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Article History: External corrosion is a significant issue that can lead to ruptures in long-distance
liquid transportation facilities such as pipelines. Highlighting the need for regular
monitoring of their condition, which can compromise their integrity and safety.
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importance of continuous monitoring to prevent corrosion risks.
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1. Introduction

The transportation of liquid and gaseous hydrocarbons has now become crucial due to the increase
in volumes of products used and consumed, emphasizing the need to use large-scale and
economically viable means of transportation, notably pipelines [1]. In this context, the installation
of pipeline networks has evolved to offer great flexibility in transportation and adaptation to the
requirements of the transported products [2]. Pipelines represent the primary means of
transportation for oil, gas, water, and various petroleum products [3]. However, their aging,
impacts with foreign bodies, as well as exposure to a corrosive environment, can lead to the
occurrence of various defects such as cracks, dents, notches, and corrosion [4-8].

According to systematic statistics from the European Gas Pipeline Incident Data Group (EGIG) on
incident frequencies concerning gas pipelines, it is evident that incidents related to corrosion and
external interferences in these infrastructures represent significant portions to be considered, as
shown in Fig. 1 [9]. This highlights the importance of conducting scientific research to counter leaks
or explosions resulting from these anomalies.

Corrosion results from the aggressiveness of the soil, environment, and transported products. Over
time, it can lead to an increase in roughness, thereby causing a decrease in thickness and
mechanical strength of pipelines [10]. Therefore, monitoring and tracking the condition of
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pipelines remain essential operations for planning maintenance interventions to avoid unexpected
fluid transport shutdowns due to leaks or explosions [11-13]. Corrosion of mechanical components
in operation poses a significant obstacle in design, as its impacts are observed at various stages,
ranging from mining extraction to the design, manufacturing, usage, reuse, and recycling phases
[14]. When a component undergoes corrosion, whether it experiences generalized or localized
corrosion, it undergoes geometric modifications and alters its surface condition, as shown in Fig. 2.
Furthermore, the formation of localized corrosion zones creates areas of high stress concentration,
thereby becoming preferential sites for crack initiation and propagation [15].

Years: 2010 - 2019

Construction defect / Material Ground movement
failure [ Other and unknown
I Hot tap made by error [ Corrosion

=1 external interference

1.63% 15.76%

Fig. 1. Distribution of gas pipeline incidents (2010-2019), 11th EGIG-report [9]

Corrosion results from the aggressiveness of the soil, environment, and transported products. Over
time, it can lead to an increase in roughness, thereby causing a decrease in thickness and
mechanical strength of pipelines [10]. Therefore, monitoring and tracking the condition of
pipelines remain essential operations for planning maintenance interventions to avoid unexpected
fluid transport shutdowns due to leaks or explosions [11-13]. Corrosion of mechanical components
in operation poses a significant obstacle in design, as its impacts are observed at various stages,
ranging from mining extraction to the design, manufacturing, usage, reuse, and recycling phases
[14]. When a component undergoes corrosion, whether it experiences generalized or localized
corrosion, it undergoes geometric modifications and alters its surface condition, as shown in Fig. 2.
Furthermore, the formation of localized corrosion zones creates areas of high stress concentration,
thereby becoming preferential sites for crack initiation and propagation [15].

Fig. 2. An excavated gas pipeline subject to external corrosion [16]

In the oil and gas industry, numerous assessment standards are utilized to evaluate the residual
strength of corroded pipelines. Among these, standards such as ASME B31G [17], Modified B31G
[18], RSTRENG [19], PCORRC [20] and DNV RP-F101 [21]. are widely practiced for pipeline
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inspection and maintenance, ensuring their proper functioning. However, most of these standards
focus solely on assessing corroded pipelines [22].

Some studies have utilized finite element analysis (FEA) results to develop analytical solutions that
can be implemented as quickly as standards and codes while preserving the accuracy of the finite
element method [23-25]. Studies [23] have analyzed the residual strength of a pipeline exhibiting
a circumferential corrosion groove under internal pressure, employing seven equations that
incorporate the length and depth of the defect. The results obtained demonstrated satisfactory
agreement with finite element analyses (FEA), exhibiting errors below 5%. It is noteworthy that
the corrosion defect modeled in references [22, 23] was idealized as rectangular, this configuration
being frequently adopted for assessing the corrosion-induced rupture of pipelines [21, 26].

Commonly employed standards for assessing the burst pressure of corroded pipelines exhibit
limitations, particularly when dealing with complex and non-idealized loading configurations.
These limitations result in conservative estimates, frequently being oversized. To address these
inadequacies, recent studies have explored the application of artificial intelligence (AI) techniques,
specifically through the development of an artificial neural network (ANN) model. This model,
trained on a synthetic dataset generated using the finite element method (FEM), aims to accurately
reproduce FEM results while overcoming the restrictions of traditional standards and avoiding the
need for volumetric FEM analyses [22,27].

Several research works have successfully developed neural networks capable of predicting the
burst pressure of a corroded pipeline based on finite element analysis (FEA) results [28-31]. This
advancement encourages us to also apply artificial neural networks (ANN) in evaluating the
harmfulness of three types of corrosion defects.

Despite research conducted on pipeline defects, a gap is observed in the evaluation of the
harmfulness of certain defects present in pipelines, notably the most damaging corrosion form
depending on the applied external load. To address this gap, our study specifically focuses on
evaluating the degree of harmfulness of the three common forms of corrosion: rectangular,
parabolic, and circumferential, using the results of the artificial neural network (ANN).

The analysis will enable a classification of the severity of the three considered types of corrosion
defects, through the application of standardized formulations within the field. The evaluation will
be based on the ASME B31G code [17] for parabolic-shaped defects [18], the DNV-RP-F101 code
[21] for rectangular-shaped defects, and equations derived from prior research [23] for
circumferential-shaped defects. A comparison of the results obtained using the neural network
approach for these three types of corrosion defects will be conducted. An overview of some
research works on corrosion defects in pressurized pipelines, using FEA and ANN to evaluate burst
pressure, as shown in Table 1.

Table 1. Recent prior research on pressurized pipelines affected by corrosion

References Type of defect Loading Methods
Michael Lo et al.[22] Internal pressure with
(2022) Rectangular axial compressive stress FEA/ANN
Arumugam etal. [23] Circumferential Internal pressure FEA
(2020)
Arumugam et al. [32] Internal pressure with
(2020) Rectangular axial compressive stress FEA
Rectangular
Xu Eazt ; 1'7[)33] circumferential in Internal pressure FEA/ANN
interaction
Kumar et al. [34] Circumferential Internal pressure with FEA/ANN
(2022) interaction axial compressive stress

These research works illustrate the growing importance of integrating advanced numerical
modeling techniques such as FEA and ANN in assessing the safety and reliability of pressurized
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pipelines. These approaches enhance understanding of the factors influencing pipeline strength
and enable more informed decisions regarding maintenance and operation.

2. Materials and Methods

This article proposes a two-step approach to assess the stability of corroded and pressurized
pipelines. In the first step, the finite element method (FEA) is used to validate three numerical
models representing different types of external corrosion on the pipeline. The aim of this step is to
establish numerical models of these corroded pipelines to predict the internal pressure required
to avoid bursting near the defect zones. This prediction is based on stress field analysis according
to the Von Mises criterion, which is commonly used to assess plastic deformation in materials. The
length and depth of defects are the key geometric parameters in evaluating burst pressure. To
quantify their influence on this pressure, a parametric analysis is conducted by varying these
magnitudes, thereby generating a structured database. This dataset, characterized by the diversity
of defect geometries and their associated burst pressures, will serve as the foundation for the
development of a new predictive numerical equation. This equation will be developed through
artificial neural network (ANN) learning, a machine learning technique recognized for its ability to
model complex relationships between variables.

Once the burst pressure prediction is made using the artificial neural network, we proceed to
evaluate the harmfulness of the three identified defect types. This evaluation aims to analyze the
impact of these defects on the normal operation of the pipeline. Furthermore, it aims to deduce the
geometric parameter that most rapidly influences burst, which could prioritize inspections and
repairs based on this parameter.

In summary, the proposed approach combines numerical analysis techniques, modeling by
artificial neural networks, and harmfulness assessment to evaluate the stability of corroded and
pressurized pipelines, as well as to identify critical defects requiring particular attention.

2.1 Numerical Model

The assumption that the corrosion defect adopts a rectangular shape was chosen because this
approach is widely used for assessing pipeline corrosion and has been validated by several
researchers, thus providing fairly accurate predictions of burst pressure [35-39]. To reduce
computation time without compromising result accuracy, a reduced-size model was employed in
this study [40]. This model consists of a symmetric quarter-pipe, as illustrated in Fig. 3, to faithfully
represent the actual geometry of the pipeline. Additionally, the pipe was specified with a length of
2,000 mm to avoid any influence of end conditions on the corrosion defect zones during finite
element analysis.

[] symmetry

Fig. 3. API 5L X65 quarter-pipe model

The 3D modeling software SolidWorks was used to create the models. Since this study focuses on
single corrosion defects (rectangular, parabolic, and circumferential) with symmetric geometries,
only a quarter of the pipe was modeled to accurately represent the conduit's real geometry.
Furthermore, the pipelines were modeled with a length of 1,000 mm, corresponding to half the
length of the model.
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2.2 Mechanical and Geometric Properties of the Numerical Model

The numerical model developed in SolidWorks involves digitally modeling a section of a corroded
pipeline subjected to internal pressure. We will study the quality of the API 5L X65 steel pipe. The
mechanical properties of this grade are presented in Table 2. This numerical module aims to
replace analytical expressions that evaluate burst pressure based on the form of corrosion defect.
The geometric dimensions for the numerical pipeline model can be found in Table 3.

Table 2. Mechanical properties of steel tube API 5L X65 [41]

Mechanical properties Values
Modulus of Elasticity, E 210 GPa
Poisson’s ratio, 9 0,3
Yield Strength, g, 464 MPa
Ultimate tensile strength, o, 563 MPa
True ultimate tensile strength, ., 629 MPa

Table 3. Geometric properties of the pipeline

Geometric properties Values
Pipe outside diameter, D (mm) 250

Length of pipe, L (mm) 2000

Wall thickness, t (mm) 10

2.3 Model Validation

Finite element (FE) modeling of irregular defects or local instabilities requires a careful and
iterative approach. Mesh refinement, appropriate selection of boundary conditions, and validation
against experimental data are essential to obtain reliable predictions, particularly for the
determination of burst pressure. The validation of the finite element analysis (FEA) model was
conducted by comparing simulation results with experimental data obtained by Lo et al. [22]. who
performed burst tests on two specimens, designated LD and LF. To evaluate the influence of spatial
discretization parameters and boundary conditions, a sensitivity analysis was carried out. This
study examined three mesh generation methodologies (standard, curvature-based, and curvature-
based with conformal mesh transitions) as well as two boundary condition configurations:

e (ase 1: A planar support on one face, combined with a longitudinal edge fixed support.
e (ase 2: Only a longitudinal edge fixed support.

The comparative analysis of numerical results for different combinations of mesh and boundary
conditions revealed a significant influence of these parameters on burst pressure prediction. The
results of this sensitivity study are summarized in Table 4. For both specimens studied, the
comparison of burst pressures predicted by FEA and experimental values demonstrated
satisfactory agreement, with a relative error of less than 10% for a curvature-based mesh with Case
1 boundary conditions, thus providing a more realistic numerical model.

The validation of the numerical model was supported by a second comparative analysis. The
theoretical burst pressure of the intact pipe, calculated using Eq (1) [42], was compared to the FEA-
estimated burst pressure of the intact pipe, revealing an error of 2.37% (Table 5). This slight
discrepancy can be attributed to several sources of uncertainty, including:

e The idealization of the defect geometry.
e The choices of discretization parameters (finite elements, element size).
e Inherent errors in numerical calculation methods.

These small errors confirm the appropriate choice of mesh parameters and boundary conditions.

Oyuts- t
P, = uts (1)

T
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Table 4. Failure pressure from burst tests compared with failure pressure predicted in FEA

Failure Failure

Relative
Specimen pressure Boundary Mesh pressure error
p from burst conditions (Mesh generator) from FEA (%)
tests [22] (MPA) 0
Standard mesh 32,62 64,74
Planar Support Curvature'based 20.78 4 95
and mesh ’ ’
Fixed support Blanded
Curvature-based 24,51 23,78
LD  19.80 MPa mesh
Standard mesh 36,12 82,42
Curvature-based 29,48 48,89
Fixed support mesh
Blanded
Curvature-based 25,35 28,03
mesh
Standard mesh 26,05 73,67
and mesh ’ ’
Fixed support Blanded
Curvature-based 20,45 36,34
LF  15.00 MPa mesh
Standard mesh 29,5 96,67
Curvature-based 23,17 54,47
Fixed support mesh
Blanded
Curvature-based 21,71 44,74
mesh
Table 5. Comparison between theoretical and numerical intact pressure
Theoretical burst pressure Numerical burst pressure Relative error
54.7 MPa 56 MPa 2,37 %

2.4 Meshing and Boundary Conditions
2.4.1 Rectangular Defect

Fig. 4 depicts the rectangular defect located at the center of the studied pipe. For symmetry reasons,
only a quarter of the defect has been represented. The geometric characteristics of the defect are
schematically shown in the same figure. Pressure has been applied to the internal section of the
pipe, while two boundary conditions have been imposed: a planar support on the yellow facet and
a fixed boundary condition on the bottom red line (Fig. 4). The quality and accuracy of the
computational results are highly dependent on the characteristics of the mesh used. Therefore, the
essential parameters defining the mesh are clearly presented in Table 6, allowing for a complete
understanding of the discretization strategy employed.
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Table 6. Mesh parameters

Rectangular defect Parabolic defect Circumferential defect
Mesh type
volume mesh volume mesh volume mesh
Mesh generator used Curvature-based mesh
J a.c obian p.omts for At the nodes 16 Points At the nodes
high-quality mesh
Maximum element size 35,3 mm 25,186 mm 30,056 mm
Minimum element size 35 mm 24,745 mm 17,68 mm
Mesh quality Draft
Total number of nodes 788 1818 1035
Total number of 2123 5165 2824
elements
Maximum aspect ratio 10,245 4,911 18,236
o .
0% of elemeqts with 36,3 95,4 60,1
aspectratio < 3

% of elements with

aspect ratio > 10 0,094 0 0,46

p—"

planar support

Fixed support
(a) (b)
Fig. 4. (a) Geometric characteristics of the rectangular defect, (b)boundary conditions and
loading
2.4.2 Parabolic Defect

Fig. 5 illustrates the parabolic defect localized at the center of the examined pipeline. Given the

symmetry of the pipe, only a quarter section of the defect is represented. The geometric
characteristics of the defect are schematically shown in the same figure.

/

Fixed support

(a) (b)

Fig. 5. Geometric characteristics of the parabolic defect (a), boundary conditions and loading (b)
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Pressure has been applied to the internal section of the pipe, while a fixed boundary condition is
imposed on the bottom red line, as shown in Fig. 5. The mesh parameters are represented in Table
6.

2.4.3 Circumferential Defect

Fig. 6 depicts a circumferential defect localized at the center of the examined pipeline. Due to the
pipe's symmetry, only a quarter section representing the defect is visible. The geometric
characteristics of this defect are schematically shown in the same figure. Pressure has been applied
to the internal section of the pipe. Two boundary conditions have been defined: a planar support
on the yellow facet and a fixed boundary condition on the bottom red line, as shown in Fig. 6. The
mesh parameters are represented in Table 6.

planar support

Fixed support

(b)
Fig. 6. (a) Geometric characteristics of the circumferential defect, (b) boundary conditions and
loading

2.5 Geometric Parameters of the Study

In this study, we examined the length and depth of a corrosion defect as key variables in
determining the burst pressure of a pipeline. These parameters are specified in Table 7, with the
defect length ranging from 40 to 220 mm in increments of 20 mm, and the depth ranging from 1 to
6 mm in increments of 1 mm. Fig. 7 and 8 illustrate the shapes of three types of defects.

Rectangle Parabolic

Fig. 7. Geometric dimension of a rectangular and parabolic corrosion defect on pipes [43]

Fig. 8. Geometric dimension of a circumferential corrosion defect [44]
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The defect width, denoted as "w," was not considered in this analysis as its impact on the rupture
resistance of a corroded pipeline subjected to internal pressure is deemed negligible [17,21,32,23].
Using the parameters listed in Table 7, the burst pressures obtained via the Finite Element Method
(FEM) were used to create a training dataset for the Artificial Neural Network (ANN). The
geometric dimensions required for the FEA parametric study are detailed in Table 7.

Table 7. Geometric defect parameters

Defect depth, d (mm) 1-2-3-4-5-6
Defect length, I (mm) 40-60-80-100-120-140-160-180-200-220
- rectangular defect 20°
Defect width, w - parabolic defect 20°
(mm) - circumferential defect m.250

2.6 Burst Condition

Various criteria have been proposed in previous studies to predict the burst pressure of pipelines
with corrosion defects [45]. However, the Finite Element Analysis (FEA) method in SolidWorks
cannot anticipate local instability, such as necking, which often leads to final burst. Therefore,
accurately predicting the burst pressure of a corroded pipeline using FEA is challenging unless an
appropriate rupture criterion is well defined during the simulation, as highlighted by several
previous studies [46]. When the effective von Mises stress reaches oy throughout the wall, the
corresponding internal pressure can be defined as the burst pressure. Predicting burst pressure
based on ous provides more accurate results, as the failure mechanism is controlled by plastic
collapse, notably due to the high toughness of the material under study [47].

In this article, the rupture criterion for the corroded pipeline is based on the local stress in the
defect area. Burst occurs when the local stress in this area exceeds the ultimate tensile strength.
We applied the Von Mises theory in SolidWorks to analyze stress distribution in the corroded pipe.
Cylindrical coordinates are used in the numerical model to detail the three stress components
present in the pipe, namely: axial, radial, and circumferential stress, which define the effective Von
Mises stress in cylindrical coordinates [48], as shown in Eq (2).

1 2
0o = |>[(0n = 0:)2 + (o0, — 0)? + (0 — 0))?] 2

2.7 Burst Pressure Using the Theoretical Approach, P .,

This paper presents a study of three common methods for evaluating the burst pressure of
pressurized pipelines: the DNV code for longitudinal rectangular defects, ASME B31G for parabolic
defects, and the equations from reference [23] for circumferential defects. Both ASME B31G and
the equations from [23] incorporate defect geometry into their calculations.

e DNV-RP-F101 code [21]

2.t.0,.(1-5)
d
O-9.0-)

e ASME B31G code [17]

21,105t (1-0,66.(9/p
Pf,ana = Y . d ; B l
D (- 0,6;9) if /0.8. (t) . (D)2 <4 (4)

With My = J 1+0,8. (%)2 )

With Q= [1+0.31.(

)? (3)

l:)f,ana =

VD.t
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e Equations developed by Arumugam et al. [23]

1,785 1,094
1 oo d 1 ;
Prana = P (1 — 3,738, (I) (5) if —<04and - <04 (5)
1,431 0,333
1 o d 1
Prana = P (1 — 1,362, (¥> (B) if —<04and04<-<08 (6)
1,280 0,176
d 1 oo d 1
Prana = Pi. (1 — 1,127. <;> .(5) if —<04and08<-<12 (7)
d 1,627 | 0,536 d 1
Prans = P (1 — 1,714, <_> (_) if 04<-<08and01<=<04 (8)
' t D t D
d 1,248 1 0,120 d 1
Prana = P (1 — 1,058. (-) (—) if 04<-<08and04<=<08 (9
' t D t D
d 1,129 1 0,039 d 1
Prana = Pi. (1 — 0,999, <?> _ (5) if 04<:<08and08<s<12 (10)

2.7 Comparative Analysis of Theoretical and Numerical Burst Pressures

The determination of burst pressure is conditioned by the defect geometry. We progressively
modified this geometry by adjusting the defect length (denoted as "1") and depth (denoted as "d"),
while maintaining its width at a value of 20° for the rectangular and parabolic defects and m.D for
the circumferential defect. These adjustments were made to closely approximate the actual
geometry of corrosion defects. The burst pressures calculated by the DNV method, the ASME B31G
code, and the equations of Arumugam et al. were normalized with respect to the intact pressure.
The theoretical pressures in Fig. 9 were determined by varying the geometric parameters of the
defects, as illustrated in Table 8. For each type of defect, we studied 60 specimens obtained by
combining six variations of the d/t ratio with ten variations of the 1/D ratio.

Table 8. Geometric parameters of the three types of defects

l/D 0,16-0,24-0,32-0,4-0,48-0,56-0,64-0,72-0,8-0,88
l/NDt 0,8-1,2-1,6-2-2,4-2,8-3,2-3,6-4-4,4
d/t 0,1-0,2-0,3-0,4-0,5-0,6

The analysis of the numerical models in SolidWorks demonstrated a satisfactory correlation with
the three methods deployed, as evidenced by the relative error values ranging from -6.24% to
8.29% for the circumferential defect, -5.42% to 7.75% for the parabolic defect, and -9.95% to 7.45%
for the rectangular defect, as shown in Fig. 10. These error margins, all below 10%, indicate that
this numerical approach is capable of predicting the burst pressure of a corroded pipe with
geometric parameters within the studied range, thereby validating our numerical model.
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Fig. 9. Evolution of theoretical and numerical burst pressure
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Fig. 10. Relative error between theoretical and numerical pressure of the three defects

2.8 Burst Pressure Prediction Using an Artificial Neural Network
2.8.1. Flowchart for Determining the Optimal Neural Network Topology

Using artificial intelligence in scientific domains has become an alternative approach to numerical
simulation, facilitating the prediction of outcomes for complex problems through mathematical
equations based on the principle of machine learning from pre-established results (dataset). The
structure of the artificial neural network will be developed using Matlab R19a software, with a
dataset distributed as follows: 70%, 80%, and 90% for training, and 30%, 20%, and 10% for testing.
This data comes from a model validated through numerical simulation in SolidWorks software.
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Validated numerical models

\/

Defect shapes (q)
Circumferential : 0.3
Parabolic: 0.7
Rectangular: 0.2

Y

Dataset
Input: q,1,d, INDt
Qutput: Pn
e
i=1:20

¥

Activation functions
(logsig,tansig et purelin)

¥

Network training
70, 80, 90 % train
30, 20, 10 % test

No

Yes

<>
Yes

Weights and Bias

;

Burst pressure by ANN

Fig. 11. Flowchart of the steps for optimal neural network selection

We will select a neural network with a single hidden layer, evaluated based on two metrics: a root
mean square error (RMSE) below 1 and a coefficient of determination (R?) close to 1. Aloop testing
1 to 20 neurons in the hidden layer was carried out to determine the optimal number of neurons
needed to achieve the desired accuracy. Various configurations of the three most commonly used
activation functions in machine learning (tansig, logsig, and purelin) were tested, along with
different dataset splits between training and testing.

Using Matlab R193, the structure will be validated according to two complementary metrics: a
correlation coefficient (r) close to 1 and a mean square error (MSE) below 1 (Fig.11). The weights
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and biases obtained from the selected neural network enable highly accurate prediction of the
burst pressure of a pressurized pipeline with a circumferential, parabolic, or rectangular corrosion
defect.

2.8.2 Burst Pressure Prediction

Through the use of artificial neural networks, we developed a structure in Matlab R19a to predict
the burst pressure of a pressurized pipeline with rectangular, parabolic, and circumferential
corrosion defects. The objective was to develop a single hidden layer neural network capable of
providing highly accurate results. To achieve this, we explored various configurations, varying the
number of neurons in the hidden layer from 1 to 20 using a for loop (for i=1:20), as well as different
activation functions (purelin, logsig and tansig) [50], These functions are most suitable in the linear
regression problem [22, 33, 34]. Random weights were assigned to the network input for each type
of defect, denoted as q, namely: 0.3 for circumferential, 0.7 for parabolic, and 0.2 for rectangular.
The network was trained using gradient backpropagation, adjusting the weights and biases of each
neuron to minimize the error between the predictions and the actual data [49]. Given the relatively
small size of the numerical dataset, with approximately 180 samples, an analysis of the effect of
data distribution on prediction accuracy was conducted. The dataset was divided into two portions
according to three different ratios: 70%, 80%, and 90% for training, and 30%, 20%, and 10% for
testing. To ensure prediction accuracy, we opted for 1000 training epochs, with a maximum of 500
validation failures to refine the learning phase. At each iteration, a combination of activation
functions among purelin, logsig, and tansig was selected. At the end of execution, we evaluated the
model's performance using four metrics: root mean square error (RMSE) Eq (11), mean squared
error (MSE) Eq (12) [51], coefficient of determination (R*) Eq (13) and correlation coefficient (r)
Eq (14) [52].

e Expression of activation functions [50]

Sigmoid Hyperbolic tangent Lineair
= 1 = 2 1 f(n)=n
f(n)_1+e‘” f(n)_1+e‘2” B

e Expression of root mean squared error (RMSE) and mean squared error (MSE) [51]

m
1
RMSE = | (= 9,)? (1
m ]
i=1
1 m
MSE = — 9.2 12
mZ(yl i) (12)
i=1
e Expression of coefficient of determination (R2 or R-squared) and correlation coefficient (r)
[52]
R2 —1— i1 — 9)* (13)
m — )2
i1 (Vi = ¥)
m .
i1 (i —¥) = (37i - lzlyl/m)
" (14)

JZ 0= 7725 - T e

Fig. 12, 13, and 14 present the RZ and RMSE metrics for various configurations of activation
functions between the hidden layer and the output layer, as well as the data ratio for the training
and testing phases, covering the 20 models examined to assess the relevance of the chosen model.
In Fig. 12, the exploration begins with the use of the purelin activation function for the hidden layer
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and three activation function options for the output layer. The analysis of this figure reveals an
inability to achieve the desired accuracy in all three cases, indicated by a coefficient of
determination far from 1 and significant fluctuations in RMSE between the training and test sets.

0841+ Coefficient of determination i Root mean square error (RMSE)
38 &

SE AT AL
ol N Aok

0840 {0y /'\ \//\/W ‘

e AN NN

0,837 / \ / \ =307 \ / /\ ¥ . \
f

W

\1{ \ /—'—F'_F' (70/30) 281 \ —— P_P (7030)

—— P_P (80/20)

0,836 —— P_P (80/20)| .. 26
\/ —— P_P (90/10) 0s ] \ —— P_P (30/10)
"~ i
0835 22
0 2 4 & & 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Models Models
(a)
0568 - Coefficient of determ ination 76 Root mean square error (RMSE)
e - |
1 %%\\/@@( QQVﬁ:\H - =P L (7030) X
0567 - v o —— P_L (80/20)
\/ Y /\ / 65 —&— P | (90/10)
0,566 6.0 | oo ’\ , hﬂ 4
® —— P_L(7030) \ / @55 A d N A / \/ ﬂ\/
0.565 P_L (80/20) g | J }( K\ ,/}{/ __l / \{\
—— P_L(90/10) \/ 5.0 b J . ; ;
LR SRS SRARL S
V T =y
0.563 407
35
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Models Models
(b)
Coefficient of determ ination : Root mean square error (RMSE)
3.8

3.0

| ]
3,2:(\!/\ ey R

SN

m?é gf
-

. —— P_T (70130) w
e 2.0 —— P_T (80/20) =30
] —— p_T (90110) 1
WESE A
15 26
] —— P_T (70130) /
24 P_T (80/20)
10 1 —— P_T (90110) Y
—— ; . . 22 s
T T :
¢ 2 4 6 8 10 12 14 16 18 20 ¢ 2 4 6 8 10 12 14 16 18 20
Models Models
(c)

Fig. 12. Performance of 20 models evaluated by R2 and RMSE metrics as a function of
activation; (a) purelin-purelin, (b) purelin-logsig and (c) purelin-tansig
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In contrast, in Fig. 13, an improvement is observed, where the RMSE values for training and testing
become closer and decrease in cases a and c, suggesting an enhancement in learning. Additionally,
a gradual improvement in the coefficient of determination is noted, particularly in case c with the
use of the tansig function in the output layer.
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Fig. 13. Performance of 20 models evaluated by R2 and RMSE metrics as a function of
activation; (a) logsig-purelin, (b) logsig-logsig and (c) logsig-tansig
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This suggests an effective adaptation of the logsig activation function to the single hidden layer
network with the backpropagation algorithm. Regarding Fig. 14, the RMSE values for training and
testing also converge and start to decrease, except for some models exhibiting poor performance,
likely due to improper learning.
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The R2 trends also begin to improve, especially in cases a and ¢, which approach the target, except
for some samples that can be explained by an inadequate number of neurons for the activation
functions and learning algorithm used.

The analysis of Figures 12, 13, and 14 demonstrates that the model providing the highest predictive
accuracy, with minimal error, incorporates the tansig activation function in the hidden layer and
purelin in the output layer. More specifically, Model 11 in case (a) of Fig.14. shows an RMSE value
of 0.23 with a 90/10 data split (90% for training and 10% for testing). This result, among the lowest
observed in all the models analyzed, testifies to an optimal performance thanks to this combination
of activation functions. In addition, this RMSE value, remains lower than 1, indicating a high
precision prediction on the entire dataset. This observation is reinforced by the metric of the
coefficient of determination R?, which reaches 0.992, thus approaching very close to 1. This value
suggests that the model's predictions almost perfectly match the target values, indicating near-
linear behavior. The overall analysis highlights the significant impact of activation functions and
the data split ratio between training and testing on the neural network's performance, without
requiring changes to other operational parameters.

To confirm the choice of model 11, we evaluated it using two additional metrics: the mean squared
error (MSE) of testing and the correlation coefficient. Fig. 15. illustrates the training MSE, calculated
by Matlab. This metric quantifies the arithmetic mean of the squares of the differences between the
model predictions and the observed values. An MSE close to zero indicates that the model's
predictions are very close to the actual values, reflecting high accuracy. The analysis of Fig. 15.
reveals a training MSE of 0.467 over a total of 1000 epochs for the selected architecture. The MSE
decreases rapidly as the artificial neural network (ANN) progresses in its learning. The two MSE
curves coincide from the first epoch, suggesting an optimal match between the choice of activation
functions, the data split ratio, and the backpropagation algorithm used. Consequently, this network
is capable of providing accurate predictions regarding burst pressure.

Best Training Performance is 0.4673 at epoch 1000

Train

Test
“B%té)

Goal

(=}
©

=
o
&

10-10 .

10~15 k

Mean Squared Error (mse)

10-20 .

10-25 L

0 100 200 300 400 500 600 700 800 900 1000
1000 Epochs

Fig. 15. MSE training

Fig. 16. generated using Matlab R2019a, provides details on the performance of the linear
regression for the selected model. The correlation coefficient r measures the accuracy of
predictions from a linear regression and ranges between 0 and 1. An r value close to 1 indicates
an optimal fit of the model's predictions to the observed data, signifying an almost perfect
correlation. Conversely, a value close to zero indicates a low correlation, suggesting that the
model does not accurately reflect the data trends.

The correlation coefficient is crucial for forecasting future events using an established model, as
it indicates how well past results can be used to predict future outcomes. According to the
observations in Fig. 16. the r coefficient remains close to 1 throughout the evaluations, confirming
the efficiency and relevance of the chosen model. This suggests not only that the model is well-
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fitted but also that it is capable of providing reliable and accurate predictions, an essential aspect
for any future deployment of the model in practical applications.

3. Results and Discussion
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Fig. 16. Correlation coefficient

3.1. Topology of The Chosen Neural Network

50

In our study, we adopted a neural network model with a single hidden layer, as demonstrated in
Fig. 17. The number of neurons in the input layer is equivalent to the number of variables in our
dataset, which is 4, while the output layer consists of a single neuron representing the target
variable of our dataset. The choice of 11 neurons for the hidden layer was justified by analyzing
metrics such as RMSE, the coefficient of determination (R?), the training MSE, and the correlation
coefficient (r). This decision was made after multiple iterations exploring different configurations,
from 1 to 20 neurons. Given the nature of our problem, which pertains to regression, we opted to
use backpropagation trained with the Levenberg-Marquardt algorithm (ML) [53].

e Mathematical equation for the hidden layer

hy
h,
hs
hs
hs
he
hs
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Fig. 17. The topology of the network under study
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e Equation for predicting burst pressure P, using the selected neural network
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f(hs)
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3.2. Differences Between FEA and ANN Burst Pressure Values

Fig. 18. compares burst pressure trends obtained from finite element analysis (P,) with predictions
from a neural network (P,) for circumferential, parabolic, and rectangular defects. The close
agreement between the curves generated by both methods, for each defect type, confirms the
judicious selection of activation functions, network structure, and hidden layer neuron counts in
the neural network model. The figure further permits the assessment of relative error between
finite element simulation results and neural network predictions. This error is observed to be
between 0% and 7% for circumferential defects, 0% and 4% for parabolic defects, and 0% and 5%
for rectangular defects. These variations, although apparent, do not detract from the reliability of
the model, as evidenced by consistently low error rates.
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Fig. 18. Burst pressure evolution of simulation and neural network

Fig. 19. evaluates the performance of the neural network model against simulations, by presenting
the distribution of relative errors (in %) for circumferential, parabolic, and rectangular defects,
within a +30 range. The standard deviations observed for these defects are, respectively, 1.86, 1.19,
and 2.23, indicating a low dispersion of errors. The entirety of the probability distributions lies
within the +30 range, thus validating the selected neural network topology and its ability to meet
the defined accuracy metrics. The application of the 3¢ rule indicates that 99.73% of the errors are
within the respective intervals of #5.58%, +3.57%, and +6.69%, for the circumferential, parabolic,
and rectangular defects. These reduced standard deviations confirm a low dispersion of errors, this
robustness being attributable to the network topology and a judicious optimization of its
parameters, as evidenced by the low maximal level of relative errors. These conclusions confirm
that the adopted modeling method is appropriate for estimating burst pressure in the studied
context.
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3.3. Discussion of the Harmfulness of The Three Corrosion Defects and Also the
Geometrical Parameter Influencing Burst Pressure

Fig. 18. demonstrates a consistent decrease in burst pressure with increasing corrosion defect
geometry across all three defect types. Initially, the burst pressure reduction is similar for
rectangular and circumferential defects up to a depth of 4 mm; beyond this depth, the
circumferential defect shows a more significant decrease, registering approximately 6 MPa lower.
Given comparable defect dimensions, our results show that, generally, a parabolic defect remains
more impactful than the other types. The figure also shows that at 5 mm depth and lengths of 120
and 220 mm, burst pressures for parabolic and circumferential defects become comparable.
Furthermore, at 220 mm length and 5 mm depth, burst pressures for all three defects converge.
Increasing defect depth, along with length, shows a progressive decrease in burst pressure,
indicating a significant influence of defect depth on burst pressure. Cross-sectional analysis reveals
that, with the exception of specific length ranges (160-220 mm at 5 mm depth and 80-220 mm at 6
mm depth) where the circumferential defect is most critical, the parabolic defect is consistently the
most detrimental.

3.4. Recommendations and Limitations

The integration of artificial intelligence (Al) presents a paradigm shift from traditional, dataset-
reliant methodologies, offering enhanced decision-making capabilities within the industrial sector.
This study leverages Al to provide actionable insights for pipeline maintenance, specifically by
accurately predicting burst pressures associated with rectangular, parabolic, and circumferential
corrosion defects. Furthermore, the research proposes a prioritized intervention sequence for
scenarios involving the simultaneous presence of these three distinct defect types across 2000 mm
sections of pressurized pipelines. The developed neural network facilitates rapid burst pressure
predictions, utilizing mathematical formulations (Eq (15) and (16)) within a mobile application,
eliminating the need for computationally intensive finite element analysis in volumetric modeling
software. However, this research acknowledges limitations regarding its broad applicability.
Variations in pipeline materials and their associated Young's modulus may introduce inaccuracies
in predictions. Moreover, the modeling of defects as ideal geometries necessitates expert
interpretation when addressing real-world corrosion configurations.
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4. Conclusions

This study investigates the impact of corrosion defects (parabolic, circumferential, longitudinal) on
the rupture of pressurized pipelines, utilizing numerical simulations (SolidWorks validated by
experimental data) to determine burst pressures.

Key Findings:

e Rectangular and circumferential defects exhibit a similar decrease in burst pressure up to a
depth of 4 mm. Beyond this, the circumferential defect experiences a pressure drop
approximately 6 MPa greater than the rectangular defect, warranting prioritized
intervention.

e The parabolic defect is generally the most critical, except for certain length/depth
combinations (160-220 mm at 5 mm, 80-220 mm at 6 mm) where the circumferential defect
becomes the most detrimental.

e Similar burst pressures are observed for parabolic and circumferential defects at lengths of
120 mm and 220 mm (5 mm depth). At 220 mm/5 mm, all three defect types show nearly
identical burst pressures.

e Burst pressure progressively decreases with increasing defect depth, with depth being the
dominant parameter.

Neural Network Optimization:

The neural network topology was optimized through the analysis of metrics (RMSE, R?, r, MSE) and
by varying the training data distribution (70%, 80%, 90%) and test data distribution (30%, 20%,
10%) over 20 iterations. The final configuration, chosen for its optimal performance (RMSE and
MSE < 1, R? and r ~ 1), consists of 11 neurons in the hidden layer (hyperbolic tangent activation
functions) and a linear output layer. This neural network accurately predicts burst pressures, as
validated by the metrics, and advantageously replaces the computationally intensive Finite
Element Analysis (FEA).

Future Directions:

This study aims to expand its scope by exploring other types of defects present in pressurized
pipelines, analyzing their stress fields using advanced numerical simulations, and employing
artificial intelligence techniques to formulate relevant recommendations for the industry. In the
future, it would be beneficial to investigate the impact of stress corrosion cracking, which is a major
factor in pipeline degradation. Furthermore, integrating real-time inspection data into the
predictive model would enable the development of predictive maintenance systems capable of
anticipating ruptures and optimizing interventions.

Nomenclature

DNV DNV-RP-F101 corrosion o,

Ultimate tensile strength
assessment method 8

ANN Artificial neural network Outs True ultimate tensile strength
FEA Finite element analysis E Modulus of Elasticity

o, Axial compressive stress ) Poisson’s ratio

gy Yield stress D Pipe outside diameter

O, Effective von Mises stress L Length of pipe

on Hoop stress t Wall thickness

oy Radial stress d Defect depth

0 Axial/Longitudinal stress 1 Defect length

w Defect width r; Inside radius

3D Three dimensional MF Folias factor

Q Geometric correction factor RMSE Root Mean Squared Error

R2 Coefficient of determination r Correlation coefficient
MSE Mean squared error q Type of defects

P, Burst pressure via ANN P, burst pressure via FEA
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Theorical burst pressure of rectangular

Theorical burst pressure of parabolic

P
For defect tp defect
P Theorical burst pressure of P Numerical burst pressure of
te circumferential defect nr rectangular defect
Predicted burst pressure of rectangular Numerical burst pressure of parabolic
Por Prp
defect defect
p Predicted burst pressure of parabolic p Numerical burst pressure of
vp defect ne circumferential defect
P Predicted burst pressure of Er Relative error in the case of a parabolic
pe circumferential defect P defect
Er,c Relative error for circumferential defects h Neuron output from hidden layer
Err Relative error for rectangular defects P; Failure pressure of intact pipe
n Pre-activation m Number of samples
y Average targets value ¥ Predicted value
y Target value
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