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Steel fiber reinforced self-compacting concrete (SFRSCC) has improved fresh and
hardened state properties compared to conventional concrete. Nonetheless,
experimentally validated tools to model its flexural capacity are still required to
encourage its massive application in civil infrastructure. This research assessed
the maximum bending moment (Mu) of SFRSCC beams in four-point loading using
an Artificial Neural Network (ANN). The experimental program considered water-
binder ratios (w/b) from 0.40 to 0.60 and steel fiber ratios (%F) from 0.00% to
1.00% in volume. Compressive and tensile behaviors were obtained by combining
constitutive models based on uniaxial compression and double-punching
Barcelona tests. A modification to the existing Barcelona test constitutive model is
proposed to improve post-peak stress prediction. To increase the amount of data
needed for proper training of the ANN, non-linear finite element analyses
(NLFEAs) were executed through commercial software. NLFEAs were fed using
the constitutive relationships from tests. ANN inputs were w/b, and %F, and the
output was Mu. Different ANN architectures were evaluated and trained using

Momentum Back-Propagation, Particle Swarm Optimization, and Gravitational
Search Algorithm (GSA). Results showed that the ANN trained with GSA accurately
predicted (R2=0.99) the Mu.

element analysis

© 2025 MIM Research Group. All rights reserved.

1. Introduction

Nowadays, concrete is the most used structural material in the construction industry (1).
Nonetheless, hardened Conventional Concrete (CC) has low tensile strength, ductility, and tenacity
(2,3). Therefore, its use in practice requires incorporating reinforcement to improve its mechanical
properties, with steel rebar being the most common choice. Additionally, CC has limited workability
in fresh state, so low quality control during casting elements with high rebar ratios can lead to
discontinuities due to poor consolidation or undesired reinforcement movements, compromising
the structural capacity and durability (4,5).

Hence, to overcome these disadvantages, research attention has been addressed on Steel Fiber
Reinforced Self-Compacting Concrete (SFRSCC). SFRSCC improves the CC fresh state properties,
allowing it to flow through the formwork mainly by its self-weight with low or no need of vibration.
Therefore, higher quality elements are achieved due to the more uniform consolidation during
pouring (4-6). Moreover, in hardened state, the addition of steel fibers contributes to control
cracking as these markedly improve SFRSCC tensile and strain capacity, compared to CC (2,3,7,8).
Consequently, the rebar required can be reduced without compromising strength and ductility
(7,9). Despite its benefits, manufacturing SFRSCC requires higher amounts of binder than CC.
Hence, its cement consumption is reduced by using supplementary cementitious materials, such as
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fly ash, which not only allows SFRSCC to be more cost-effective material but also diminishes its
carbon-print (10,11).

The improved characteristics of SFRSCC make it a feasible candidate for wide use in civil
infrastructure, which is often subjected to flexure (therefore, tensile stresses and strains).
Literature reports show successful implementations of SFRSCC in bending subjected structures,
such as buildings, retaining walls, slabs, pipes, and tunnels (3,9,12-15). However, its massive
application is scarce in many countries due to the usual need for time and money-consuming
laboratory tests to assess its flexural capacity. The main reason behind this is the lack of reliable
models and practical tools to predict SFRSCC members hardened state mechanical properties. For
instance, in Colombia, the national standard for structural design of buildings (NSR-10) demands
intense flexural testing to monitor the cracking strength and post-peak behavior. This standard also
lacks on recommendations for theoretically assessing SFRSCC mechanical behavior (16).

Many researchers have published different alternatives to predict the flexural strength of SFRSCC,
most based on constitutive modeling of the tensile response along with Non-Linear Finite Element
Analysis (NLFEA). Moradi et al. (17) proposed a constitutive model including the post-peak
behavior of Steel Fiber Reinforced Concrete (SFRC) based on the results of direct tensile and
compressive tests. They successfully implemented the model along with NLFEA to predict the
ultimate flexural capacity of beams. Lee et al. (18) modeled the constitutive behavior of SFRC using
exponential functions, where the parameters were obtained through bending tests. This model,
although functional, still requires the use of expensive laboratory tests. Huo et al. (19) published a
stress-strain model that included the orientation effect of the fibers. The inputs of the model were
basic material and geometric parameters, easy to obtain with no need for complex testing. The
feasibility of the model was proved by accurately predicting the load-displacement curves of beams
modeled with NLFEA. Nonetheless, the equations are non-linear and complex, requiring vast
knowledge by the practitioner who may use them for applied cases.

An interesting approach to modeling the constitutive behavior of SFRC was presented by Blanco et
al. (20). They established simplified equations to assess the tensile behavior of the material based
on the results of the Barcelona test. The Barcelona test is a double punching test that captures the
tensile response of SFRC with several advantages over the bending and uniaxial tensile tests. It is
less time and material-consuming, easier to perform, and its results at different samples of equal
dosage exhibit less statistical scatter (20). Nonetheless, the equations underestimated the strength
of the material during the post-peak behavior. Moreover, NLFEA may still be required to determine
the flexural response of SFRSCC structural elements.

The models previously mentioned may still discourage the implementation of SFRSCC in the
industry since they require precise knowledge of constitutive modeling and NLFEA. A more
engineering-oriented and user-friendly tool that may be an incentive for the use of SFRSCC is the
Artificial Neural Network (ANN). Although training an ANN implies lots of experimental and
numerical work, its final usage by a practitioner is straightforward. That is why ANN has been
successfully used in civil engineering to predict complex outputs based on simple inputs. Chopra et
al. (21) trained an ANN to estimate the compressive strength of concretes varying the curing age
and the fly ash content. The investigation yielded R2>0.80, which indicates good prediction
capacity. Hodhoh et al. (22) achieved an ANN capable of predicting SFRC strength properties, such
as compressive and impact resistance, based on the dosage of the concrete.

The need for tools that reduce the number of experiments required to predict the flexural capacity
of SFRSCC concrete beams is imperative to its massive use in industry. Therefore, this investigation
assessed an ANN capable of predicting the flexural strength of SFRSCC concrete beams loaded in
the Four Points Bending Test (FPBT). The FPBT was here used as pure bending (no shear force)
occurs at the midspan between loads, contrary to other flexural tests such as the Three Point
Bending Test (23). Hence, the FPBT is a highly suitable test to achieve a more realistic
characterization of the bending moment capacity of SFRSCC beams (23-25).

On the other hand, the input variables for the experiments were the simple parameters
water/binder ratio (w/b) and the ratio of hooked-end fibers added by volume (%F). The output
was the ultimate bending moment (M,). The training of the ANN was done by several NLFEAs and
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validated with real FPBT. The NLFEA models were fed with constitutive relations calibrated with
the results of uniaxial compressive and Barcelona tests. Moreover, a modification was implemented
to improve the constitutive model for tensile stress-strain based on the Barcelona test proposed by
Blanco et al. (20). The original model was reported by their authors to under-estimate the post-
peak stresses of the SFRSCC. In that sense, the change here proposed aimed to face this issue by re-
writing the equilibrium equations using the free body diagram of the cracked specimen, contrary
to the original set-up of equations which was based on the uncracked configuration. The
modification was found to more precisely predict the post-cracking behavior of the material.

2. Materials and Methods

This section describes the experimental campaign performed, constitutive modeling, the NLFEA
executed, and the training and validation of the ANN.

2.1 Experimental Campaign

Variables considered for the SFRSCC mixtures were %F from 0.00% to 1.00% (0 to 78 kg/m3) and
w/b from 0.40 to 0.60. The fibers were hooked-ended and had a tensile strength of 1200 [MPa],
length L=60 [mm], diameter d=0.75 [mm], and aspect ratio L/d=80. Ranges of %F and w/b were
chosen due to their common use in Colombia according to local providers. The combinations of %F
and w/b for the mixtures to test were determined using a Central Composite Design (CCD). A CCD
is a type of statistical design of experiments that combines the 2k factorial design, with 2 - k axial
points and 1 to 5 central points. The 2k factorial design is an efficient statistical experimental design
that allows to evaluate the simultaneous effect of k factors (in this case %F and w/c) on a response
(in this case, the M) for a physical phenomenon, by using a minimum number of experimental
observations (26). Moreover, the addition of the axial and central points allows fitting the model to
a second order response surface. Subsequently, optimization of the factors can be performed (26).
Additionally, the use of more than one central point enhances the accuracy of the estimated results
on the middle of the experimental domain (26). In addition to the CCD experiments, four control
mixtures with no fibers (M 40-00, M 43-00, M 57-00, and M 60-00) were added to evaluate the
influences of fibers.

The self-compacting behavior of the mixtures was achieved following the mix design
recommendations of Okamura (5), including the use of a super-plasticizer (SP) and a 15% mass
replacement of fly ash. The fresh state properties of fluidity and viscosity of the mixtures were
considered adequate when the slump-flow test diameter (SFD) was between 520 and 900 [mm)],
and the Tsgo test time was below 10 [s], according to EFNARC (27). Table 1 shows the mixture
proportions and their fresh state control test results. The notation first indicates the w/b ratio and,
second the %F. For each mixture, three batches were manufactured to cast all the specimens
described ahead. An exception was considered for the central point M 50-50, where five times more
batches (15 batches) were casted. This decision was adopted in order to enhance the statistical
accuracy of the results according to the literature (26). Therefore, in the subsequential sections,
the number of specimens tested for M 50-50 is always five times the other mixtures. Some of the
results of this experimental plan have already been published by the authors (28). The concrete
was used to cast cylinders for uniaxial compression tests, Barcelona, and beams for FPBT. Due to
limited availability of the test equipment at the university where the experimental campaign was
developed, all tests had to be performed at an age of 147 days. Although the typical testing age for
structural design purposes according to the standards is 28 days for conventional concretes (up to
56 days for concretes including pozzolanic admixtures), the testing at further ages does not
constitutes a major problem from the point of view of the authors as typically, more than 90% of
the strength has already developed at these design ages (29). Therefore, the strength obtained
testing at 147 days will more likely represents a difference (below 10%) respect to the typical
design test ages that does not negatively impact the purposes of this study.
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Table 1. Mix proportions and fresh state test results

Mix w/b  %F Cement Fly-ash Coarse Fine SP SFD Ts00

kg/m3  kg/m3 kg/m3 kg/m3 kg/m?3 mm S

M 40-00 0.40 0.00 526.09 7891 41091 95878 3.39 695.00 (62.85)*  3.31(2.53)*
M 40-50 0.40 0.50 526.09 7891 40690 94942 296 716.67 (21.60)*  3.10 (1.11)*
M43-00 043 0.00 506.74 76.01 410.16 960.79 2.80 673.33(112.37)* 3.27 (3.21)*
M43-15 043 0.15 506.74 76.01 410.52 95648 2.10 626.67 (45.02)*  2.43 (0.71)*
M43-85 043 0.85 506.74 76.01 40443 943.66 2.62 576.67 (49.26)*  6.93 (0.98)*
M 50-00 0.50 0.00 459.13 68.87 41239 95838 2.01 575.00 (18.71)*  1.12 (0.21)*
M50-50 0.50 0.50 459.13 68.87 41239 95838 2.01 674.93 (68.85)*  1.28 (0.32)*
M 50-100 0.50 1.00 459.13 68.87 407.24 950.22 2.01 705.00 (133.98)* 1.62 (0.97)*
M57-00 0.57 0.00 411.18 61.68 42637 994.84 1.23 556.67 (28.75)*  1.00 (0.00)*
M57-15 0.57 0.15 411.18 61.68 42520 992.10 1.23 645.00 (12.25)*  1.00 (0.00)*
M57-85 057 0.85 411.18 61.68 41845 97997 137 621.67(123.84)* 2.10 (0.97)*
M 60-00 0.60 0.00 400.00 60.00 424.71 990.99 0.78 556.67 (29.44)*  1.00 (0.00)*
M 60-50 0.60 0.50 400.00 60.00 421.62 980.68 1.29 701.67 (39.71)*  1.00 (0.00)*

*Average (Standard deviation)

2.2 Testing and Methods of Processing Results
2.2.1 Uniaxial Compression Tests

For each mixture, four cylinders of 75x150 [mm] were tested in monotonic load according to ASTM
C39 (30). The deformation rate was 1.50 [mm/min] up to an actuator displacement of 6 [mm].
Compressive strength was calculated from the experimental results. Examples of the tested
cylinders are presented in Figure 1 and average results of the compressive strength, f/ 4, are
presented in Figure 2. A detailed statistical analysis of the compressive strength is presented in the
results section.

2.2.2 Barcelona Tests

Double punching Barcelona Tests were performed in 4 cylinders of 150x150 [mm] for each
mixture. The punching effect was achieved by placing two cylindrical steel punches of diameter
37.5 [mm]. The test was performed according to the standard UNE-83515 (31). The deformation
rate was monotonic at 0.50 [mm/min] up to an actuator displacement of 6 [mm].

Fig. 1. Compressive strength tested cylinders: a) M 40-00, b) M 60-00, c) M 43-00, d) M 43-10
and e) M 43-85.-
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Fig. 3. Barcelona test cylinder: a) Set-up, b) M 40-00, c) M 60-00, d) M 43-00, e) M 43-10 and f)
M 43-85
150
150 0 M A A A A A M 40-50
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Fig. 4. Load-displacement curves for Barcelona cylinders: a) without fibers, and b) with fibers.

For reference, Figure 3 shows the test set-up and various tested cylinders. Also, examples of the
load-actuator displacement curves experimentally obtained are showed in Figure 4. The data from
these curves was used as the main input to determine the tensile stress-strain curve of the
specimens as described in Section 2.2.6.
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2.2.3 Four Points Bending Tests

The FPBTs were performed in four beams of 150x150x500 [mm] for each mixture, following the
standards ASTM C1609 and RILEM TC 162-TDF (32,33). Since pure bending occurs at the central
length, a notch of depth 22 [mm] and thickness 0.4 [mm] was cropped in the mid-span of the
specimens to arouse the cracking there. The free length between supports at testing was 450 [mm)],
and the separation between loaded points 150 [mm)]. Set-up of the test and some examples of
beams at the end of the test are shown in Figure 5. Also, examples of the load-actuator displacement
curves are presented for every mixture in Figure 6.

During the test, the deformation rate was incremental and varied depending on the actuator
displacement: 0.20 [mm/min] from 0 to 1 [mm], 0.25 [mm/min] from 1 to 5 [mm], and 0.70
[mm/min] from 5 to 10 [mm]. As Bernard [29] described, the actuator displacement is not
representative of the deflection (flexural deformation) the beam experiences. Therefore, Digital
Image Correlation (DIC) was used to measure the mid-span deflection on the beams at each load
increment. Details on this procedure can be found in a previous publication by the authors (28).
The bending moment at each load was calculated using the equilibrium equations. Finally, the
experimental moment-deflection curves were obtained for each tested beam.

150 [mm]

SFRSCC beam

&

500 [mm] |

i e AeSE R

Support plate Actuator

c)
Fig. 5. FPBT beams a) Set-up, b) M 50-00, c) M 50-50, and d) M 50-100
20 100 | ===-- M 40-50
———M40-00 gg o — M 43-15
1A M 43.00 | ——Ma43-85
- —=—"M43-00 = w
z Z 60 77 NWV“H ------- M 50-50
=10 I ¥ - 4 f
= M50-00 % & -~ M50-100
o — A
S -~ M 57-00 s T ce+M57-15
=M 60-00 : e M 57-85
i — M 60-50
0 1 0 2 4 6 8 10
Actuator displacement [mm] Actuator displacement [mm]
a) b)

Fig. 6. Load-displacement curves for FPBTs beams: a) without fibers and, b) with fibers

2.2.4 General Aspects on The Implemented Constitutive Models

The constitutive models for the compressive and tensile stress-strain responses of the mixtures
were selected based on the literature review. The compression behavior was based on the
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equations proposed by Wang et at. (34) and De Oliveira (35). The tensile response was based on
the model proposed by Blanco et al. (20), Bortolotti (36) and modifications to these proposed by
the authors of this paper.

In all cases, the material was considered homogeneous and isotropic. The shear response was
assumed to be linear, and the Poisson ratio was fixed as 0.20. This analysis was performed only for
the nine mixtures part of the CCD (M 40-50, M 43-15, M43-85, M 50-00, M 50-50, M 50-100, M 57-
15,M 57-86 and M 60-50 in Table 1).

2.2.5 Compressive Stress-Strain Constitutive Relation

The non-linear model implemented here was described by Wang et al. (34) and is presented
equation (1). It includes the effect of fibers on compressive strength.

( IEC EC e-C 2 p
ﬁ:? aa+(3—2aa);+(aa—2)(§) €. < €,

c c c

= 1
fc<,6_c . (1

fC ' 2
€ €c €c
L \a(G-1) +5

In these equations f is the compressive stress in [MPa] evaluated at an axial strain €, in [mm/mm],
and f; and €/ are the compressive strength in [MPa] and its associated axial strain in [mm/mm)],
respectively. The shape factors a, and a; were calculated using the linear relations of equations
(2) and (3). These equations were obtained using the empirical values of a, and a, published by
Wang et al. (34) for %F (by volume) of 0.00 and 1.00.

ag = 1.5 + 0.2(%F) )
ay = 5.4 — 3.9(%F) (3)

The value of f, was obtained from the compressive uniaxial tests with the peak load and the
cross-sectional area of the cylinder. Since the actuator displacement was not a trustable measure
of the axial deformation, €, was not determined experimentally. Equation (4), as reported by De
Oliveira et al. [31], was used. It was chosen as the materials, types of fibers, and %F used in their
investigation were similar to those used in this work.

€. = (0.00048 + 0.0001886(%F)) In(f)) 4)

2.2.6 Tensile Stress-Strain Constitutive Relation

The model used was based on the proposal of Blanco et al. (20). It was chosen as it directly relates
the tensile stress and strain of the SFRSCC to the load-actuator displacement curve obtained from
the Barcelona test. The model assumes the material follows a linear stress-strain relation up to the
peak cracking stress f,., then captures the residual stresses and their related strain after cracking.
This residual behavior is the main contribution of the steel fibers. Blanco et al. (20) reported that
their original model underestimates the cracking peak and residual stresses compared to other
models validated by international standards. Therefore, two modifications on the calculus of the
stresses were proposed here to improve the model:

e Thevalue of f, in [MPa] was calculated using equation (5) proposed by Bortolotti (36), which
is based on the Mohr-Coulomb failure criteria applied to concrete cylinders in double
punching.

P
fr = -

n (dz_h - 4t:j(ﬁ))

Here, d and h are the diameter and height in [mm] of the SFRSCC cylinder, B. is the peak load
(cylinder cracking load) obtained from the Barcelona test in [N] and d. and £ are the base in [mm]

(5)
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and inclination angle in [°], of the conical wedge formed by the cylinder cracking, as shown in Figure
7.

The values of P. and d. were measured for each cylinder after performing the tests. However,
was not calculable for all tests as the wedge was still harshly attached by the fibers to the fractured
specimen. In the cases where 8 was measured, it was close to 25°, which agrees with the value
reported by (20). Therefore, this value was used in the equation.

Conical wedge

Cracked
segment

Typical cracking
pattern

Fig. 7. Typical fracture of a cylinder on Barcelona test

e The equilibrium equations that related the load to the tensile stress in the post-cracking stage
were rewritten on a cracked segment of the cylinder (cracked configuration) instead of on a
differential element (reference configuration) as initially proposed by Blanco et al. In the
opinion of the authors, this approach is more consistent with the actual phenomenon since
the cracking of the cylinder is discrete instead of smeared. Therefore, the action of fibers and
residual tensile stresses occurs at the cracked surfaces.

For the equilibrium, the same forces considered by Blanco et al. were included, and it was assumed
that the cylinder fractured into equal pieces. Figure 8 illustrates the cracked segment for the
equilibrium.

YA

i
|
Ly

d

Fig. 8. Free body diagram of the cracked cylinder segment for equilibrium

In this figure, n is the number of cracked segments of the cylinder, which may be different for each
test butis usually 2, 3 or 4. F; are the forces in [N] thatact on the XY plane, orthogonal to the cracked
surfaces and hold together the segments of the cylinder, mainly due to the action of fibers. Fj, is the
force in the plane XY resulting from the contact between the wedge and the cracked segment, which
is calculated according to (20) using the equation (6).

F, = p <COS([3) - uksin(ﬁ)>

sin(B) + py cos(B) (6)
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In this equation, P is the actuator load in [N] and g, is the kinetic friction coefficient between wedge
and segment. Specifically, y;, represents the ratio between the friction (tangential) and contact
(normal) forces that generates in the contact between the conical wedge and the cracked segments
of the cylinder during the Barcelona test (see Figure 7). A detailed description of these forces can
be found in (20). According to the literature, common assumed values of y; used between 0.5 and
1.4 (20,37). In this research, in order to make a more precise estimation of yy, its calculation was
done using inverse analysis aiming to lower the error between the modeled tensile behavior of the
SFRSCC and the actual experimental results. Performing force equilibrium along Y in Figure 8 yields
equation (7).

180° F,
)+_R=0 (7)

-2 F; sin(
n

Then, the tensile stress f; is calculated by replacing (7) and (6), solving F; and dividing it by the
cracking surface. Equation (8) shows this solution.

(COS(ﬁ)—#k Sin(ﬁ))
sin(B)+uy cos(B)

2 nsin (szoo) (% 8 tzi(ﬁ))

fe = (8)

Notice that the only difference between this equation and the original proposal of Blanco et al. is

: . (180° : . . :
the expression n sin (T) which corresponds to m in the original equation. If n - oo then

. (180° C ey . . . .
nsin (T) — 1, which is the equilibrium on a differential. For n between 2 and 4, this denominator

is always lower than m, which results in higher residual stresses, therefore, a more accurate
estimation in comparison to the original model.

Strains were calculated following the kinematic equations (9) deduced by Blanco et al. (20).
Furthermore, it is worth mentioning that for the post-cracking stage, their equations considered
the cracked configuration of the cylinder. Therefore, the proposed approach for deducing the
equilibrium equations from the cracked segments is consistent with these original kinematic
equations.

g—r at cracking
Cc
€& =9 nU, 180° ©)
——— tan(p) sin (T) post — cracking

™ (3)

Here, €, is the tensile strain in [mm/mm)], U, is the actuator displacement in [mm)], d is the cylinder
diameter in [mm)], f, the peak cracking stress in [MPa] and E. is the elastic modulus of the SFRSCC
in [MPa]. The last was assumed as the initial tangent modulus obtained by differentiating the
equation (1) according to reference (19).

Equations (5), (8) and (9) were used to determine the tensile stress-strain curve of the SFRSCC.
Due to the vast amount of data collected during the Barcelona test, Blanco et al. [20] recommended
simplifying the model to a quadrilinear model. Nevertheless, here it was necessary to use a
pentalinear model to achieve convergence of the NLFEA, which was further described. The strain

points in [mm/mm] considered for the pentalinear stress-strain curve were: (i) ;—T, (i) ;—T + 0.0005,
c c

(iii) e, = 0.0005, (iv) €; = 0.0075 and (v) €; = 0.015. For these strains the related stresses were
calculated. These were respectively noted as f;1, fi2, fi3, fra and fis.

2.2.7 Characteristic stress-strain curves

For all the mixtures, four specimens in compression and four in Barcelona double punching were
tested. Each specimen had different stress-strain curves, which is expected since there is statistical
scatter due to factors such as inherent concrete heterogeneity. Hence, characteristic stress-strain
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curves for each mixture were determined by fitting the sample results to the Weibull two-
parameter distribution, selected as it has been proven to be adequate to model the statistical
variation of ceramic materials such as concrete (38,39). Weibull formula is presented in equation
10, where fy;, is the probability density, x is the studied variable, S, is the scale parameter (similar
to mean in normal distribution), Ay is the shape parameter (similar to standard deviation in normal
distributions).

Aw—1 x \w
=2 () e (10)
Bw \Bw

The Weibull parameters for each mixture (Table 1) were calculated for f/, f;1, fi2, fi3, fra and fis
and f;s, using the Maximum Likelihood Method (MLM) through MATLAB R 2020a (40). MLM was
implemented as it is a widely used optimization technique which aims to determine the parameters
of a probability density function that the maximizes the likelihood that the experimental results
belong to the Weibull distribution (38). After fitting the parameters, the goodness of fit of the
results was evaluated using the Anderson-Darling test (AD2). The MATLAB script used to calibrate
the Weibull parameters and determine the AD2 is presented in the Appendix 1.

2.2.8 Non-Linear Finite Element Analysis

NLFEAs were performed using SAP2000® V.22 (41) to determine the flexural response of beams
on FPBT for each mixture. The finite element used was a four-nodes membrane and the material
non-linearity was incorporated using multi-linear stress-strain relations based on the
characteristic constitutive models calculated as explained in Section 2.2.3. The mesh showed in
Figure 9 was determined using convergence analysis, in which a relative error of 0.05% in the peak-
load was achieved using 960 elements.

Horizontal restraint

P/2 P/2
150 50 150

o
mn
i
'ﬂ“\
\[75 137.5 75\ 137.5 75
Vertical restraint Notch
a) b)

Fig. 9. Finite elements model, a) Front view, b) Extruded view. All distances in [mm]

The analyses were displacement-controlled with 500 steps, up to an objective displacement of 0.25
[mm] at mid-span. SAP2000® uses Newton methods to solve the equilibrium at each step (42). All
the analyses were performed on a laptop ASUS N550] with Intel® CoreTMi7 processor, four cores,
and 16 [GB] of RAM. The time of the analyses was between 5 and 30 minutes. The parameter p,
was used to calibrate the NLFEA to the FPBT experimental results by using inverse analysis. This
analysis was performed iteratively varying the values of p; in the constitutive tensile models, then
calculating the numerical maximum bending moment and comparing it to its experimental value.
The procedure was continued until the theoretical value was close to the experimental. Obtained
U values were between 0.5 and 1.4 as expected, according to (20). The load-deflection curve was
obtained from each simulation, and then M, was determined from equilibrium using the peak load.

2.2.9 Data Set for The Artificial Neural Network

Proper training, calibration, and validation of ANNs, requires several data sets (43). The
experimental program only provided 13 data with inputs w/b and %F, and output M, therefore,
NLFEA was used to increase the amount of data. This required determining the constitutive model
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parameters for different w/b and %F among the studied ranges. Hence, a Response Surface (RS)
based on the 2k with central and axial points experimental designed used (see Section 2.1), was
calculated for each one of the characteristic values f, f;1, fi2, ft3, ft4» and f;5. Equations (11) to (16)
are the RSs between the constitutive model parameters in [MPa] and the inputs w/b and %F
obtained with Minitab V.16® (44). Moreover, for all these equations R2>0.89, which indicates good
fitness to the experimental data.

2

w w w
£l = —459.40 (E) +118.80 (%F) (E) —59.30 (%F) + 291.20 (E) +7.20 (11)
Wh 2 w
fa = =074 (%F)? — 40.16 (+) + 1117 (%F) () — 480 (%F)
W b b (12)
+29.59 (E) — 1.44
Wh 2 w w
— _ 2 _ _ _ — ) —
fry = —3.19( %F) 59.10(b) +6.15 (%F) (b) +55.10 (b) 12.65 (13)
fiz = 0.13( %F) + 2.98 (14)
w
foa = 1.12 (%F)? + 1.37 (%F) — 2.09 (3) +1.10 (15)
w
fis = 1.73 (%F)? + 0.35 (%F) — 2.38 (g) +1.27 (16)

These equations were evaluated for w/b from 0.40 to 0.6 in steps of 0.02, and %F from 0.00 to 1.00
in steps of 0.10. Then, the constitutive models were used to determine M, through NLFEA, as
described in Section 2.3. A total of 121 simulations were performed, and their results were
consequently used to feed the ANN. The process was automatized through a script that allowed to
run SAP2000® using MATLAB®, which is presented in Appendix 2.

2.2.10 Artificial Neural Network

The ANN was a multilayered perceptron fully connected with supervised learning. The inputs were
w/b and %F, and the output was the M,. All its coding was self-made in MATLAB®. A sketch of the
architecture of the ANN is presented in Figure 10.

Input layer Hidden layers Output layer
Weights Weights Weights
w/b, M
u
%F
Bias Bias Bias
neuron neuron neuron

Fig. 10. Architecture of the ANNs

Architectures tested consisted of 1 or 2 Hidden Layers (HL), with 2, 5, 10 or 20 Neurons per Hidden
Layer (NHL). For the hidden neurons, the activation function was the hyperbolic tangent, which led
to the best results in the preliminary simulations. Moreover, all the input and output data were
normalized for the training of the ANN using equation (17), where D,, is the normalized data, D the
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original data, and D,,;, and D,,,;, the minimum and maximum values of the data before
normalization.

Dn — D - Dmin [17)

Dmax - Dmin

For the assessment of the ANNs, the 121 data were organized in a random permutation according
to Ref. (45), then 84 data (70%) were used for training, 24 (*20%) for calibration, and 13 (x10%)
for validation. This division of the data set seeks to avoid the overfitting of the ANN during its
training, as described in Ref. (46). The training implied determining the weights (including the bias
neurons) to minimize the objective function Mean Squared Error (MSE) presented in equation (18).

Nt 1 [18)
MSE = Z N (Myann — Murpm)?
1 Nr

Where m, 4y are the ultimate moments, normalized according to equation (17), predicted by the
ANN, m pg) are the normalized ultimate moments obtained from the NLFEA of Section 2.2.8, and
Ny is the number of training data.

Three optimization methods were evaluated for minimizing the MSE: Momentum Back Propagation
(MBP), Particle Swarm Optimization (PSO), and Gravitational Search Algorithm (GSA). The
calculation of weights for each architecture was performed five times using each algorithm. MBP
and PSO are widely used methods that have proven to be successful in similar ANNs training
(45,47,48). A detailed description of these algorithms can be found in (46) and (49). Furthermore,
GSA is a meta-heuristic optimization method based on the universal gravity law, developed by
Rashedi et al. (50) in 2009, which has been reported to achieve superior performance compared to
other algorithms of its class, such as PSO or Genetic Algorithms. Moreover, it has proved to be a
feasible alternative to solve optimization problems in structural engineering (51). To the best
knowledge of the authors, GSA has not been used for ANNs related to SFRSCC. Therefore, its
feasibility was explored here.

In the original nomenclature of the GSA, each iteration is referred to as an age. Its parameters are
the initial gravitational constant G,, the maximum of iterations age,,,,, the shape factor «, the
initial number of agents (candidate solutions) N,,, and the relative error tolerance between
iterations e,,;,. GSA pseudo-code is as follows:

o SelectG,, agemax @, Npq and e .

e Make age=1

o Select random values for the N,, agents. In this case each agent is a vector that contains
values for the ANN weights (w;). This is referred as the position vector of the agent.

e Select random values for the initial velocities of the agents. In this case that refers to the
velocity of the weights (Aw;).

o Evaluate the objective function for each of the agents. In this case that is the MSE.

e Determine the best and worst agents. Here they are the agents with the lower and higher
MSE, respectively.

e Determine the mass of each agent M, using equation (19).

MSE — MSE,,,.x (19)
@ MSE i — MSE 05

o (Calculate the number of effective agents N, using equation (20). Effective agents refer to the
agents with better values for the objective function MSE. Only these will continue in the next
ages.

N 20
N, =Nyq — ¢age (20)
agemax

o (alculate the gravitational constant G using equation (21).
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age [21)
G = GO expaagemax

o Determine the acceleration a; that acts on each agent. For each (i)-th agent, the acceleration
that results from its interaction with all the other (j)-th agents is calculated using equation
(22), where R;y(; is the Euclidean distance between the position of agents, ¢ is a small value
to avoid indeterminacy in case both agents have the same position and rand is a random
number between 0 and 1.

. & (22)

Mgy Myi
[rand G —a® Q) (w; —w))])
Roygy +e

a; =
M.
“® (=TT

e Recalculate Aw; using equation (23).
Aw; (age+1) = rand Aw; (age) T Qi (age) (23)

o Recalculate the position of the agents using equation (24). These are the actualized values of
the candidate solutions.

Wi (age+1) = Wi (age) T Aw; (age+1) (24)

Recalculate MSE for the new position of the agents.

Actualize the best agent.

Calculate the relative error between the actualized best agent and the previous best agent.
Make age=age+1

o [fthe relative error<e,,;, and age< age, ., repeat steps VI to XVL.

Different values for the parameters of GSA were tested. The results reported utilized G, = 1,
agemax = 1000, a = 1, N,, and e,,;, = 10~15, which yielded the lowest values of MSE.

3. Results and Discussion

This section presents the detailed results of the experimental compression, Barcelona and Four
Point Bending tests. Also, the results of the constitutive modeling, NLFEA calibration and ANN
training are presented and discussed.

3.1. Uniaxial Compression and Barcelona Tests

Table 2 presents the average results of the tests for the compressive and Barcelona tests. In the
case of the Barcelona test the table includes the cracking peak load and the tenacity (area under
the load-actuator displacement curve), which measures the energy dissipation capacity of the
SFRSCC in tension.

Table 2. Compression and Barcelona test results

Mix Compressive strength Peak load Barcelona Tenacity Barcelona
MPa kN J
M 40-00 47.31 (0.06)* 130.09 (0.07)* 111.01 (0.12)*
M 40-50 41.90 (0.03)* 132.69 (0.09)* 370.65 (0.08)*
M 43-00 48.53 (0.03)* 149.64 (0.06)* 134.22 (0.17)*
M 43-15 46.99 (0.04)* 135.29 (0.05)* 202.19 (0.16)*
M 43-85 39.99 (0.11)* 115.52 (0.14)* 426.99 (0.12)*
M 50-00 36.37 (0.04)* 119.56 (0.08)* 132.52 (0.17)*
M 50-50 35.81 (0.11)* 123.98 (0.06)* 332.07 (0.09)*
M 50-100 35.10 (0.15)* 117.15 (0.15)* 504.07 (0.23)*
M 57-00 30.82 (0.09)* 112.28 (0.10)* 139.40 (0.18)*
M 57-15 23.96 (0.03)* 91.87 (0.05)* 167.33 (0.10)*
M 57-85 30.17 (0.01)* 119.85 (0.07)* 508.93 (0.31)*
M 60-00 24.67 (0.02)* 96.54 (0.04)* 128.19 (0.12)*
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M 60-50 22.87 (0.10)* 91.42 (0.02)* 323.79 (0.17)*

Average (Coefficient of variation)*

As it is expected for concretes, compressive strength decreases as w/b increases. However, it
should be noted that for most of the w/b, the inclusion of fibers reduces the compressive strength
between 2% and 18%. This percental decrease is higher for lower values of w/b and increases for
higher values of %F. The same phenomenon has been reported by other researchers (11,52,53) up
to decrease values of 25%. The compressive strength decrease might be related to the lost
workability of SFRSCC for small values of w/b and high values of %F, which causes the formation
of small voids in the cross sections of specimens during casting. Also, the inclusion of long fibers
may generate additional interfacial transition zones by disruption of the binder paste. Both defects
promote porous weak zones in the concrete matrix which might increase internal stress
concentration during compressive loading, leading to lower compressive capacity.

The peak load Barcelona is a measure of the tensile strength, and it also increases for lower w/b,
which is expected for concretes (10). Moreover, the inclusion of fibers had a minor effect on the
peak load for most of the mixtures, which is well-known as the main contribution of fibers occurs
in the post-cracking stage (54). This effect is evidenced in rises of tenacity between 20% and 280%
as the %F augments. This improvement is related to an increase in ductility since tensile strength
is marginally affected. Also, Figure 11 evidences the post-cracking contribution of fibers as the
cracking width is markedly reduced for higher %F.

Fig. 11. Compressive and Barcelona test fracture at 6 [mm] actuator displacement for a) M 50-
00, M 43-00, b) M 50-50, M 43-15, and c) M 50-100, M 43-85

Coefficients of variation of compressive strength and peak load Barcelona are sharply lower than
those of the tenacity. This is evidence of the high statistical scatter existent in SFRSCC mechanical
properties that are highly dependent on the fibers. Hence, the use of statistical analysis, as proposed
in Section 2.2.3 to characterize the constitutive behavior of SFRSS is imperative. According to the
guide ACI-214 (55), coefficients of variation over 0.05 indicate poor agreement of the normal
distribution parameters (mean and standard deviation) to the experimental results. Most of these
coefficients were higher than this limit, particularly on the tenacity, which is why the Weibull
distribution was used to determine the characteristic stress-strain curves, as stated in Section 2.2.3.

3.2 Characteristic Compression Stress-Strain Curves

Fitness of data to the Weibull and Normal distributions to determine the characteristic f, are
presented in Table 3. P-values of AD? considered as null hypothesis that data belong to the
distribution. For a significance level of 0.10, it can be seen that all data fit the Weibull distribution,
while M 43-15 and M 60-50 do not adjust to the normal distribution. Moreover, characteristic
compressive strength obtained from Weibull analysis was in average 3% higher than those of the
normal distribution (mean). Similar results have been published in literature and indicate that the
mean is still a good indicator of the characteristic f. (56).
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Using the Weibull f; and the equations of Section 2.2.1, stress-strain curves in compression, were
determined and presented in Figure 12. The negative sign indicates compression stress and
shrinking strain. From these curves it is seen that SFRSCC initial stiffness E, is inversely related to
w/b. Also, the improvement of residual capacity (post-peak) on higher %F mixes can be noticed as
the post-peak stresses on mixes with lower %F (dashed lines) decrease with a steeper slope than
those with higher %F (solid lines). This behavior explains the control on compressive cracking
perceived in Figure 11 for mixes M 43-85 and M 50-100.

Table 3. Goodness of fit analysis for f’.

Weibull Normal
Mix fe P-value f. P-value
MPa MPa
M 40-50 42.46 0.78 41.90 0.27
M 43-15 47.76 0.74 46.99 0.10
M 43-85 41.88 0.77 39.99 0.24
M 50-00 36.89 0.79 36.37 0.14
M 50-50 38.30 0.52 35.81 0.54
M 50-100 37.07 0.98 35.10 0.77
M 57-15 24.24 0.86 23.96 0.36
M 57-85 30.28 0.89 30.17 0.21
M 60-50 23.70 0.38 22.87 0.01
-50 —eetr-- M 40-50
40 ———-M43-15
——— M 43-85
© -30 —-4—-M 50-00
= | sMresl YN RS TS s .
" 20 M 50-50
e —4— M 50-100
-10 M 57-15
M 57-85
0 & .
0.000 -0.002 -0.004 o005 = M60:50

€. [mm/mm]

Fig. 12. Compression stress-strain curves

3.3 Characteristic Tensile Stress-Strain Curves

Table 4 presents the five stress parameters for the pentalinear models fitted to Weibull and the g,
calibrated based on the NLFEA. In this table, the values marked with * did not fulfill the AD2 null
hypothesis for a significance level of 0.10. These results belong to the M 50-50 for which more
experiments were performed, as mentioned in the methodology. Hence, a possible cause of the lack
of fitness to Weibull is the blocking effect that might arises from the fact that all the different
samples had to be distributed in two different curing chambers with different humidity and
temperatures, which could have slightly influenced their strength development (26). Another
possible cause of the lack of fitness to Weibull in this case lays in the fact that as it corresponds to
the central point, more samples were tested. Hence, according to the statistical theory of the central
limit, higher number of samples approximates the observations statistical distribution to a normal
distribution (26).

Figure 13 shows the constitutive models calculated using equations of Section 2.2.2. The cracking
tensile stresses were, on average, 9.3% of the compressive strength, which is expected for SFRSCC,
according to the literature (37). Residual strength (post-peak) increases for higher %F (solid lines)
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due to the more bridging action between cracked segments of the concrete, which will occur for
more fiber contents.

Nonetheless, the last post-peak slopes (f;4 to f¢5) were found to be steeper than those reported by
other researchers for stress-strain curves obtained with flexure or direct tensile tests (17,35,57).
Therefore, underestimation of the stresses at high strain levels occurs. Although conservative for
design purposes, a precise prediction of the mechanical behavior requires more work on the
constitutive equations. A possible future modification will be to consider that the area where stress
is distributed decreases as the segments separate during the Barcelona test.

Table 4. Parameters for the characteristic tensile stress-strain curves

Mix f1 fo fi3 fis fis Wk
MPa MPa MPa MPa MPa
M 40-50 3.61 2.58 2.31 1.34 1.08 0.55
M 43-15 3.84 0.77 0.76 0.42 0.32 0.60
M 43-85 3.36 2.56 2.48 1.86 1.51 0.80
M 50-00 3.31 0.00 0.00 0.00 0.00 0.60
M 50-50 3.52 2.38 1.69* 1.05* 0.62* 0.55
M 50-100 3.27 3.34 3.30 2.82 2.35 0.55
M 57-15 2.62 0.58 0.32 0.16 0.13 0.60
M 57-85 3.27 2.44 2.36 1.76 1.11 0.95
M 60-50 2.54 1.17 1.07 0.76 0.50 1.00
l -4~ M 40-50
h
B ———-M43-15
3 n S —  M43-85
— 5 —-4—-M 50-00
S e R ——
= 1 M 50-50
e ' —A— M 50-100
1 M 57-15
M 57-85
0. X 55 M 60-50
0.000 0.005 0.010 0.015

€ [mm/mm]

Fig.13. Tensile stress-strain curves

3.4 Experimental and Numerical Flexural Behavior

Figure 14 presents pictures of the FPBT and NLFEA results. The fracture process was captured by
the model in an implicit manner through the decrease down to zero of the tensile capacity after
the post-peak tensile behavior. There, the bridging effect of fibers is evident as the beam with
9%F=0.00 completely fractures (Figure 10a), contrary to the beam with fibers added (Figure 10b).
The NLFEA exhibits strain concentration occurring at the fractured zone of the beam (Figure 10c)
and also satisfactorily simulates the deformed configuration (Figure 10d).

Figure 15 presents the load vs. mid-span deflection curves obtained experimentally and through
NLFEA. Due to illumination conditions and the duration time of the experiments, it was only
possible to carry out DIC measurements for half of the FPBT (dashed thin lines). For the other half,
only the peak load is reported (solid thin lines). The difference between experimental peak loads
for beams with equal dosage of SFRSCC evidences the high statistical scatter in the mechanical
response, mainly related to the random orientation and position of fibers. Nonetheless, the models
had good accuracy to predict the maximum mean loads.

The initial linear portion of the experimental and NLFEA (solid thick lines) curves have a good
agreement, however, in some cases (M 40-50, M 43-85 and M 57-85) the experimental results
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exhibit a hardening behavior after this linear portion while the NLFEA tend to a softening behavior.
This could be explained as described in Section 3.3, since the post linear-elastic behavior is
controlled by the tensile constitutive relation, markedly influenced by the fibers. Proposals of other
researchers achieve better post-cracking performances, nonetheless their tensile constitutive

relationships were directly calibrated from bending tests and did not consider the statistical scatter
(35,57).
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Fig. 14. SFRSCC beams on a) FPBT %F=0.00, b) FPBT %F=0.50, c) NLFEA strain field and d)
NLFEA deformed configuration
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Fig. 15. Load-mid-span deflection curves
Table 5. Maximum bending moments
Mix M, - Tests average M. - NLFEA Relative error
[N-m] [N-m] %
M 40-50 1857.93 1945.65 4.72
M 43-15 1245.62 1314.00 5.49
M 43-85 2063.68 2094.75 1.51
M 50-00 1181.11 1050.60 11.05
M 50-50 1492.45 1502.63 0.68
M 50-100 3020.57 2822.78 6.55
M 57-15 856.77 801.45 6.46
M 57-85 1986.93 1950.83 1.82
M 60-50 1037.68 972.08 6.32
Mu
[N=m] [I\IIV-[;]
3000 —
2500 2500
2000 2000
1500 1500
1000 1000
500 500
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w/b ) nghgg 'QﬁF
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Fig.16. Surface plots of the maximum bending moment vs. w/b, %F a) Experimental test results,
and b) NLFEA results

Table 6. Maximum bending moments for ANN training

. Mot . Me ¢ . Mo ¢
A T T A T I o A T I
1 046 040 1265 6 42 058 080 2024 5 83 042 090 2464 5
2 040 020 1050 11 43 040 090 2475 5 84 048 100 2661 5
3 050 030 1039 14 44 054 000 977 7 85 050 070 1868 6
4 054 080 2026 5 45 058 050 1332 6 86 058 090 2197 5
5 042 100 2739 5 46 054 040 1174 8 87 048 050 1504 6
6 046 090 2418 5 47 048 040 1240 5 88 042 050 1570 5
7 044 100 2707 5 48 040 080 2202 5 89 056 050 1375 12
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8 0.52 1.00 2559 5 49 0.58 030 814 8 90 0.58 1.00 2576 11
9 048 0.20 997 23 50 0.52 090 2331 6 91 0.56 090 2220 6
10 0.58 0.20 882 6 51 0.56 0.20 768 7 92 0.54 0.20 846 8
11 042 030 1141 14 52 0.44 030 1129 9 93 0.58 0.00 670 6
12 0.60 040 1207 14 53 050 0.80 2137 5 94 0.54 0.50 1437 6
13 046 0.10 1270 5 54 0.52 0.20 883 14 95 046 030 1102 11
14 0.52 0.70 1902 5 55 0.52 0.80 2068 6 96 0.54 0.10 808 6
15 0.54 0.30 959 10 56 0.42 0.80 2243 5 97 0.54 1.00 2670 7
16 0.40 0.70 1992 5 57 046 0.50 1528 5 98 0.50 0.20 947 6
17 050 1.00 2626 5 58 0.44 0.40 1319 9 99 0.58 0.40 1152 10
18 0.40 0.10 1069 7 59 0.56 0.70 1844 5 100 0.50 0.90 2329 5
19 040 0.50 1588 5 60 0.58 0.70 1840 6 101 0.48 0.70 1914 5
20 0.44 0.20 1036 20 61 0.58 0.10 582 11 102 0.42 0.00 1240 9
21 048 0.10 1203 6 62 044 0.70 1944 5 103 0.50 0.10 1134 6
22 042 040 1272 5 63 050 0.60 1743 10 104 0.44 0.00 1243 7
23 0.60 030 895 9 64 0.44 0.80 2206 5 105 0.46 1.00 2681 5
24 0.60 0.80 1924 6 65 0.56 0.60 1620 6 106 0.40 0.40 1370 13
25 0.58 0.60 1558 9 66 0.56 1.00 2484 6 107 0.50 0.00 1259 5
26 0.52 030 1032 15 67 0.54 0.70 1889 5 108 0.50 0.40 1240 5
27 0.54 0.60 1668 6 68 0.52 0.10 1103 19 109 042 0.60 1781 6
28 040 0.00 1001 8 69 0.46 0.80 2160 5 110 0.52 0.50 1462 5
29 0.56 040 1135 6 70 046 0.20 1016 18 111 048 0.60 1733 5
30 042 0.20 1039 30 71 0.44 0.50 1552 5 112 0.44 090 2445 5
31 056 030 974 6 72 0.50 0.50 1465 5 113 0.48 0.00 1234 7
32 040 0.30 1168 15 73 0.60 0.70 1727 6 114 0.60 0.60 1476 6
33 042 0.10 1057 30 74 042 0.70 2005 5 115 0.48 0.80 2157 6
34 048 090 2390 7 75 052 0.60 1716 5 116 0.44 0.60 1784 5
35 046 0.60 1761 6 76 0.52 0.00 1026 5 117 0.60 0.10 605 5
36 0.60 0.50 1325 11 77 040 1.00 2754 5 118 0.52 0.40 1219 5
37 0.60 090 2222 7 78 046 0.00 1179 5 119 048 0.30 1060 9
38 0.60 1.00 2490 13 79 046 0.70 1924 5 120 0.40 0.60 1816 7
39 0.60 0.00 628 5 80 0.44 0.10 1286 6 121 0.56 0.80 2060 6
40 0.56 0.10 734 28 81 0.54 090 2286 6

41 0.60 0.20 677 24 82 0.56 0.00 806 7

Using the peak loads, values of M,, were calculated as presented in Table 5. As expected, increasing
the %F augmented the flexural capacity in all cases. Moreover, the predictive capacity of the
numerical model is justified as the differences between the experimental and NLFEA bending
moments are 5% on average, where better prediction occurs for the cases with fibers addition.
With the validated NLFEAs, several simulations for the training of the ANNs were executed, as
shown in Table 6. Their results are ordered based on a random permutation as required for
assessing the ANNs. The total time of the simulations was 16.26 hours. Average computing time
was 8 minutes, with some mixes requiring 30 minutes to achieve convergence.

The fact that only one structural element is modeled remarks the high computational cost needed
to model nonlinear behavior of SFRSCC in commercial software. Furthermore, more computing
time was required for beams with %F<0.30. This might be caused by the more brittle behavior of
these mixtures, which leads to a sudden loss of stiffness after cracking occurs and may slow
convergence in the numerical solution (e.g., M 43-15 and M 60-50 in Figure 15). A comparison of
the NLFEA data with the experimental bending moments (Table 5) is presented in Figure 16. There
it is noticeable how the tendency of the NLFEA models resemblance the experimental resultants
and the marked effect that %F has on the flexural strength.

3.5 Bending Moment Predictions by ANNs

Convergence curves for the best run of each training algorithm for the ANNs with less weights
(HL=1, HN=2) and more weights (HL=2, HN=20) are presented in Figure 17. As seen in all these
graphs, no divergence occurs between the training and calibration curves, indicating no overfitting
of the ANNs, as explained in (46). In general, MBP required more iterations to converge than PSO
and GSA. This is explained as only one candidate solution is evaluated per iteration at MBP.
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Moreover, PSO performed better at early iterations and converged faster (between 100 and 200
iterations) than GSA (between 400 and 500 iterations). Nonetheless, after these iterations, GSA
keep identifying better solutions, which relates to a good exploitation capacity.

PSO successfully located minima in the early stages of the iterations despite the number of the
ANNSs weights, as the shape of the convergence curve is similar for HL=1, HN=2, and HL=2, HN=20,
while MBP and GSA required more iterations to achieve convergence for the ANNs that required
calculating more weights (HL=2, HN=20). Nevertheless, GSA achieved the best optimization for six
of the eight different architectures of ANNs, as depicted in Table 7.

The MSE presented was calculated, including training, calibration, and validation data. Also, the
coefficient of determination R? is presented as an additional measure of the fitness of the ANNs
predicted bending moments to the NLFEA simulations (Table 6). The only scenarios where the MBP
and PSO performed better than GSA were those with a higher number of weights (HL=2, HN=10
and HL=2, HN=20).
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Fig.17. Convergence curves from the training and calibration of the ANN

Table 7. Best ANNs results

HL HN Method Training time [min] MSE R2

1 2 GSA 7.20 1.00E-03 0.9728
1 5 GSA 7.65 4.19E-04 0.9887
1 10 GSA 8.52 3.57E-04 0.9904
1 20 GSA 10.05 5.38E-04 0.9857
2 2 GSA 17.62 6.71E-04 0.9818
2 5 GSA 24.47 4.20E-04 0.9887
2 10 PSO 42.85 3.71E-04 0.9899
2 20 MBP 14.30 5.08E-04 0.9941

The evidence from the convergence curves showed that GSA requires many iterations to achieve
its best performance. Hence, a higher number of iterations may allow it to achieve better results for
this ANNs architectures. By comparison of MSE and R?, it was concluded that the ANN architecture
that obtained the best predictions of bending moment was HL=1, HN=10, and trained with the GSA.
The results of weights for this are presented in Table 8.
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Table 8. Weights of the best ANN architecture

Weights between  Weights between = Weights between HL

w/b and HL %F and HL and M, Biases HL Bias M,
0.560 -1.068 -0.770 -0.260 2.509
0.033 -0.514 0.247 0.437
-0.529 -0.290 0.702 0.049
-0.033 0.688 0.452 -0.073
-0.623 0.461 0.821 0.933
-0.042 0.617 -0.192 0.487
0.667 1.226 0.424 -0.013
0.129 0.356 0.687 -1.445
0.316 0.416 0.703 -1.099
-0.912 0.823 1.824 -3.384

Prediction of M,, by means of the ANN are presented in Figure 18a. In general, the tendency of the
ANN M,, is close to the experimental and NLFEA results (Figure 16). In addition, Figure 18b
presents a contour lines map of the relative error of M,, (in percentage) between the results of the
AAN and the NLFEA (Figure 16). There it can be depicted that relative errors are below 5% for most
values of w/b and %F, nonetheless for %F<0.30 there are differences up to 20%, which may be

improved in future research by using more training data in the assessment of neural networks for
low fiber content.

Mu
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1000
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Fig. 18. a) Maximum bending moment with ANN and b) Contour of relative error between
ANN and NLFEA results

4. Conclusions

The present research assessed the maximum bending moment of steel fiber reinforced self-
compacting concrete beams, integrating uniaxial compression tests, indirect double punching
Barcelona tests, four-point bending tests, constitutive modeling, non-linear finite element analysis,
and artificial neural networks. The prediction of the flexural resistance was achieved for beams
with water-binder ratios from 0.40 to 0.60 and steel hooked-ended fibers content percentages from
0.00% to 1.00% in volume. From the results, the following conclusions are withdrawn:

e Compressive strength can diminish in ranges from 2% to 18% when steel fibers are added,
as supported by the uniaxial compression tests. Nonetheless, the post-peak deformation
capacity and control of cracking due to compressive loads are improved.
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o Tensile cracking strength is not markedly affected by the addition of fibers; however, higher
amounts of fibers significantly improve the deformation capacity, strain ductility, and energy
dissipation capacity in ranges from 20% to 280%.

o The tensile constitutive model from Barcelona tests presented here is an improvement from
the original model. Nonetheless, the model still underestimates the post-peak stress capacity
of the material. This is positive in terms of security related to design but is a disadvantage if
precise predictions of the material behavior are required.

e The two-parameter Weibull distribution is a proper alternative to assess the characteristic
values of mechanical properties of steel fiber self-compacting reinforced concrete since the
experimental results had a better fit (in terms of P-values) compared to the normal
distribution.

o Non-linear finite element analysis is feasible to predict the flexural capacity of fiber
reinforced concrete beams. However, more computing time is required for low quantities of
fibers. This might be caused by the abrupt changes in stress and stiffness after the peak load
that occurs in brittle materials, which tends to slow the convergence and diminish the
accuracy of numerical solutions.

e The gravitational search algorithm is an excellent alternative to train artificial neural
networks for predicting the mechanical behavior of fiber concrete, as it reached mean
squared errors lower than the classic algorithms, moment back-propagation, and particle
swarm optimization.

o Artificial neural networks trained with experimentally calibrated finite element simulations
can accurately predict (R2=0.99) the flexural resistance of beams with fiber reinforced
concrete. However, more training data for low values of fibers might be used to improve its
overall prediction capacity.
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Appendix 1

MATLAB script for calibration of the Weibull parameters

%1. Barcelona
%?2. Compression

for ensayo=2:2

ini=4; fin=71;
fini=int2str(ini); ffin=int2str(fin);

switch ensayo
case 1
tic()
aa='barcelona par3.xlsx’;
sesion=xlsread(aa,'DATOS' strcat('B'fini,":",'B",ffin));
zz="Modelos constitutivos corr.xlsx";

consti=xlsread(aa,'DATOS',strcat('U’fini,":','AD" ffin));
el=consti(:,1); sl=consti(:2);
e2=consti(:,3); s2=consti(:4);
e3=consti(:,5); s3=consti(:,6);
e4=consti(:,7); s4=consti(;,8);
e5=consti(:,9); s5=consti(;,10);

contl=1;
cont2=1;
for i=1:4:(fin-ini+1)
if sesion(i)==1 || sesion(i)==2 || sesion(i)==5 ||...
sesion(i)==7 || sesion(i)==13
ell(contl:contl+3)=el(i:i+3); s11(contl:contl+3)=s1(i:i+3);
e21(contl:contl+3)=e2(i:i+3); s21(contl:contl+3)=s2(i:i+3);
e31(contl:contl+3)=e3(i:i+3); s31(contl:contl+3)=s3(i:i+3);
e41(contl:contl+3)=e4(i:i+3); s41(contl:contl+3)=s4(i:i+3);
e51(contl:contl1+3)=e5(i:i+3); s51(contl:contl+3)=s5(i:i+3);
contl=contl+4;
else
el2(cont2:cont2+3)=el(i:i+3); s12(cont2:cont2+3)=s1(i:i+3);
e22(cont2:cont2+3)=e2(i:i+3); s22(cont2:cont2+3)=s2(i:i+3);
e32(cont2:cont2+3)=e3(i:i+3); s32(cont2:cont2+3)=s3(i:i+3);
e42(cont2:cont2+3)=e4(i:i+3); s42(cont2:cont2+3)=s4(i:i+3);
e52(cont2:cont2+3)=e5(i:i+3); s52(cont2:cont2+3)=s5(i:i+3);
cont2=cont2+4;
end
end

s11(s11==0)=0.0000000001; s21(s21==0)=0.0000000001;
s31(s31==0)=0.0000000001; s41(s41==0)=0.0000000001;
s51(s51==0)=0.0000000001;
s12(s12==0)=0.0000000001; s22(s22==0)=0.0000000001;
s32(s32==0)=0.0000000001; s42(s42==0)=0.0000000001;
s52(s52==0)=0.0000000001;

Wparell=wblfit(e11);
dist=makedist('Weibull',’A"\Wpare11(1),'B',Wparel1(2));
[ho,PvalueWel1]=adtest(e11, Distribution’,dist);
Wpars11=wblfit(s11);
dist=makedist('Weibull','A",\Wpars11(1),'B',Wpars11(2));
[ho,PvalueWs11]=adtest(s11,'Distribution’,dist);
avgell=mean(ell); stdell=std(ell);
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avgsll=mean(s11); stds11=std(s11);

Wpare21=wblfit(e21);
dist=makedist('Weibull','A",\Wpare21(1),'B',\Wpare21(2));
[ho,PvalueWe21]=adtest(e21, Distribution',dist);
Wpars21=wblfit(s21);
dist=makedist('Weibull',’A",\Wpars21(1),'B',Wpars21(2));
[ho,PvalueWs21]=adtest(s21,'Distribution’,dist);
avge2l=mean(e21); stde21=std(e21);
avgs21l=mean(s21); stds21=std(s21);

Wpare31=wblfit(e31);
dist=makedist('Weibull',’A",\Wpare31(1),'B',\Wpare31(2));
[ho,PvalueWe31]=adtest(e31, Distribution',dist);
Wpars31=wblfit(s31);
dist=makedist('Weibull','A",\Wpars31(1),'B',Wpars31(2));
[ho,PvalueWs31]=adtest(s31,'Distribution’,dist);
avge31=mean(e31); stde31=std(e31);
avgs31=mean(s31); stds31=std(s31);

Wpare41=wblfit(e41);
dist=makedist('Weibull',’A"\Wpare41(1),'B',Wpare41(2));
[ho,PvalueWe41]=adtest(e41, Distribution',dist);
Wpars41=wblfit(s41);
dist=makedist('Weibull','A",\Wpars41(1),'B',Wpars41(2));
[ho,PvalueWs41]=adtest(s41, Distribution’,dist);
avge41l=mean(e41); stde41=std(e41);

avgs41l=mean(s41); stds41=std(s41);

Wpare51=wblfit(e51);
dist=makedist('Weibull',’A",\Wpare51(1),'B',Wpare51(2));
[ho,PvalueWe51]=adtest(e51, Distribution’,dist);
Wpars51=wblfit(s51);
dist=makedist('Weibull',’A",Wpars51(1),'B',Wpars51(2));
[ho,PvalueWs51]=adtest(s51,'Distribution’,dist);
avge51=mean(e51); stde51=std(e51);
avgs51=mean(s51); stds51=std(s51);

cont=0;

for i=1:4:size(s12,2)
cont=cont+1;
Wpare12(cont,:)=wblfit(e12(i:i+3));
dist=makedist('"Weibull',’A",Wpare12(cont,1),'B',Wpare12(cont,2));
[ho,PvalueWe12(cont)]=adtest(el2(i:i+3), Distribution’,dist);
Wpars12(cont,:)=wblfit(s12(i:i+3));
dist=makedist('Weibull','A",\Wpars12(cont,1),'B',Wpars12(cont,2));
[ho,PvalueWs12(cont)]=adtest(s12(i:i+3), Distribution’,dist);
avgel2(cont)=mean(el2(i:i+3)); stde12(cont)=std(e12(i:i+3));
avgs12(cont)=mean(s12(i:i+3)); stds12(cont)=std(s12(i:i+3));
Wpare22(cont,:)=wblfit(e22(i:i+3));
dist=makedist('Weibull',’A",Wpare22(cont,1),'B',Wpare22(cont,2));
[ho,PvalueWe22(cont)]=adtest(e22(i:i+3), Distribution’,dist);
Whpars22(cont,:)=wblfit(s22(i:i+3));
dist=makedist('Weibull','A",Wpars22(cont,1),'B',Wpars22(cont,2));
[ho,PvalueWs22(cont)]=adtest(s22(i:i+3), Distribution’,dist);
avge22(cont)=mean(e22(i:i+3)); stde22(cont)=std(e22(i:i+3));
avgs22(cont)=mean(s22(i:i+3)); stds22(cont)=std(s22(i:i+3));
Wpare32(cont,:)=wblfit(e32(i:i+3));
dist=makedist('Weibull','A",Wpare32(cont,1),'B',Wpare32(cont,2));
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[ho,PvalueWe32(cont)]=adtest(e32(i:i+3), Distribution’,dist);
Wpars32(cont,:)=wblfit(s32(i:i+3));
dist=makedist('"Weibull',’A",Wpars32(cont,1),'B',Wpars32(cont,2));
[ho,PvalueWs32(cont)]=adtest(s32(i:i+3), Distribution’,dist);
avge32(cont)=mean(e32(i:i+3)); stde32(cont)=std(e32(i:i+3));
avgs32(cont)=mean(s32(i:i+3)); stds32(cont)=std(s32(i:i+3));
Wpare42(cont,:)=wblfit(e42(i:i+3));
dist=makedist('"Weibull',’A",Wpare42(cont,1),'B',Wpare42(cont,2));
[ho,PvalueWe42(cont)]=adtest(e42(i:i+3), Distribution’,dist);
Wpars42(cont,:)=wblfit(s42(i:i+3));
dist=makedist('"Weibull',’A",Wpars42(cont,1),'B',Wpars42(cont,2));
[ho,PvalueWs42(cont)]=adtest(s42(i:i+3), Distribution’,dist);
avge42(cont)=mean(e42(i:i+3));
stde42(cont)=std(e42(i:i+3));
avgs42(cont)=mean(s42(i:i+3));
stds42(cont)=std(s42(i:i+3));
Wpare52(cont,:)=wblfit(e52(i:i+3));
dist=makedist('"Weibull',’A",Wpare52(cont,1),'B',Wpare52(cont,2));
[ho,PvalueWe52(cont)]=adtest(e52(i:i+3), Distribution’,dist);
Whpars52(cont,:)=wblfit(s52(i:i+3));
dist=makedist('"Weibull',’A",Wpars52(cont,1),'B',Wpars52(cont,2));
[ho,PvalueWs52(cont)]=adtest(s52(i:i+3), ' Distribution’,dist);
avge52(cont)=mean(e52(i:i+3));
stde52(cont)=std(e52(i:i+3));
avgs52(cont)=mean(s52(i:i+3));
stds52(cont)=std(s52(i:i+3));
end
Wparel=[Wparell;Wparel2]; PvalueWel=[PvalueWell,PvalueWel2]’;
Wpars1=[Wpars11;Wpars12]; PvalueWs1=[PvalueWs11,PvalueWs12]’;
avgel=[avgell,avgel2]’; stdel=[stdell,stdel12]’;
avgsl=[avgs11,avgs12]’; stdsl=[stds11,stds12]’;
Wpare2=[Wpare21;Wpare22]; PvalueWe2=[PvalueWe21,PvalueWe22]’;
Whpars2=[Wpars21;Wpars22]; PvalueWs2=[PvalueWs21,PvalueWs22]’;
avge2=[avge21,avge22]’; stde2=[stde21,stde22]’;
avgs2=[avgs21,avgs22]’; stds2=[stds21,stds22]’;
Wpare3=[Wpare31;Wpare32]; PvalueWe3=[PvalueWe31,PvalueWe32]’;
Wpars3=[Wpars31;Wpars32]; PvalueWs3=[PvalueWs31,PvalueWs32]’;
avge3=[avge31,avge32]’; stde3=[stde31,stde32]’;
avgs3=[avgs31,avgs32]’; stds3=[stds31,stds32]’;
Wpare4=[Wpare41;Wpare42]; PvalueWe4=[PvalueWe41,PvalueWe42]’;
Wpars4=[Wpars41;Wpars42]; PvalueWs4=[PvalueWs41,PvalueWs42]’;
avged=[avge41,avge42]’; stded=[stde41,stde42]’;
avgs4=[avgs41,avgs42]’; stds4=[stds41,stds42]’;
Wpare5=[Wpare51;Wpare52]; PvalueWe5=[PvalueWe51,PvalueWe52]’;
Wpars5=[Wpars51;Wpars52]; PvalueWs5=[PvalueWs51,PvalueWs52]’;
avge5=[avge51,avge52]’; stde5=[stde51,stde52]’;
avgs5=[avgs51,avgs52]’; stds5=[stds51,stds52]";

case 2

aa='compresion par.xlsx’;

sesion=xlsread(aa,' DATOS' strcat('B'fini,":",'B",ffin));

zz="Modelos Constitutivos.xlsx";

fc=xlsread(aa,'DATOS',strcat('V'fini,":",'V' ffin));

Ec=xlsread(aa,'DATOS',strcat('Al' fini,":",'Al',ffin));%Modulo tangente

contl=1;

cont2=1;

for i=1:4:(fin-ini+1)

if sesion(i)==1 || sesion(i)==2 || sesion(i)==5 |[|...
sesion(i)==7 || sesion(i)==13

fc1(contl:contl+3)=fc(i:i+3);
Ec1(contl:contl+3)=Ec(i:i+3);
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contl=contl+4;
else
fc2(cont2:cont2+3)=fc(i:i+3);
Ec2(cont2:cont2+3)=Ec(i:i+3);
cont2=cont2+4;
end
end
Wparl=wblfit(fcl);
dist=makedist('Weibull','A",\Wpar1(1),'B'Wpar1(2));
[ho,pvalue]=adtest(fc1, Distribution’,dist);
PvalueW1=pvalue; WparlE=wblfit(Ec1);
dist=makedist('"Weibull',’A"Wpar1E(1),'B',\Wpar1E(2));
[ho,pvalue]=adtest(Ec1, Distribution’,dist);
PvalueW1E=pvalue;
avgfcl=mean(fc1); stdfcl=std(fc1);
avgEcl=mean(Ec1); stdEcl=std(Ec1);

cont=0;

for i=1:4:size(fc2,2)
cont=cont+1;
param=wblfit(fc2(i:i+3)); Wpar2(cont,:)=param;
dist=makedist('Weibull','A",Wpar2(cont,1),'B',Wpar2(cont,2));
[ho,pvalue]=adtest(fc2(i:i+3),'Distribution’,dist);
PvalueW2(cont)=pvalue;
param=wblfit(Ec2(i:i+3)); Wpar2E(cont,:)=param;
dist=makedist('"Weibull',’A",Wpar2E(cont,1),'B',Wpar2E(cont,2));
[ho,pvalue]=adtest(Ec2(i:i+3),'Distribution’,dist);
PvalueW2E(cont)=pvalue;
avgfc2(cont)=mean(fc2(i:i+3)); stdfc2(cont)=std(fc2(i:i+3));
avgEc2(cont)=mean(Ec2(i:i+3)); stdEc2(cont)=std(Ec2(i:i+3));

end

Wpar=[Wparl;Wpar2]; PvalueW=[PvalueW1,PvalueW2]’;

WparE=[Wpar1E;Wpar2E]; PvalueWE=[PvalueW1E,PvalueW2E]’;

avgfc=[avgfcl,avgfc2]’; stdfc=[stdfc1,stdfc2]’;

avgEc=[avgEc1,avgEc2]’; stdEc=[stdEc1,stdEc2]’;

otherwise
end
end

Appendix 2

MATLAB script for automation of SAP2000
clear;
clc;
ini=62; fin=121;
Datosred=zeros(1010,(fin-ini+1)*2);
for i=1:(fin-ini+1)
%1. Define which SAP to use: already open one (true) o new one (false)
ifi==1
EnesteSAP=false();
else
EnesteSAP=false();
end
%?2. Specify SAP file route (true) otherwise the last used SAP file route will be used.
EspecificarSAP=true();

%3. Specify SAP file route.
DireccionSAP='C:\Program Files\Computers and Structures\SAP2000 22\SAP2000.exe’;

%4. Specify the route of the API to use.
DireccionAPIDLL="C:\Program Files\Computers and Structures\SAP2000 22\SAP2000v1.dll’;
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%>5. Specify the route of the file where the model is located

DireccionCarpetaModelo='E:\David\Documentos\Estructuras\MAESTRIA EN INGENIERIA CIVIL\Vigas
SFRSCC_SAP\Red neural’;

if ~exist(DireccionCarpetaModelo, 'dir') %If the file exists use it, otherwise create it

mKkdir(DireccionCarpetaModelo);

end

NombreModelo=strcat(int2str(ini-1+i),".sdb"); %Name of the model

DireccionModelo=strcat(DireccionCarpetaModelo,filesep,NombreModelo); %Text to route

%©6. Create the API assistent.

a=NET.addAssembly(DireccionAPIDLL);

asistenteAPI=SAP2000v1.Helper;

asistenteAPI=NET.explicitCast(asistenteAPI,'SAP2000v1.cHelper");

%7. Open SAP or use one already open.
if EnesteSAP
SapObject=asistenteAPL.GetObject('CSI.SAP2000.API1.SapObject');
SapObject=NET.explicitCast(SapObject,'SAP2000v1.cOAPI');
else
if EspecificarSAP
SapObject=asistenteAPIl.CreateObject(DireccionSAP);
else
SapObject=asistenteAPIl.CreateObjectProgID('CSI.SAP2000.AP1.SapObject');
end
SapObject = NET.explicitCast(SapObject,'SAP2000v1.cOAPI");
SapObject.ApplicationStart;
end
asistenteAPI=0;

%38.Create SAP model
SapModel=NET.explicitCast(SapObject.SapModel,'SAP2000v1.cSapModel');
ret=SapModel.InitializeNewModel;

%9. Open the SAP model.
File=NET.explicitCast(SapModel.File,'SAP2000v1.cFile");
ret=File.OpenFile(DireccionModelo);

tic()

%15. Run the SAP model.
Analyze=NET.explicitCast(SapModel.Analyze,'SAP2000v1.cAnalyze');
ret=Analyze.RunAnalysis();

AnalysisResults=NET.explicitCast(SapModel.Results,'SAP2000v1.cAnalysisResults");
AnalysisResultsSetup=NET.explicitCast(AnalysisResults.Setup,'SAP2000v1.cAnalysisResultsSetup');

ret=AnalysisResultsSetup.DeselectAllCasesAndCombosForOutput;
ret=AnalysisResultsSetup.SetCaseSelectedForOutput("FPT-Cracking");
ret=AnalysisResultsSetup.SetOptionNLStatic(2);

NumberResults=0;

Obj=NET.createArray('System.String’,1010);

Elm=NET.createArray('System.String',1010);
ACase=NET.createArray('System.String’,1010);
StepType=NET.createArray('System.String',1010);
StepNum=NET.createArray('System.Double’,1010);
U1=NET.createArray('System.Double’,1010); U2=NET.createArray('System.Double’,1010);
U3=NET.createArray('System.Double’,1010); R1=NET.createArray('System.Double',1010);
R2=NET.createArray('System.Double’,1010); R3=NET.createArray('System.Double’,1010);

[ret, NumberResults,0Obj,Elm,ACase,StepType,StepNum,U1,U2,U3,R1,R2,R3]=AnalysisResults.JointDispl("21"
,SAP2000v1.eltemTypeEIm.ObjectElm,...
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NumberResults,Obj,Elm,ACase,StepType,StepNum,U1,U2,U3,R1,R2,R3);

for j=1:NumberResults
Desplazamiento(j)=U3(j)*-1000;
end

NumberResults=0;

StepType=NET.createArray('System.String',1010);
StepNum=NET.createArray('System.Double’,1010);
LoadCase=NET.createArray('System.String',1010);
Fx=NET.createArray('System.Double’,1); Fy=NET.createArray('System.Double’,1);
Fz=NET.createArray('System.Double’,1); Mx=NET.createArray('System.Double’,1);
My=NET.createArray('System.Double’,1); Mz=NET.createArray('System.Double’,1);
gx=0; gy=0; gz=0;

[ret, NumberResults,LoadCase,StepType,StepNum,Fx,Fy,Fz,Mx,My,Mz,gx,gy,gz]=AnalysisResults.BaseReact(
NumberResults,LoadCase,StepType,StepNum,...
Fx,Fy Fz,Mx,My,Mz,gx,gy,gz);

for j=1:NumberResults

Carga(j)=Fz(j);
end

NumberResults=0;
StepType=NET.createArray('System.String',1010);
StepNum=NET.createArray('System.Double’,1010);
LoadCase=NET.createArray('System.String',1010);
GD=NET.createArray('System.String',1010);
DType=NET.createArray('System.String',1);
Numbdat(i)=NumberResults;

%17. Close SAP
ret=SapModel.SetModellsLocked(false());
ret=SapObject.ApplicationExit(false());
File=0;

PropMaterial=0; PropFrame=0;
FrameObj=0; AreaObj=0;
PointObj=0; View=0;
LoadPatterns=0; Analyze=0;
AnalysisResults=0;
AnalysisResultsSetup=0;
SapModel=0; SapObject=0;
tiempo(2*i-1:2*i)=[toc()/60,0];
Datosred(1:length(Desplazamiento),2*i-1:2*i)=[Desplazamiento’,Carga'l;
clear Desplazamiento Carga
end

xlswrite('Curvas ajustadas final.xIsx',Datosred,'Datos red neural’,'DT40")
xlswrite('Curvas ajustadas final.xIsx',tiempo,'Datos red neural’,'DT38")
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