.26 201.35 0.356 0.4457 0.5073 0.4363 21 

17 70 0.4 0.3 4.05 463.52 191.25 0.4025 0.5211 0.4704 0.4647 19 

18 70 0.6 0.3 3.92 471.36 199.65 0.7095 0.4682 0.4997 0.5592 14 

19 90 0.2 0.1 3.46 495.25 218.62 0.3711 0.3577 0.3711 0.3666 25 

20 90 0.4 0.1 3.59 486.54 215.36 0.4322 0.3914 0.3671 0.3969 23 

21 90 0.6 0.1 3.74 502.64 230.54 0.6548 0.3333 0.4067 0.465 18 

22 90 0.2 0.2 4.31 494.61 219.35 0.3333 0.36 0.3582 0.3505 26 

23 90 0.4 0.2 4.51 501.83 222.36 0.3752 0.3358 0.3524 0.3545 24 

24 90 0.6 0.2 4.48 475.67 203.57 0.5077 0.4435 0.388 0.4464 22 

25 90 0.2 0.3 4.94 490.57 220.39 0.3465 0.375 0.3547 0.3588 27 

26 90 0.4 0.3 4.51 479.31 206.68 0.624 0.4246 0.3333 0.4606 20 

27 90 0.6 0.3 4.54 495.45 205.4 0.9952 0.4782 0.5165 0.5658 12 
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Fig. 3. Residual analysis (a) flank wear, (b) cutting force, and (c) surface roughness 
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3.3 Fuzzy Inference System 

One important artificial intelligence technique that is well-known for its efficiency in managing 
intricate nonlinear systems is fuzzy logic. A more sophisticated and less ambiguous grey-fuzzy 
relational grade can be attained by applying fuzzy logic. The basic ideas behind fuzzy modeling are 
fuzzy set theory and language systems, which are designed to simulate the analysis of a human 
professional. The system for fuzzy inference is shown in Fig. 4. Eqs. (5) - (7) were obtained from 
grey relational analysis. Table 6 shows the regression analysis findings for the responses produced 
by the fuzzy inference system.  Flank wear has the highest R² (89.54%) and adjusted R² (83.27%), 
confirming the prediction of tool wear based on input machining parameters.  The cutting force has 
R² (88.40%) and an adjusted R² (81.44%), while surface roughness has lower R² (75.27%) and 
adjusted R² (60.44%). It confirms that the fuzzy model produces nonlinear interactions between 
the input parameter and responses [24]. Table 7 indicated that the minimum responses obtained 
from the input parameter such as cutting speed as 50, depth of cut as 0.2 and feed rate as 0.1. 

Flank wear (µm) = 98.2 + 1.148 Cutting Speed + 11.2 Depth of Cut + 39.5 Feed Rat (5) 

Surface Roughness (µm)= 1.333 + 0.02142 Cutting Speed - 0.275 Depth of Cut + 5.77 Feed Rate (6) 

Cutting Force (N) = 379.6 + 1.089 Cutting Speed + 8.4 Depth of Cut + 21.3 Feed Rate (7) 

 

 

Fig. 4. Fuzzy inference system 

 

Fig. 5. Optimal Response Analysis 

From Grey-Fuzzy logic optimal responses were arrived and the input parameter such as cutting 
speed as 50 m/min, feed rate as 0.1 mm/rev and depth of cut as 0.2 mm as revealed in Fig. 5. For 
these conditions the anticipated responses of surface roughness, cutting force, flank wear is 2.925 
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µm, 437.84 N, 161.76 µm, respectively. The composite desirability has a high level of optimization 
effectiveness (0.85067). The composite desirability has a high optimization effectiveness of 
0.85067. This result demonstrates that the indicated input parameter drastically improved the 
Inconel 825 machining effectiveness. 

Table 6. Response 

Responses R2 R2(adj) 

Flank wear 89.54% 83.27% 

Surface Roughness  75.27% 60.44% 

Cutting Force  88.40% 81.44% 
 

Table 7. Solution 

Cutting Speed 50 
Depth of Cut 0.2 

Feed Rate 0.1 
Flank Wear (µm) 161.758 
Cutting Force (N) 437.842 

Surface Roughness (µm) 2.92556 
Composite Desirability 0.85067 

 

3.4 PCA Analysis 

PCA entails applying a statistical technique to simplify and gain a better understanding of big 
datasets. This method allows the evaluation of important components by converting associated 
machining features into a collection of independent components [12, 25]. Through this method, the 
multi-objective response matrix is subsequently built. Three principal components PC1, PC2, and 
PC3 have been determined using PCA. The variation is seen by the Eigen analysis of the correlation 
matrix in Table 8. Interestingly, it has been found that 63% of the variability may be explained by 
the first principal component alone. The Multi-Response Performance Index (MRPI) calculates each 
key component's unique weight based on its proportion of accountability. 

Table 8. Eigen analysis of the Correlation Matrix 

Principal Component Eigenvalue Variations (%) 

First 1.8909 63 

Second 0.8121 27.1 

Third 0.2970 9.9 
 

Table 9. Eigenvectors for principal components 

Performance 
Characteristics 

Eigenvectors  

First 
Principal 

component 

Second 
Principal 

component 

Third 
Principal 

component 

Contribution 

Surface Roughness 
(µm) 

0.433 -0.885 -0.168 
0.1874 

Cutting Force (N) 0.618 0.428 -0.660 0.3819 

Flank Wear (µm) 0.656 0.182 0.733 0.4303 

 

The eigenvectors of the principal components were obtained via PCA for the responses such as 
surface roughness, flank wear and cutting force as shown in Table 9. From these PCA has 63% of 
the total variance; which indicated the substantial role with the other responses. Flank wear has 
the maximum contribution of 0.656, followed by cutting force as 0.618 and surface roughness as 
0.433. It recommends that the wear is the furthermost influential factor towards the machinability. 
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The contributions of the responses such as flank wear, cutting force and surface roughness are 
43.03%, 38.19% and 18.74% respectively. 

Table 10. Grey coefficient with principal component analysis 

Individual Principal components 
Trials PC1 PC2 PC3 MRPI 

1 0.096 0.255 0.389 0.739 

2 0.092 0.222 0.345 0.659 

3 0.150 0.160 0.430 0.740 

4 0.081 0.299 0.353 0.733 

5 0.103 0.249 0.345 0.697 

6 0.135 0.382 0.385 0.902 

7 0.076 0.270 0.329 0.674 

8 0.086 0.333 0.302 0.721 

9 0.187 0.275 0.357 0.820 

10 0.080 0.228 0.232 0.540 

11 0.089 0.202 0.228 0.519 

12 0.165 0.180 0.242 0.588 

13 0.075 0.205 0.217 0.497 

14 0.084 0.176 0.216 0.476 

15 0.122 0.215 0.247 0.584 

16 0.067 0.170 0.218 0.455 

17 0.075 0.199 0.202 0.477 

18 0.133 0.179 0.215 0.527 

19 0.070 0.137 0.160 0.366 

20 0.081 0.149 0.158 0.388 

21 0.123 0.127 0.175 0.425 

22 0.062 0.137 0.154 0.354 

23 0.070 0.128 0.152 0.350 

24 0.095 0.169 0.167 0.432 

25 0.065 0.143 0.153 0.361 

26 0.117 0.162 0.143 0.423 

27 0.133 0.241 0.159 0.533 
 

The proportions of accountability were used to establish each primary component's weights [26]. 
The MRPI, which measures performance, was computed using this data. Higher MRPI values 
correspond to better results. The experiment with the lowest cutting force, flank wear, and surface 
roughness also produced the highest MRPI.  The highest MRPI value observed in Table 10 is 0.902. 
The MRPI, designated as A1B2C3, provides the ideal parameter settings, which are 50 m/min for 
cutting speed, 0.2 mm/rev for feed rate, and 0.6 mm for cut depth. This yields 3.52 µm surface 
roughness, 430.26 N cutting force, and 150.84 µm flank wear. 

3.5 Validation of Result 

It has been machined and the best turning parameters have been determined, a verification test is 
needed to evaluate how accurate the analysis. The precision was predicted using confirmation 
studies, which showed a decrease in cutting force from 445.35 N to 430.26 N, a decrease in flank 
wear from 170.67 µm to 150.84 µm, and a decrease in surface roughness from 4.28 µm to 3.52 µm. 
Fig. 6, shows the Inconel 825 microstructure for the turning with optimal machining conditions.  It 
is inferred that from the image the grain distribution are uniform and the nonexistence of 
significant surface defects [27]. This uniformity is imperative for the application in the aerospace 
and chemical industries which requires corrosion resistance and mechanical strength. 
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Fig. 6. Inconel’ 825 microstructure 

Table 11. Confirmation Test of GFRG and GPCA on the optimal level 

Method Surface roughness (µm) Cutting force (N) Flank wear (µm) 

 Predicted Experimental Predicted Experimental Predicted Experimental 

Grey 
A1B3C2 

3.52 3.52 430.26 
430.26 

 
150.84 150.84 

Fuzzy 
A1B1C1 

2.92 2.54 437.842 428.36 161.758 152.63 

PCA 
A1B3C2 

3.52 3.52 430.26 430.26 150.84 150.84 

 

Table 11 shows a comparison of the grey, fuzzy, and PCA models that predict Inconel 825 
machining responses such as surface roughness, cutting force, and flank wear. The Grey and PCA 
methods match closely with the predicted and experimental findings and have higher accuracy 
with the optimum selection as A1B3C2. The ideal selection from the Fuzzy technique is A1B1C1, 
and the percentage deviation is substantial. The analysis using the Grey and PC approaches 
produces consistent predictions for the experimental settings. The limitation of the works is three 
input parameters were used in this study and tool coating not considered in this study.  

5. Conclusions 

This research work presented a cohesive optimization of Taguchi design, Grey-Fuzzy and PCA 
towards the machinability improvements. The followings findings were made from the experiment:  

• Cutting speed is the most influencing parameter for all the three responses such as surface 
roughness, flank wear and cutting force. 

• Grey-Fuzzy provides the distinguished estimation of multi responses and has superior GFRG 
of 0.882, which is compared to other technique. These values produced a surface roughness 
of 2.925 µm, a cutting force of 437.84 N, and flank wear of 161.76 µm. 

• PCA assisted dimensionally enabled that the First PCA for 63% of the response inconsistency 
and the better multi response performance index as 0.902; which optimum process 
parameter as cutting speed 50 m/min, fees rate 0.2 mm/rev, and depth of cut 0.6 mm. 

• A Grey and PCA method are closely agreements with the Predicted and experimental results 
and has higher accuracy with the optimum selection as A1B3C2. The optimum selection from 
Fuzzy approach as A1B1C1and has the percentage deviation is high. From the analysis Grey 
and PC methods yields the consistent predictions for the experimental conditions. 
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• This cohesive approach presented in this research work more reliable and better tactic for 
optimization the machining parameter and may use for other alloys in manufacturing 
industries. 
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