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de Santander, Escuela de Ingeniería Civil, Colombia 
 

Article Info  Abstract 

Article History:  Steel fiber reinforced self-compacting concrete (SFRSCC) has improved fresh and 
hardened state properties compared to conventional concrete. Nonetheless, 
experimentally validated tools to model its flexural capacity are still required to 
encourage its massive application in civil infrastructure. This research assessed 
the maximum bending moment (Mu) of SFRSCC beams in four-point loading using 
an Artificial Neural Network (ANN). The experimental program considered water-
binder ratios (w/b) from 0.40 to 0.60 and steel fiber ratios (%F) from 0.00% to 
1.00% in volume. Compressive and tensile behaviors were obtained by combining 
constitutive models based on uniaxial compression and double-punching 
Barcelona tests. A modification to the existing Barcelona test constitutive model is 
proposed to improve post-peak stress prediction. To increase the amount of data 
needed for proper training of the ANN, non-linear finite element analyses 
(NLFEAs) were executed through commercial software. NLFEAs were fed using 
the constitutive relationships from tests. ANN inputs were w/b, and %F, and the 
output was Mu. Different ANN architectures were evaluated and trained using 
Momentum Back-Propagation, Particle Swarm Optimization, and Gravitational 
Search Algorithm (GSA). Results showed that the ANN trained with GSA accurately 
predicted (R2=0.99) the Mu. 
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1. Introduction 

Nowadays, concrete is the most used structural material in the construction industry (1). 
Nonetheless, hardened Conventional Concrete (CC) has low tensile strength, ductility, and tenacity 
(2,3). Therefore, its use in practice requires incorporating reinforcement to improve its mechanical 
properties, with steel rebar being the most common choice. Additionally, CC has limited workability 
in fresh state, so low quality control during casting elements with high rebar ratios can lead to 
discontinuities due to poor consolidation or undesired reinforcement movements, compromising 
the structural capacity and durability (4,5).  

Hence, to overcome these disadvantages, research attention has been addressed on Steel Fiber 
Reinforced Self-Compacting Concrete (SFRSCC). SFRSCC improves the CC fresh state properties, 
allowing it to flow through the formwork mainly by its self-weight with low or no need of vibration. 
Therefore, higher quality elements are achieved due to the more uniform consolidation during 
pouring (4–6). Moreover, in hardened state, the addition of steel fibers contributes to control 
cracking as these markedly improve SFRSCC tensile and strain capacity, compared to CC (2,3,7,8). 
Consequently, the rebar required can be reduced without compromising strength and ductility 
(7,9). Despite its benefits, manufacturing SFRSCC requires higher amounts of binder than CC. 
Hence, its cement consumption is reduced by using supplementary cementitious materials, such as 

mailto:dscotpri@correo.uis.edu.co
http://dx.doi.org/10.17515/resm2025-569ml1208rs


Cotes-Prieto et al./ Research on Engineering Structures & Materials 11(5) (2025) 2437-2466 
 

2438 

fly ash, which not only allows SFRSCC to be more cost-effective material but also diminishes its 
carbon-print (10,11). 

The improved characteristics of SFRSCC make it a feasible candidate for wide use in civil 
infrastructure, which is often subjected to flexure (therefore, tensile stresses and strains). 
Literature reports show successful implementations of SFRSCC in bending subjected structures, 
such as buildings, retaining walls, slabs, pipes, and tunnels (3,9,12–15). However, its massive 
application is scarce in many countries due to the usual need for time and money-consuming 
laboratory tests to assess its flexural capacity. The main reason behind this is the lack of reliable 
models and practical tools to predict SFRSCC members hardened state mechanical properties. For 
instance, in Colombia, the national standard for structural design of buildings (NSR-10) demands 
intense flexural testing to monitor the cracking strength and post-peak behavior. This standard also 
lacks on recommendations for theoretically assessing SFRSCC mechanical behavior (16).  

Many researchers have published different alternatives to predict the flexural strength of SFRSCC, 
most based on constitutive modeling of the tensile response along with Non-Linear Finite Element 
Analysis (NLFEA). Moradi et al. (17)  proposed a constitutive model including the post-peak 
behavior of Steel Fiber Reinforced Concrete (SFRC) based on the results of direct tensile and 
compressive tests. They successfully implemented the model along with NLFEA to predict the 
ultimate flexural capacity of beams. Lee et al. (18) modeled the constitutive behavior of SFRC using 
exponential functions, where the parameters were obtained through bending tests. This model, 
although functional, still requires the use of expensive laboratory tests. Huo et al. (19) published a 
stress-strain model that included the orientation effect of the fibers. The inputs of the model were 
basic material and geometric parameters, easy to obtain with no need for complex testing. The 
feasibility of the model was proved by accurately predicting the load-displacement curves of beams 
modeled with NLFEA. Nonetheless, the equations are non-linear and complex, requiring vast 
knowledge by the practitioner who may use them for applied cases. 

An interesting approach to modeling the constitutive behavior of SFRC was presented by Blanco et 
al. (20). They established simplified equations to assess the tensile behavior of the material based 
on the results of the Barcelona test. The Barcelona test is a double punching test that captures the 
tensile response of SFRC with several advantages over the bending and uniaxial tensile tests. It is 
less time and material-consuming, easier to perform, and its results at different samples of equal 
dosage exhibit less statistical scatter (20). Nonetheless, the equations underestimated the strength 
of the material during the post-peak behavior. Moreover, NLFEA may still be required to determine 
the flexural response of SFRSCC structural elements. 

The models previously mentioned may still discourage the implementation of SFRSCC in the 
industry since they require precise knowledge of constitutive modeling and NLFEA. A more 
engineering-oriented and user-friendly tool that may be an incentive for the use of SFRSCC is the 
Artificial Neural Network (ANN). Although training an ANN implies lots of experimental and 
numerical work, its final usage by a practitioner is straightforward. That is why ANN has been 
successfully used in civil engineering to predict complex outputs based on simple inputs. Chopra et 
al. (21) trained an ANN to estimate the compressive strength of concretes varying the curing age 
and the fly ash content. The investigation yielded R2>0.80, which indicates good prediction 
capacity. Hodhoh et al. (22) achieved an ANN capable of predicting SFRC strength properties, such 
as compressive and impact resistance, based on the dosage of the concrete. 

The need for tools that reduce the number of experiments required to predict the flexural capacity 
of SFRSCC concrete beams is imperative to its massive use in industry. Therefore, this investigation 
assessed an ANN capable of predicting the flexural strength of SFRSCC concrete beams loaded in 
the Four Points Bending Test (FPBT). The FPBT was here used as pure bending (no shear force) 
occurs at the midspan between loads, contrary to other flexural tests such as the Three Point 
Bending Test (23). Hence, the FPBT is a highly suitable test to achieve a more realistic 
characterization of the bending moment capacity of SFRSCC beams (23–25).  

On the other hand, the input variables for the experiments were the simple parameters 
water/binder ratio (w/b) and the ratio of hooked-end fibers added by volume (%F). The output 
was the ultimate bending moment (Mu). The training of the ANN was done by several NLFEAs and 
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validated with real FPBT. The NLFEA models were fed with constitutive relations calibrated with 
the results of uniaxial compressive and Barcelona tests. Moreover, a modification was implemented 
to improve the constitutive model for tensile stress-strain based on the Barcelona test proposed by 
Blanco et al. (20). The original model was reported by their authors to under-estimate the post-
peak stresses of the SFRSCC. In that sense, the change here proposed aimed to face this issue by re-
writing the equilibrium equations using the free body diagram of the cracked specimen, contrary 
to the original set-up of equations which was based on the uncracked configuration. The 
modification was found to more precisely predict the post-cracking behavior of the material. 

2. Materials and Methods 

This section describes the experimental campaign performed, constitutive modeling, the NLFEA 
executed, and the training and validation of the ANN. 

2.1 Experimental Campaign 

Variables considered for the SFRSCC mixtures were %F from 0.00% to 1.00% (0 to 78 kg/m3) and 
w/b from 0.40 to 0.60. The fibers were hooked-ended and had a tensile strength of 1200 [MPa], 
length L=60 [mm], diameter d=0.75 [mm], and aspect ratio L/d=80. Ranges of %F and w/b were 
chosen due to their common use in Colombia according to local providers.  The combinations of %F 
and w/b for the mixtures to test were determined using a Central Composite Design (CCD). A CCD 
is a type of statistical design of experiments that combines the 2k factorial design, with 2 · k axial 
points and 1 to 5 central points. The 2k factorial design is an efficient statistical experimental design 
that allows to evaluate the simultaneous effect of k factors (in this case %F and w/c) on a response 
(in this case, the Mu) for a physical phenomenon, by using a minimum number of experimental 
observations (26). Moreover, the addition of the axial and central points allows fitting the model to 
a second order response surface. Subsequently, optimization of the factors can be performed (26). 
Additionally, the use of more than one central point enhances the accuracy of the estimated results 
on the middle of the experimental domain (26).  In addition to the CCD experiments, four control 
mixtures with no fibers (M 40-00, M 43-00, M 57-00, and M 60-00) were added to evaluate the 
influences of fibers. 

The self-compacting behavior of the mixtures was achieved following the mix design 
recommendations of Okamura (5), including the use of a super-plasticizer (SP) and a 15% mass 
replacement of fly ash. The fresh state properties of fluidity and viscosity of the mixtures were 
considered adequate when the slump-flow test diameter (SFD) was between 520 and 900 [mm], 
and the T500 test time was below 10 [s], according to EFNARC (27). Table 1 shows the mixture 
proportions and their fresh state control test results. The notation first indicates the w/b ratio and, 
second the %F.  For each mixture, three batches were manufactured to cast all the specimens 
described ahead. An exception was considered for the central point M 50-50, where five times more 
batches (15 batches) were casted. This decision was adopted in order to enhance the statistical 
accuracy of the results according to the literature (26). Therefore, in the subsequential sections, 
the number of specimens tested for M 50-50 is always five times the other mixtures. Some of the 
results of this experimental plan have already been published by the authors (28). The concrete 
was used to cast cylinders for uniaxial compression tests, Barcelona, and beams for FPBT.  Due to 
limited availability of the test equipment at the university where the experimental campaign was 
developed, all tests had to be performed at an age of 147 days. Although the typical testing age for 
structural design purposes according to the standards is 28 days for conventional concretes (up to 
56 days for concretes including pozzolanic admixtures), the testing at further ages does not 
constitutes a major problem from the point of view of the authors as typically, more than 90% of 
the strength has already developed at these design ages (29). Therefore, the strength obtained 
testing at 147 days will more likely represents a difference (below 10%) respect to the typical 
design test ages that does not negatively impact the purposes of this study.  
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Table 1. Mix proportions and fresh state test results 

Mix w/b %F Cement Fly-ash Coarse Fine SP SFD T500 

      kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 mm s 

M 40-00 0.40 0.00 526.09 78.91 410.91 958.78 3.39 695.00 (62.85)* 3.31 (2.53)* 

M 40-50 0.40 0.50 526.09 78.91 406.90 949.42 2.96 716.67 (21.60)* 3.10 (1.11)* 

M 43-00 0.43 0.00 506.74 76.01 410.16 960.79 2.80 673.33 (112.37)* 3.27 (3.21)* 

M 43-15 0.43 0.15 506.74 76.01 410.52 956.48 2.10 626.67 (45.02)* 2.43 (0.71)* 

M 43-85 0.43 0.85 506.74 76.01 404.43 943.66 2.62 576.67 (49.26)* 6.93 (0.98)* 

M 50-00 0.50 0.00 459.13 68.87 412.39 958.38 2.01 575.00 (18.71)* 1.12 (0.21)* 

M 50-50 0.50 0.50 459.13 68.87 412.39 958.38 2.01 674.93 (68.85)* 1.28 (0.32)* 

M 50-100 0.50 1.00 459.13 68.87 407.24 950.22 2.01 705.00 (133.98)* 1.62 (0.97)* 

M 57-00 0.57 0.00 411.18 61.68 426.37 994.84 1.23 556.67 (28.75)* 1.00 (0.00)* 

M 57-15 0.57 0.15 411.18 61.68 425.20 992.10 1.23 645.00 (12.25)* 1.00 (0.00)* 

M 57-85 0.57 0.85 411.18 61.68 418.45 979.97 1.37 621.67 (123.84)* 2.10 (0.97)* 

M 60-00 0.60 0.00 400.00 60.00 424.71 990.99 0.78 556.67 (29.44)* 1.00 (0.00)* 

M 60-50 0.60 0.50 400.00 60.00 421.62 980.68 1.29 701.67 (39.71)* 1.00 (0.00)* 

*Average (Standard deviation) 

2.2 Testing and Methods of Processing Results 

2.2.1 Uniaxial Compression Tests 

For each mixture, four cylinders of 75x150 [mm] were tested in monotonic load according to ASTM 
C39 (30). The deformation rate was 1.50 [mm/min] up to an actuator displacement of 6 [mm]. 
Compressive strength was calculated from the experimental results.  Examples of the tested 
cylinders are presented in Figure 1 and average results of the compressive strength, 𝑓𝑐 𝑎𝑣𝑔

′ , are 

presented in Figure 2. A detailed statistical analysis of the compressive strength is presented in the 
results section. 

2.2.2 Barcelona Tests 

Double punching Barcelona Tests were performed in 4 cylinders of 150x150 [mm] for each 
mixture. The punching effect was achieved by placing two cylindrical steel punches of diameter 
37.5 [mm]. The test was performed according to the standard UNE-83515 (31). The deformation 
rate was monotonic at 0.50 [mm/min] up to an actuator displacement of 6 [mm].   

 

Fig. 1. Compressive strength tested cylinders: a) M 40-00, b) M 60-00, c) M 43-00, d) M 43-10 
and e) M 43-85.- 
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Fig. 2. Average compressive strength as function of w/b and %F 

 

Fig. 3. Barcelona test cylinder: a) Set-up, b) M 40-00, c) M 60-00, d) M 43-00, e) M 43-10 and f) 
M 43-85 

 

Fig. 4. Load-displacement curves for Barcelona cylinders: a) without fibers, and b) with fibers. 

For reference, Figure 3 shows the test set-up and various tested cylinders. Also, examples of the 
load-actuator displacement curves experimentally obtained are showed in Figure 4. The data from 
these curves was used as the main input to determine the tensile stress-strain curve of the 
specimens as described in Section 2.2.6. 
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2.2.3 Four Points Bending Tests 

The FPBTs were performed in four beams of 150x150x500 [mm] for each mixture, following the 
standards ASTM C1609 and RILEM TC 162-TDF (32,33). Since pure bending occurs at the central 
length, a notch of depth 22 [mm] and thickness 0.4 [mm] was cropped in the mid-span of the 
specimens to arouse the cracking there. The free length between supports at testing was 450 [mm], 
and the separation between loaded points 150 [mm]. Set-up of the test and some examples of 
beams at the end of the test are shown in Figure 5. Also, examples of the load-actuator displacement 
curves are presented for every mixture in Figure 6.   

During the test, the deformation rate was incremental and varied depending on the actuator 
displacement: 0.20 [mm/min] from 0 to 1 [mm], 0.25 [mm/min] from 1 to 5 [mm], and 0.70 
[mm/min] from 5 to 10 [mm]. As Bernard [29] described, the actuator displacement is not 
representative of the deflection (flexural deformation) the beam experiences. Therefore, Digital 
Image Correlation (DIC) was used to measure the mid-span deflection on the beams at each load 
increment. Details on this procedure can be found in a previous publication by the authors (28). 
The bending moment at each load was calculated using the equilibrium equations. Finally, the 
experimental moment-deflection curves were obtained for each tested beam.  

 
Fig. 5. FPBT beams a) Set-up, b) M 50-00, c) M 50-50, and d) M 50-100 

 
Fig. 6. Load-displacement curves for FPBTs beams: a) without fibers and, b) with fibers 

2.2.4 General Aspects on The Implemented Constitutive Models 

The constitutive models for the compressive and tensile stress-strain responses of the mixtures 
were selected based on the literature review. The compression behavior was based on the 
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equations proposed by Wang et at. (34) and De Oliveira (35). The tensile response was based on 
the model proposed by Blanco et al. (20), Bortolotti (36) and modifications to these proposed by 
the authors of this paper.  

In all cases, the material was considered homogeneous and isotropic. The shear response was 
assumed to be linear, and the Poisson ratio was fixed as 0.20. This analysis was performed only for 
the nine mixtures part of the CCD (M 40-50, M 43-15, M43-85, M 50-00, M 50-50, M 50-100, M 57-
15, M 57-86 and M 60-50 in Table 1).  

2.2.5 Compressive Stress-Strain Constitutive Relation 

The non-linear model implemented here was described by Wang et al. (34) and is presented 
equation (1). It includes the effect of fibers on compressive strength.  

𝑓𝑐 =

{
  
 

  
 

  

𝑓𝑐
′
𝜖𝑐
𝜖𝑐′
(𝛼𝑎 + (3 − 2𝛼𝑎)

𝜖𝑐
𝜖𝑐′
+ (𝛼𝑎 − 2) (

𝜖𝑐
𝜖𝑐′
)
2

)           𝜖𝑐 < 𝜖𝑐
′

𝑓𝑐
′
𝜖𝑐
𝜖𝑐′
(

1

𝛼𝑑 (
𝜖𝑐

𝜖𝑐
′ − 1)

2

+
𝜖𝑐

𝜖𝑐
′

)                                         𝜖𝑐 ≥ 𝜖𝑐
′

  (1) 

In these equations 𝑓𝑐 is the compressive stress in [MPa] evaluated at an axial strain  𝜖𝑐  in [mm/mm], 
and 𝑓𝑐

′ and 𝜖𝑐
′  are the compressive strength in [MPa] and its associated axial strain in [mm/mm], 

respectively. The shape factors 𝛼𝑎 and 𝛼𝑑 were calculated using the linear relations of equations 
(2) and (3). These equations were obtained using the empirical values of 𝛼𝑎 and 𝛼𝑑 published by 
Wang et al. (34) for %F (by volume) of 0.00 and 1.00. 

𝛼𝑎 = 1.5 + 0.2(%𝐹) (2) 

𝛼𝑑 = 5.4 − 3.9(%𝐹) (3) 

The value of 𝑓𝑐
′ was obtained from the compressive uniaxial tests with the peak load and the 

cross-sectional area of the cylinder. Since the actuator displacement was not a trustable measure 
of the axial deformation, 𝜖𝑐

′  was not determined experimentally. Equation (4), as reported by De 
Oliveira et al. [31], was used. It was chosen as the materials, types of fibers, and %F used in their 
investigation were similar to those used in this work. 

𝜖𝑐
′ = (0.00048 + 0.0001886(%𝐹)) 𝑙𝑛(𝑓𝑐

′) (4) 

2.2.6 Tensile Stress-Strain Constitutive Relation 

The model used was based on the proposal of Blanco et al. (20). It was chosen as it directly relates 
the tensile stress and strain of the SFRSCC to the load-actuator displacement curve obtained from 
the Barcelona test. The model assumes the material follows a linear stress-strain relation up to the 
peak cracking stress 𝑓𝑟, then captures the residual stresses and their related strain after cracking. 
This residual behavior is the main contribution of the steel fibers. Blanco et al. (20) reported that 
their original model underestimates the cracking peak and residual stresses compared to other 
models validated by international standards. Therefore, two modifications on the calculus of the 
stresses were proposed here to improve the model: 

• The value of 𝑓𝑟 in [MPa] was calculated using equation (5) proposed by Bortolotti (36), which 
is based on the Mohr-Coulomb failure criteria applied to concrete cylinders in double 
punching.  

 𝑓𝑟 =
𝑃𝑟

𝜋 (
𝑑 ℎ

2
−

𝑑𝑐
2

4 tan(𝛽)
)

 
(5) 

Here, 𝑑 and ℎ are the diameter and height in [mm] of the SFRSCC cylinder, 𝑃𝑟 is the peak load 
(cylinder cracking load) obtained from the Barcelona test in [N] and 𝑑𝑐  and 𝛽 are the base in [mm] 
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and inclination angle in [°], of the conical wedge formed by the cylinder cracking, as shown in Figure 
7.  

The values of 𝑃𝑟 and 𝑑𝑐  were measured for each cylinder after performing the tests. However, 𝛽 
was not calculable for all tests as the wedge was still harshly attached by the fibers to the fractured 
specimen. In the cases where 𝛽 was measured, it was close to 25°, which agrees with the value 
reported by (20). Therefore, this value was used in the equation.  

 

Fig. 7. Typical fracture of a cylinder on Barcelona test 

• The equilibrium equations that related the load to the tensile stress in the post-cracking stage 
were rewritten on a cracked segment of the cylinder (cracked configuration) instead of on a 
differential element (reference configuration) as initially proposed by Blanco et al. In the 
opinion of the authors, this approach is more consistent with the actual phenomenon since 
the cracking of the cylinder is discrete instead of smeared. Therefore, the action of fibers and 
residual tensile stresses occurs at the cracked surfaces. 

For the equilibrium, the same forces considered by Blanco et al. were included, and it was assumed 
that the cylinder fractured into equal pieces. Figure 8 illustrates the cracked segment for the 
equilibrium. 

 
Fig. 8. Free body diagram of the cracked cylinder segment for equilibrium 

In this figure, 𝑛 is the number of cracked segments of the cylinder, which may be different for each 
test but is usually 2, 3 or 4. 𝐹𝑖 are the forces in [N] that act on the XY plane, orthogonal to the cracked 
surfaces and hold together the segments of the cylinder, mainly due to the action of fibers. 𝐹𝑅  is the 
force in the plane XY resulting from the contact between the wedge and the cracked segment, which 
is calculated according to (20) using the equation (6). 

𝐹𝑅 = 𝑃 (
cos(𝛽) − 𝜇𝑘𝑠𝑖𝑛(𝛽)

𝑠𝑖𝑛(𝛽) + 𝜇𝑘 cos(𝛽)
) (6) 
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In this equation, 𝑃 is the actuator load in [N] and 𝜇𝑘 is the kinetic friction coefficient between wedge 
and segment. Specifically, 𝜇𝑘 represents the ratio between the friction (tangential) and contact 
(normal) forces that generates in the contact between the conical wedge and the cracked segments 
of the cylinder during the Barcelona test (see Figure 7). A detailed description of these forces can 
be found in (20). According to the literature, common assumed values of 𝜇𝑘 used between 0.5 and 
1.4 (20,37). In this research, in order to make a more precise estimation of 𝜇𝑘, its calculation was 
done using inverse analysis aiming to lower the error between the modeled tensile behavior of the 
SFRSCC and the actual experimental results. Performing force equilibrium along Y in Figure 8 yields 
equation (7). 

−2  𝐹𝑖  𝑠𝑖𝑛 (
180°

𝑛
) +

𝐹𝑅
𝑛
= 0 (7) 

Then, the tensile stress 𝑓𝑡 is calculated by replacing (7) and (6), solving 𝐹𝑖 and dividing it by the 
cracking surface. Equation (8) shows this solution.  

𝑓𝑡 =
𝑃 (

𝑐𝑜𝑠(𝛽)−𝜇𝑘 𝑠𝑖𝑛(𝛽)

𝑠𝑖𝑛(𝛽)+𝜇𝑘 𝑐𝑜𝑠(𝛽)
)

2 𝑛 𝑠𝑖𝑛 (
180°

𝑛
) (

𝑑 ℎ

4
−

𝑑𝑐
2

8 𝑡𝑎𝑛(𝛽)
)

 (8) 

Notice that the only difference between this equation and the original proposal of Blanco et al. is 

the expression 𝑛 𝑠𝑖𝑛 (
180°

𝑛
), which corresponds to 𝜋 in the original equation. If 𝑛 → ∞ then 

𝑛 𝑠𝑖𝑛 (
180°

𝑛
) → 𝜋, which is the equilibrium on a differential. For n between 2 and 4, this denominator 

is always lower than 𝜋, which results in higher residual stresses, therefore, a more accurate 
estimation in comparison to the original model. 

Strains were calculated following the kinematic equations (9) deduced by Blanco et al. (20). 
Furthermore, it is worth mentioning that for the post-cracking stage, their equations considered 
the cracked configuration of the cylinder. Therefore, the proposed approach for deducing the 
equilibrium equations from the cracked segments is consistent with these original kinematic 
equations.   

𝜖𝑡 =

{
 
 

 
  
𝑓𝑟
𝐸𝑐
                                                                    𝑎𝑡 𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔                       

      
𝑛 𝑈𝑧

𝜋 (
𝑑

2
)
 𝑡𝑎𝑛(𝛽) 𝑠𝑖𝑛 (

180°

𝑛
)                           𝑝𝑜𝑠𝑡 − 𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔               

 (9) 

Here, 𝜖𝑡 is the tensile strain in [mm/mm], 𝑈𝑧 is the actuator displacement in [mm], 𝑑 is the cylinder 
diameter in [mm], 𝑓𝑟  the peak cracking stress in [MPa] and 𝐸𝑐  is the elastic modulus of the SFRSCC 
in [MPa]. The last was assumed as the initial tangent modulus obtained by differentiating the 
equation (1) according to reference (19). 

Equations (5), (8) and (9) were used to determine the tensile stress-strain curve of the SFRSCC. 
Due to the vast amount of data collected during the Barcelona test, Blanco et al. [20] recommended 
simplifying the model to a quadrilinear model. Nevertheless, here it was necessary to use a 
pentalinear model to achieve convergence of the NLFEA, which was further described. The strain 

points in [mm/mm] considered for the pentalinear stress-strain curve were: (i) 
𝑓𝑟

𝐸𝑐
, (ii) 

𝑓𝑟

𝐸𝑐
+ 0.0005, 

(iii) 𝜖𝑡 = 0.0005, (iv) 𝜖𝑡 = 0.0075 and (v) 𝜖𝑡 = 0.015. For these strains the related stresses were 
calculated. These were respectively noted as 𝑓𝑡1,  𝑓𝑡2, 𝑓𝑡3, 𝑓𝑡4 and 𝑓𝑡5. 

2.2.7 Characteristic stress-strain curves 

For all the mixtures, four specimens in compression and four in Barcelona double punching were 
tested. Each specimen had different stress-strain curves, which is expected since there is statistical 
scatter due to factors such as inherent concrete heterogeneity. Hence, characteristic stress-strain 
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curves for each mixture were determined by fitting the sample results to the Weibull two-
parameter distribution, selected as it has been proven to be adequate to model the statistical 
variation of ceramic materials such as concrete (38,39).  Weibull formula is presented in equation 
10, where 𝑓𝑊 is the probability density, x is the studied variable, 𝛽𝑊 is the scale parameter (similar 
to mean in normal distribution), 𝜆𝑊 is the shape parameter (similar to standard deviation in normal 
distributions). 

𝑓𝑊 =
𝜆𝑊
𝛽𝑊

(
𝑥

𝛽𝑊
)
𝜆𝑊−1

𝑒
−(

𝑥

𝛽𝑊
)
𝜆𝑊

 (10) 

The Weibull parameters for each mixture (Table 1) were calculated for 𝑓𝑐
′, 𝑓𝑡1, 𝑓𝑡2, 𝑓𝑡3, 𝑓𝑡4 and 𝑓𝑡5 

and 𝑓𝑡5, using the Maximum Likelihood Method (MLM) through MATLAB R 2020a (40). MLM was 
implemented as it is a widely used optimization technique which aims to determine the parameters 
of a probability density function that the maximizes the likelihood that the experimental results 
belong to the Weibull distribution (38). After fitting the parameters, the goodness of fit of the 
results was evaluated using the Anderson-Darling test (AD2). The MATLAB script used to calibrate 
the Weibull parameters and determine the AD2 is presented in the Appendix 1. 

2.2.8 Non-Linear Finite Element Analysis 

NLFEAs were performed using SAP2000® V.22 (41) to determine the flexural response of beams 
on FPBT for each mixture. The finite element used was a four-nodes membrane and the material 
non-linearity was incorporated using multi-linear stress-strain relations based on the 
characteristic constitutive models calculated as explained in Section 2.2.3. The mesh showed in 
Figure 9 was determined using convergence analysis, in which a relative error of 0.05% in the peak-
load was achieved using 960 elements.  

 

Fig. 9. Finite elements model, a) Front view, b) Extruded view. All distances in [mm] 

The analyses were displacement-controlled with 500 steps, up to an objective displacement of 0.25 
[mm] at mid-span. SAP2000® uses Newton methods to solve the equilibrium at each step (42). All 
the analyses were performed on a laptop ASUS N550J with Intel® CoreTMi7 processor, four cores, 
and 16 [GB] of RAM. The time of the analyses was between 5 and 30 minutes. The parameter 𝜇𝑘 
was used to calibrate the NLFEA to the FPBT experimental results by using inverse analysis. This 
analysis was performed iteratively varying the values of 𝜇𝑘 in the constitutive tensile models, then 
calculating the numerical maximum bending moment and comparing it to its experimental value. 
The procedure was continued until the theoretical value was close to the experimental. Obtained 
𝜇𝑘 values were between 0.5 and 1.4 as expected, according to (20). The load-deflection curve was 
obtained from each simulation, and then Mu was determined from equilibrium using the peak load. 

2.2.9 Data Set for The Artificial Neural Network 

Proper training, calibration, and validation of ANNs, requires several data sets (43). The 
experimental program only provided 13 data with inputs w/b and %F, and output Mu, therefore, 
NLFEA was used to increase the amount of data. This required determining the constitutive model 
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parameters for different w/b and %F among the studied ranges. Hence, a Response Surface (RS) 
based on the 2k with central and axial points experimental designed used (see Section 2.1), was 
calculated for each one of the characteristic values 𝑓𝑐

′, 𝑓𝑡1, 𝑓𝑡2, 𝑓𝑡3, 𝑓𝑡4, and 𝑓𝑡5. Equations (11) to (16) 
are the RSs between the constitutive model parameters in [MPa] and the inputs w/b and %F 
obtained with Minitab V.16® (44). Moreover, for all these equations R2>0.89, which indicates good 
fitness to the experimental data. 

𝑓𝑐
′ = −459.40 (

𝑤

𝑏
)
2

+ 118.80 ( %𝐹) (
𝑤

𝑏
) − 59.30 (%𝐹) + 291.20 (

𝑤

𝑏
) + 7.20 (11) 

𝑓𝑡1 = −0.74 (%𝐹)2 − 40.16 (
𝑤

𝑏
)
2

+ 11.17 ( %𝐹) (
𝑤

𝑏
) − 4.80 (%𝐹)

+ 29.59 (
𝑤

𝑏
) − 1.44 

(12) 

𝑓𝑡2 = −3.19( %𝐹)2 − 59.10 (
𝑤

𝑏
)
2

+ 6.15 ( %𝐹) (
𝑤

𝑏
) + 55.10 (

𝑤

𝑏
) − 12.65 (13) 

𝑓𝑡3 = 0.13( %𝐹) + 2.98 (14) 

𝑓𝑡4 = 1.12 (%𝐹)2 + 1.37 (%𝐹) − 2.09 (
𝑤

𝑏
) + 1.10 (15) 

𝑓𝑡5 = 1.73 (%𝐹)2 + 0.35 (%𝐹) − 2.38 ( 
𝑤

𝑏
) + 1.27 (16) 

These equations were evaluated for w/b from 0.40 to 0.6 in steps of 0.02, and %F from 0.00 to 1.00 
in steps of 0.10. Then, the constitutive models were used to determine Mu through NLFEA, as 
described in Section 2.3. A total of 121 simulations were performed, and their results were 
consequently used to feed the ANN. The process was automatized through a script that allowed to 
run SAP2000® using MATLAB®, which is presented in Appendix 2. 

2.2.10 Artificial Neural Network  

The ANN was a multilayered perceptron fully connected with supervised learning. The inputs were 
w/b and %F, and the output was the Mu. All its coding was self-made in MATLAB®. A sketch of the 
architecture of the ANN is presented in Figure 10. 

 

Fig. 10. Architecture of the ANNs 

Architectures tested consisted of 1 or 2 Hidden Layers (HL), with 2, 5, 10 or 20 Neurons per Hidden 
Layer (NHL). For the hidden neurons, the activation function was the hyperbolic tangent, which led 
to the best results in the preliminary simulations. Moreover, all the input and output data were 
normalized for the training of the ANN using equation (17), where 𝐷𝑛 is the normalized data, 𝐷 the 
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original data, and 𝐷𝑚𝑖𝑛 and 𝐷𝑚𝑎𝑥 the minimum and maximum values of the data before 
normalization. 

𝐷𝑛 =
𝐷 − 𝐷𝑚𝑖𝑛 

𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛
     

(17) 

For the assessment of the ANNs, the 121 data were organized in a random permutation according 
to Ref. (45), then 84 data (≈70%) were used for training, 24 (≈20%) for calibration, and 13 (≈10%) 
for validation. This division of the data set seeks to avoid the overfitting of the ANN during its 
training, as described in Ref. (46). The training implied determining the weights (including the bias 
neurons) to minimize the objective function Mean Squared Error (MSE) presented in equation (18). 

𝑀𝑆𝐸 =∑
1

𝑁𝑇
(𝑚𝑢𝐴𝑁𝑁 −𝑚𝑢𝐹𝐸𝑀)

2
𝑁𝑇

1
     

(18) 

Where 𝑚𝑢𝐴𝑁𝑁 are the ultimate moments, normalized according to equation (17), predicted by the 
ANN, 𝑚𝑢𝐹𝐸𝑀 are the normalized ultimate moments obtained from the NLFEA of Section 2.2.8, and 
𝑁𝑇  is the number of training data. 

Three optimization methods were evaluated for minimizing the MSE: Momentum Back Propagation 
(MBP), Particle Swarm Optimization (PSO), and Gravitational Search Algorithm (GSA). The 
calculation of weights for each architecture was performed five times using each algorithm. MBP 
and PSO are widely used methods that have proven to be successful in similar ANNs training 
(45,47,48). A detailed description of these algorithms can be found in (46) and (49).  Furthermore, 
GSA is a meta-heuristic optimization method based on the universal gravity law, developed by 
Rashedi et al. (50) in 2009, which has been reported to achieve superior performance compared to 
other algorithms of its class, such as PSO or Genetic Algorithms. Moreover, it has proved to be a 
feasible alternative to solve optimization problems in structural engineering (51). To the best 
knowledge of the authors, GSA has not been used for ANNs related to SFRSCC. Therefore, its 
feasibility was explored here. 

In the original nomenclature of the GSA, each iteration is referred to as an age. Its parameters are 
the initial gravitational constant 𝐺𝑜, the maximum of iterations 𝑎𝑔𝑒𝑚𝑎𝑥, the shape factor 𝛼, the 
initial number of agents (candidate solutions) 𝑁𝑜𝑎 , and the relative error tolerance between 
iterations 𝑒𝑚𝑖𝑛. GSA pseudo-code is as follows: 

• Select 𝐺𝑜, 𝑎𝑔𝑒𝑚𝑎𝑥, 𝛼, 𝑁𝑜𝑎  and 𝑒𝑚𝑖𝑛. 
• Make age=1 
• Select random values for the 𝑁𝑜𝑎  agents. In this case each agent is a vector that contains 

values for the ANN weights (𝑤𝑖). This is referred as the position vector of the agent. 
• Select random values for the initial velocities of the agents. In this case that refers to the 

velocity of the weights (∆𝑤𝑖). 
• Evaluate the objective function for each of the agents. In this case that is the MSE. 
• Determine the best and worst agents. Here they are the agents with the lower and higher 

MSE, respectively. 
• Determine the mass of each agent 𝑀𝑎 using equation (19). 

𝑀𝑎 =
𝑀𝑆𝐸 −𝑀𝑆𝐸𝑚𝑎𝑥
𝑀𝑆𝐸𝑚𝑖𝑛 −𝑀𝑆𝐸𝑚𝑎𝑥

 
(19) 

• Calculate the number of effective agents 𝑁𝑎  using equation (20). Effective agents refer to the 
agents with better values for the objective function MSE. Only these will continue in the next 
ages.  

𝑁𝑎 = N𝑜𝑎 −
𝑁𝑜𝑎

𝑎𝑔𝑒𝑚𝑎𝑥
𝑎𝑔𝑒 

(20) 

• Calculate the gravitational constant 𝐺 using equation (21). 
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𝐺 = 𝐺𝑜𝑒𝑥𝑝
𝛼

𝑎𝑔𝑒

𝑎𝑔𝑒𝑚𝑎𝑥  
(21) 

• Determine the acceleration 𝑎𝑖  that acts on each agent. For each (i)-th agent, the acceleration 
that results from its interaction with all the other (j)-th agents is calculated using equation 
(22), where 𝑅(𝑖)(𝑗) is the Euclidean distance between the position of agents, 𝜀 is a small value 

to avoid indeterminacy in case both agents have the same position and 𝑟𝑎𝑛𝑑 is a random 
number between 0 and 1. 

𝑎𝑖 =
1

𝑀𝑎(𝑖)
∑ [𝑟𝑎𝑛𝑑 𝐺

𝑀𝑎(𝑖) 𝑀𝑎(𝑗)

𝑅(𝑖)(𝑗) + 𝜀

𝑁

(𝑗)=1,(𝑗)≠1

(𝑤𝑖 − 𝑤𝑗)] ) 
(22) 

• Recalculate ∆𝑤𝑖 using equation (23). 

Δ𝑤𝑖 (𝑎𝑔𝑒+1) = 𝑟𝑎𝑛𝑑 Δ𝑤𝑖 (𝑎𝑔𝑒) + 𝑎𝑖 (𝑎𝑔𝑒) (23) 

• Recalculate the position of the agents using equation (24). These are the actualized values of 
the candidate solutions.  

𝑤𝑖 (𝑎𝑔𝑒+1) = 𝑤𝑖 (𝑎𝑔𝑒) +  Δ𝑤𝑖 (𝑎𝑔𝑒+1) (24) 

• Recalculate MSE for the new position of the agents. 
• Actualize the best agent. 
• Calculate the relative error between the actualized best agent and the previous best agent. 
• Make age=age+1 
• If the relative error<𝑒𝑚𝑖𝑛 and age< 𝑎𝑔𝑒𝑚𝑎𝑥, repeat steps VI to XVI. 

Different values for the parameters of GSA were tested. The results reported utilized 𝐺𝑜 = 1, 
𝑎𝑔𝑒𝑚𝑎𝑥 = 1000, 𝛼 = 1, 𝑁𝑜𝑎  and 𝑒𝑚𝑖𝑛 = 10

−15, which yielded the lowest values of MSE. 

3. Results and Discussion 

This section presents the detailed results of the experimental compression, Barcelona and Four 
Point Bending tests. Also, the results of the constitutive modeling, NLFEA calibration and ANN 
training are presented and discussed. 

3.1. Uniaxial Compression and Barcelona Tests 

Table 2 presents the average results of the tests for the compressive and Barcelona tests. In the 
case of the Barcelona test the table includes the cracking peak load and the tenacity (area under 
the load-actuator displacement curve), which measures the energy dissipation capacity of the 
SFRSCC in tension. 

Table 2. Compression and Barcelona test results 

Mix Compressive strength Peak load Barcelona Tenacity Barcelona 

  MPa kN J 

M 40-00 47.31 (0.06)* 130.09 (0.07)* 111.01 (0.12)* 

M 40-50 41.90 (0.03)* 132.69 (0.09)* 370.65 (0.08)* 

M 43-00 48.53 (0.03)* 149.64 (0.06)* 134.22 (0.17)* 

M 43-15 46.99 (0.04)* 135.29 (0.05)* 202.19 (0.16)* 

M 43-85 39.99 (0.11)* 115.52 (0.14)* 426.99 (0.12)* 

M 50-00 36.37 (0.04)* 119.56 (0.08)* 132.52 (0.17)* 

M 50-50 35.81 (0.11)* 123.98 (0.06)* 332.07 (0.09)* 

M 50-100 35.10 (0.15)* 117.15 (0.15)* 504.07 (0.23)* 

M 57-00 30.82 (0.09)* 112.28 (0.10)* 139.40 (0.18)* 

M 57-15 23.96 (0.03)* 91.87 (0.05)* 167.33 (0.10)* 

M 57-85 30.17 (0.01)* 119.85 (0.07)* 508.93 (0.31)* 

M 60-00 24.67 (0.02)* 96.54 (0.04)* 128.19 (0.12)* 
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As it is expected for concretes, compressive strength decreases as w/b increases. However, it 
should be noted that for most of the w/b, the inclusion of fibers reduces the compressive strength 
between 2% and 18%. This percental decrease is higher for lower values of w/b and increases for 
higher values of %F. The same phenomenon has been reported by other researchers (11,52,53) up 
to decrease values of 25%. The compressive strength decrease might be related to the lost 
workability of SFRSCC for small values of w/b and high values of %F, which causes the formation 
of small voids in the cross sections of specimens during casting. Also, the inclusion of long fibers 
may generate additional interfacial transition zones by disruption of the binder paste. Both defects 
promote porous weak zones in the concrete matrix which might increase internal stress 
concentration during compressive loading, leading to lower compressive capacity.  

The peak load Barcelona is a measure of the tensile strength, and it also increases for lower w/b, 
which is expected for concretes (10). Moreover, the inclusion of fibers had a minor effect on the 
peak load for most of the mixtures, which is well-known as the main contribution of fibers occurs 
in the post-cracking stage (54). This effect is evidenced in rises of tenacity between 20% and 280% 
as the %F augments. This improvement is related to an increase in ductility since tensile strength 
is marginally affected. Also, Figure 11 evidences the post-cracking contribution of fibers as the 
cracking width is markedly reduced for higher %F.  

 
Fig. 11. Compressive and Barcelona test fracture at 6 [mm] actuator displacement for a) M 50-

00, M 43-00, b) M 50-50, M 43-15, and c) M 50-100, M 43-85 

Coefficients of variation of compressive strength and peak load Barcelona are sharply lower than 
those of the tenacity. This is evidence of the high statistical scatter existent in SFRSCC mechanical 
properties that are highly dependent on the fibers. Hence, the use of statistical analysis, as proposed 
in Section 2.2.3 to characterize the constitutive behavior of SFRSS is imperative. According to the 
guide ACI-214 (55), coefficients of variation over 0.05 indicate poor agreement of the normal 
distribution parameters (mean and standard deviation) to the experimental results. Most of these 
coefficients were higher than this limit, particularly on the tenacity, which is why the Weibull 
distribution was used to determine the characteristic stress-strain curves, as stated in Section 2.2.3. 

3.2 Characteristic Compression Stress-Strain Curves  

Fitness of data to the Weibull and Normal distributions to determine the characteristic 𝑓𝑐
′ are 

presented in Table 3. P-values of AD2 considered as null hypothesis that data belong to the 
distribution. For a significance level of 0.10, it can be seen that all data fit the Weibull distribution, 
while M 43-15 and M 60-50 do not adjust to the normal distribution. Moreover, characteristic 
compressive strength obtained from Weibull analysis was in average 3% higher than those of the 
normal distribution (mean). Similar results have been published in literature and indicate that the 
mean is still a good indicator of the characteristic 𝑓𝑐

′ (56).  

M 60-50 22.87 (0.10)* 91.42 (0.02)* 323.79 (0.17)* 

  Average (Coefficient of variation)* 
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Using the Weibull 𝑓𝑐
′ and the equations of Section 2.2.1, stress-strain curves in compression, were 

determined and presented in Figure 12. The negative sign indicates compression stress and 
shrinking strain. From these curves it is seen that SFRSCC initial stiffness 𝐸𝑐  is inversely related to 
w/b. Also, the improvement of residual capacity (post-peak) on higher %F mixes can be noticed as 
the post-peak stresses on mixes with lower %F (dashed lines) decrease with a steeper slope than 
those with higher %F (solid lines). This behavior explains the control on compressive cracking 
perceived in Figure 11 for mixes M 43-85 and M 50-100. 

Table 3. Goodness of fit analysis for f’c 

Mix 

Weibull Normal 

f'c  P-value f'c  P-value 

MPa   MPa   

M 40-50 42.46 0.78 41.90 0.27 
M 43-15 47.76 0.74 46.99 0.10 
M 43-85 41.88 0.77 39.99 0.24 
M 50-00 36.89 0.79 36.37 0.14 
M 50-50 38.30 0.52 35.81 0.54 

M 50-100 37.07 0.98 35.10 0.77 
M 57-15 24.24 0.86 23.96 0.36 
M 57-85 30.28 0.89 30.17 0.21 
M 60-50 23.70 0.38 22.87 0.01 

 

 

 
Fig. 12. Compression stress-strain curves 

3.3 Characteristic Tensile Stress-Strain Curves 

Table 4 presents the five stress parameters for the pentalinear models fitted to Weibull and the 𝜇𝑘 
calibrated based on the NLFEA. In this table, the values marked with * did not fulfill the AD2 null 
hypothesis for a significance level of 0.10. These results belong to the M 50-50 for which more 
experiments were performed, as mentioned in the methodology. Hence, a possible cause of the lack 
of fitness to Weibull is the blocking effect that might arises from the fact that all the different 
samples had to be distributed in two different curing chambers with different humidity and 
temperatures, which could have slightly influenced their strength development (26). Another 
possible cause of the lack of fitness to Weibull in this case lays in the fact that as it corresponds to 
the central point, more samples were tested. Hence, according to the statistical theory of the central 
limit, higher number of samples approximates the observations statistical distribution to a normal 
distribution (26). 

Figure 13 shows the constitutive models calculated using equations of Section 2.2.2. The cracking 
tensile stresses were, on average, 9.3% of the compressive strength, which is expected for SFRSCC, 
according to the literature (37). Residual strength (post-peak) increases for higher %F (solid lines) 
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due to the more bridging action between cracked segments of the concrete, which will occur for 
more fiber contents. 

Nonetheless, the last post-peak slopes (𝑓𝑡4 to 𝑓𝑡5) were found to be steeper than those reported by 
other researchers for stress-strain curves obtained with flexure or direct tensile tests (17,35,57). 
Therefore, underestimation of the stresses at high strain levels occurs. Although conservative for 
design purposes, a precise prediction of the mechanical behavior requires more work on the 
constitutive equations. A possible future modification will be to consider that the area where stress 
is distributed decreases as the segments separate during the Barcelona test. 

Table 4. Parameters for the characteristic tensile stress-strain curves 

Mix 
ft1 ft2  ft3  ft4  ft5  μk 

MPa MPa MPa MPa MPa   

M 40-50 3.61 2.58 2.31 1.34 1.08 0.55 
M 43-15 3.84 0.77 0.76 0.42 0.32 0.60 
M 43-85 3.36 2.56 2.48 1.86 1.51 0.80 
M 50-00 3.31 0.00 0.00 0.00 0.00 0.60 
M 50-50 3.52 2.38 1.69* 1.05* 0.62* 0.55 

M 50-100 3.27 3.34 3.30 2.82 2.35 0.55 
M 57-15 2.62 0.58 0.32 0.16 0.13 0.60 
M 57-85 3.27 2.44 2.36 1.76 1.11 0.95 
M 60-50 2.54 1.17 1.07 0.76 0.50 1.00 

 

 

 
Fig.13. Tensile stress-strain curves 

3.4 Experimental and Numerical Flexural Behavior 

Figure 14 presents pictures of the FPBT and NLFEA results. The fracture process was captured by 
the model in an implicit manner through the decrease down to zero of the tensile capacity after 
the post-peak tensile behavior. There, the bridging effect of fibers is evident as the beam with 
%F=0.00 completely fractures (Figure 10a), contrary to the beam with fibers added (Figure 10b). 
The NLFEA exhibits strain concentration occurring at the fractured zone of the beam (Figure 10c) 
and also satisfactorily simulates the deformed configuration (Figure 10d).   

Figure 15 presents the load vs. mid-span deflection curves obtained experimentally and through 
NLFEA. Due to illumination conditions and the duration time of the experiments, it was only 
possible to carry out DIC measurements for half of the FPBT (dashed thin lines). For the other half, 
only the peak load is reported (solid thin lines).  The difference between experimental peak loads 
for beams with equal dosage of SFRSCC evidences the high statistical scatter in the mechanical 
response, mainly related to the random orientation and position of fibers. Nonetheless, the models 
had good accuracy to predict the maximum mean loads. 

The initial linear portion of the experimental and NLFEA (solid thick lines) curves have a good 
agreement, however, in some cases (M 40-50, M 43-85 and M 57-85) the experimental results 
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exhibit a hardening behavior after this linear portion while the NLFEA tend to a softening behavior. 
This could be explained as described in Section 3.3, since the post linear-elastic behavior is 
controlled by the tensile constitutive relation, markedly influenced by the fibers. Proposals of other 
researchers achieve better post-cracking performances, nonetheless their tensile constitutive 
relationships were directly calibrated from bending tests and did not consider the statistical scatter  
(35,57). 

 
Fig. 14. SFRSCC beams on a) FPBT %F=0.00, b) FPBT %F=0.50, c) NLFEA strain field and d) 

NLFEA deformed configuration 
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Fig. 15. Load-mid-span deflection curves 

Table 5. Maximum bending moments 

Mix 
Mu - Tests average Mu - NLFEA Relative error 

[N-m] [N-m] % 

M 40-50 1857.93 1945.65 4.72 
M 43-15 1245.62 1314.00 5.49 
M 43-85 2063.68 2094.75 1.51 
M 50-00 1181.11 1050.60 11.05 
M 50-50 1492.45 1502.63 0.68 

M 50-100 3020.57 2822.78 6.55 
M 57-15 856.77 801.45 6.46 
M 57-85 1986.93 1950.83 1.82 
M 60-50 1037.68 972.08 6.32 

 

 

 

Fig.16. Surface plots of the maximum bending moment vs. w/b, %F a) Experimental test results, 
and b) NLFEA results 

Table 6. Maximum bending moments for ANN training 

N° w/b %F 
Mu t  

N° w/b %F 
Mu t  

N° w/b %F 
Mu t 

[N-m] [min]  [N-m] [min]  [N-m] [min] 

1 0.46 0.40 1265 6  42 0.58 0.80 2024 5  83 0.42 0.90 2464 5 
2 0.40 0.20 1050 11  43 0.40 0.90 2475 5  84 0.48 1.00 2661 5 
3 0.50 0.30 1039 14  44 0.54 0.00 977 7  85 0.50 0.70 1868 6 
4 0.54 0.80 2026 5  45 0.58 0.50 1332 6  86 0.58 0.90 2197 5 
5 0.42 1.00 2739 5  46 0.54 0.40 1174 8  87 0.48 0.50 1504 6 
6 0.46 0.90 2418 5  47 0.48 0.40 1240 5  88 0.42 0.50 1570 5 
7 0.44 1.00 2707 5  48 0.40 0.80 2202 5  89 0.56 0.50 1375 12 
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Using the peak loads, values of 𝑀𝑢 were calculated as presented in Table 5. As expected, increasing 
the %F augmented the flexural capacity in all cases. Moreover, the predictive capacity of the 
numerical model is justified as the differences between the experimental and NLFEA bending 
moments are 5% on average, where better prediction occurs for the cases with fibers addition. 
With the validated NLFEAs, several simulations for the training of the ANNs were executed, as 
shown in Table 6. Their results are ordered based on a random permutation as required for 
assessing the ANNs. The total time of the simulations was 16.26 hours. Average computing time 
was 8 minutes, with some mixes requiring 30 minutes to achieve convergence. 

The fact that only one structural element is modeled remarks the high computational cost needed 
to model nonlinear behavior of SFRSCC in commercial software. Furthermore, more computing 
time was required for beams with %F<0.30. This might be caused by the more brittle behavior of 
these mixtures, which leads to a sudden loss of stiffness after cracking occurs and may slow 
convergence in the numerical solution (e.g., M 43-15 and M 60-50 in Figure 15). A comparison of 
the NLFEA data with the experimental bending moments (Table 5) is presented in Figure 16. There 
it is noticeable how the tendency of the NLFEA models resemblance the experimental resultants 
and the marked effect that %F has on the flexural strength.   

3.5 Bending Moment Predictions by ANNs  

Convergence curves for the best run of each training algorithm for the ANNs with less weights 
(HL=1, HN=2) and more weights (HL=2, HN=20) are presented in Figure 17. As seen in all these 
graphs, no divergence occurs between the training and calibration curves, indicating no overfitting 
of the ANNs, as explained in (46). In general, MBP required more iterations to converge than PSO 
and GSA. This is explained as only one candidate solution is evaluated per iteration at MBP. 

8 0.52 1.00 2559 5  49 0.58 0.30 814 8  90 0.58 1.00 2576 11 
9 0.48 0.20 997 23  50 0.52 0.90 2331 6  91 0.56 0.90 2220 6 

10 0.58 0.20 882 6  51 0.56 0.20 768 7  92 0.54 0.20 846 8 
11 0.42 0.30 1141 14  52 0.44 0.30 1129 9  93 0.58 0.00 670 6 
12 0.60 0.40 1207 14  53 0.50 0.80 2137 5  94 0.54 0.50 1437 6 
13 0.46 0.10 1270 5  54 0.52 0.20 883 14  95 0.46 0.30 1102 11 
14 0.52 0.70 1902 5  55 0.52 0.80 2068 6  96 0.54 0.10 808 6 
15 0.54 0.30 959 10  56 0.42 0.80 2243 5  97 0.54 1.00 2670 7 
16 0.40 0.70 1992 5  57 0.46 0.50 1528 5  98 0.50 0.20 947 6 
17 0.50 1.00 2626 5  58 0.44 0.40 1319 9  99 0.58 0.40 1152 10 
18 0.40 0.10 1069 7  59 0.56 0.70 1844 5  100 0.50 0.90 2329 5 
19 0.40 0.50 1588 5  60 0.58 0.70 1840 6  101 0.48 0.70 1914 5 
20 0.44 0.20 1036 20  61 0.58 0.10 582 11  102 0.42 0.00 1240 9 
21 0.48 0.10 1203 6  62 0.44 0.70 1944 5  103 0.50 0.10 1134 6 
22 0.42 0.40 1272 5  63 0.50 0.60 1743 10  104 0.44 0.00 1243 7 
23 0.60 0.30 895 9  64 0.44 0.80 2206 5  105 0.46 1.00 2681 5 
24 0.60 0.80 1924 6  65 0.56 0.60 1620 6  106 0.40 0.40 1370 13 
25 0.58 0.60 1558 9  66 0.56 1.00 2484 6  107 0.50 0.00 1259 5 
26 0.52 0.30 1032 15  67 0.54 0.70 1889 5  108 0.50 0.40 1240 5 
27 0.54 0.60 1668 6  68 0.52 0.10 1103 19  109 0.42 0.60 1781 6 
28 0.40 0.00 1001 8  69 0.46 0.80 2160 5  110 0.52 0.50 1462 5 
29 0.56 0.40 1135 6  70 0.46 0.20 1016 18  111 0.48 0.60 1733 5 
30 0.42 0.20 1039 30  71 0.44 0.50 1552 5  112 0.44 0.90 2445 5 
31 0.56 0.30 974 6  72 0.50 0.50 1465 5  113 0.48 0.00 1234 7 
32 0.40 0.30 1168 15  73 0.60 0.70 1727 6  114 0.60 0.60 1476 6 
33 0.42 0.10 1057 30  74 0.42 0.70 2005 5  115 0.48 0.80 2157 6 
34 0.48 0.90 2390 7  75 0.52 0.60 1716 5  116 0.44 0.60 1784 5 
35 0.46 0.60 1761 6  76 0.52 0.00 1026 5  117 0.60 0.10 605 5 
36 0.60 0.50 1325 11  77 0.40 1.00 2754 5  118 0.52 0.40 1219 5 
37 0.60 0.90 2222 7  78 0.46 0.00 1179 5  119 0.48 0.30 1060 9 
38 0.60 1.00 2490 13  79 0.46 0.70 1924 5  120 0.40 0.60 1816 7 
39 0.60 0.00 628 5  80 0.44 0.10 1286 6  121 0.56 0.80 2060 6 
40 0.56 0.10 734 28  81 0.54 0.90 2286 6       
41 0.60 0.20 677 24  82 0.56 0.00 806 7       
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Moreover, PSO performed better at early iterations and converged faster (between 100 and 200 
iterations) than GSA (between 400 and 500 iterations). Nonetheless, after these iterations, GSA 
keep identifying better solutions, which relates to a good exploitation capacity. 

PSO successfully located minima in the early stages of the iterations despite the number of the 
ANNs weights, as the shape of the convergence curve is similar for HL=1, HN=2, and HL=2, HN=20, 
while MBP and GSA required more iterations to achieve convergence for the ANNs that required 
calculating more weights (HL=2, HN=20). Nevertheless, GSA achieved the best optimization for six 
of the eight different architectures of ANNs, as depicted in Table 7.  

The MSE presented was calculated, including training, calibration, and validation data. Also, the 
coefficient of determination R2 is presented as an additional measure of the fitness of the ANNs 
predicted bending moments to the NLFEA simulations (Table 6). The only scenarios where the MBP 
and PSO performed better than GSA were those with a higher number of weights (HL=2, HN=10 
and HL=2, HN=20).  

 

Fig.17. Convergence curves from the training and calibration of the ANN 

Table 7. Best ANNs results 

HL HN Method Training time [min] MSE R2 

1 2 GSA 7.20 1.00E-03 0.9728 
1 5 GSA 7.65 4.19E-04 0.9887 
1 10 GSA 8.52 3.57E-04 0.9904 
1 20 GSA 10.05 5.38E-04 0.9857 
2 2 GSA 17.62 6.71E-04 0.9818 
2 5 GSA 24.47 4.20E-04 0.9887 
2 10 PSO 42.85 3.71E-04 0.9899 
2 20 MBP 14.30 5.08E-04 0.9941 

 

The evidence from the convergence curves showed that GSA requires many iterations to achieve 
its best performance. Hence, a higher number of iterations may allow it to achieve better results for 
this ANNs architectures. By comparison of MSE and R2, it was concluded that the ANN architecture 
that obtained the best predictions of bending moment was HL=1, HN=10, and trained with the GSA. 
The results of weights for this are presented in Table 8. 
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Table 8. Weights of the best ANN architecture 

Weights between 
w/b and HL 

Weights between 
%F and HL 

Weights between HL 
and Mu 

Biases HL Bias Mu 

0.560 -1.068 -0.770 -0.260 2.509 
0.033 -0.514 0.247 0.437   
-0.529 -0.290 0.702 0.049   
-0.033 0.688 0.452 -0.073   
-0.623 0.461 0.821 0.933   
-0.042 0.617 -0.192 0.487   
0.667 1.226 0.424 -0.013   
0.129 0.356 0.687 -1.445   
0.316 0.416 0.703 -1.099   
-0.912 0.823 1.824 -3.384   

 

Prediction of 𝑀𝑢 by means of the ANN are presented in Figure 18a. In general, the tendency of the 
ANN 𝑀𝑢 is close to the experimental and NLFEA results (Figure 16). In addition, Figure 18b 
presents a contour lines map of the relative error of 𝑀𝑢 (in percentage) between the results of the 
AAN and the NLFEA (Figure 16). There it can be depicted that relative errors are below 5% for most 
values of w/b and %F, nonetheless for %F<0.30 there are differences up to 20%, which may be 
improved in future research by using more training data in the assessment of neural networks for 
low fiber content.  

 

Fig. 18. a) Maximum bending moment with ANN and b) Contour of relative error between 

ANN and NLFEA results 

4. Conclusions 

The present research assessed the maximum bending moment of steel fiber reinforced self-
compacting concrete beams, integrating uniaxial compression tests, indirect double punching 
Barcelona tests, four-point bending tests, constitutive modeling, non-linear finite element analysis, 
and artificial neural networks. The prediction of the flexural resistance was achieved for beams 
with water-binder ratios from 0.40 to 0.60 and steel hooked-ended fibers content percentages from 
0.00% to 1.00% in volume. From the results, the following conclusions are withdrawn: 

• Compressive strength can diminish in ranges from 2% to 18% when steel fibers are added, 
as supported by the uniaxial compression tests. Nonetheless, the post-peak deformation 
capacity and control of cracking due to compressive loads are improved. 
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• Tensile cracking strength is not markedly affected by the addition of fibers; however, higher 
amounts of fibers significantly improve the deformation capacity, strain ductility, and energy 
dissipation capacity in ranges from 20% to 280%.  

• The tensile constitutive model from Barcelona tests presented here is an improvement from 
the original model. Nonetheless, the model still underestimates the post-peak stress capacity 
of the material. This is positive in terms of security related to design but is a disadvantage if 
precise predictions of the material behavior are required. 

• The two-parameter Weibull distribution is a proper alternative to assess the characteristic 
values of mechanical properties of steel fiber self-compacting reinforced concrete since the 
experimental results had a better fit (in terms of P-values) compared to the normal 
distribution. 

• Non-linear finite element analysis is feasible to predict the flexural capacity of fiber 
reinforced concrete beams. However, more computing time is required for low quantities of 
fibers. This might be caused by the abrupt changes in stress and stiffness after the peak load 
that occurs in brittle materials, which tends to slow the convergence and diminish the 
accuracy of numerical solutions. 

• The gravitational search algorithm is an excellent alternative to train artificial neural 
networks for predicting the mechanical behavior of fiber concrete, as it reached mean 
squared errors lower than the classic algorithms, moment back-propagation, and particle 
swarm optimization. 

• Artificial neural networks trained with experimentally calibrated finite element simulations 
can accurately predict (R2=0.99) the flexural resistance of beams with fiber reinforced 
concrete. However, more training data for low values of fibers might be used to improve its 
overall prediction capacity. 
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Appendix 1 

MATLAB script for calibration of the Weibull parameters  

%1. Barcelona 
%2. Compression 
 
for ensayo=2:2 
 
    ini=4;   fin=71;   
    fini=int2str(ini);    ffin=int2str(fin); 
    
    switch ensayo 
        case 1 
            tic() 
            aa='barcelona par3.xlsx'; 
            sesion=xlsread(aa,'DATOS',strcat('B',fini,':','B',ffin)); 
            zz='Modelos constitutivos corr.xlsx'; 
             
            consti=xlsread(aa,'DATOS',strcat('U',fini,':','AD',ffin)); 
            e1=consti(:,1);   s1=consti(:,2); 
            e2=consti(:,3);   s2=consti(:,4); 
            e3=consti(:,5);   s3=consti(:,6); 
            e4=consti(:,7);    s4=consti(:,8);        
            e5=consti(:,9);    s5=consti(:,10); 
             
             cont1=1; 
            cont2=1; 
            for i=1:4:(fin-ini+1) 
                if sesion(i)==1 || sesion(i)==2 || sesion(i)==5 ||... 
                   sesion(i)==7 || sesion(i)==13 
                    e11(cont1:cont1+3)=e1(i:i+3);  s11(cont1:cont1+3)=s1(i:i+3); 
                    e21(cont1:cont1+3)=e2(i:i+3);  s21(cont1:cont1+3)=s2(i:i+3); 
                    e31(cont1:cont1+3)=e3(i:i+3);  s31(cont1:cont1+3)=s3(i:i+3);    
                    e41(cont1:cont1+3)=e4(i:i+3);  s41(cont1:cont1+3)=s4(i:i+3); 
                    e51(cont1:cont1+3)=e5(i:i+3);  s51(cont1:cont1+3)=s5(i:i+3); 
                    cont1=cont1+4; 
                else 
                    e12(cont2:cont2+3)=e1(i:i+3);  s12(cont2:cont2+3)=s1(i:i+3); 
                    e22(cont2:cont2+3)=e2(i:i+3);  s22(cont2:cont2+3)=s2(i:i+3); 
                    e32(cont2:cont2+3)=e3(i:i+3);  s32(cont2:cont2+3)=s3(i:i+3); 
                    e42(cont2:cont2+3)=e4(i:i+3);  s42(cont2:cont2+3)=s4(i:i+3); 
                    e52(cont2:cont2+3)=e5(i:i+3);  s52(cont2:cont2+3)=s5(i:i+3); 
                    cont2=cont2+4; 
                end 
            end   
 
            s11(s11==0)=0.0000000001;  s21(s21==0)=0.0000000001; 
            s31(s31==0)=0.0000000001;  s41(s41==0)=0.0000000001; 
            s51(s51==0)=0.0000000001;   
            s12(s12==0)=0.0000000001;  s22(s22==0)=0.0000000001; 
            s32(s32==0)=0.0000000001;  s42(s42==0)=0.0000000001; 
            s52(s52==0)=0.0000000001; 
             
            Wpare11=wblfit(e11); 
            dist=makedist('Weibull','A',Wpare11(1),'B',Wpare11(2)); 
            [ho,PvalueWe11]=adtest(e11,'Distribution',dist);           
            Wpars11=wblfit(s11); 
            dist=makedist('Weibull','A',Wpars11(1),'B',Wpars11(2)); 
            [ho,PvalueWs11]=adtest(s11,'Distribution',dist); 
            avge11=mean(e11);  stde11=std(e11); 
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            avgs11=mean(s11);  stds11=std(s11); 
             
            Wpare21=wblfit(e21); 
            dist=makedist('Weibull','A',Wpare21(1),'B',Wpare21(2)); 
            [ho,PvalueWe21]=adtest(e21,'Distribution',dist);          
            Wpars21=wblfit(s21); 
            dist=makedist('Weibull','A',Wpars21(1),'B',Wpars21(2)); 
            [ho,PvalueWs21]=adtest(s21,'Distribution',dist); 
            avge21=mean(e21);  stde21=std(e21); 
            avgs21=mean(s21);  stds21=std(s21); 
             
            Wpare31=wblfit(e31); 
            dist=makedist('Weibull','A',Wpare31(1),'B',Wpare31(2)); 
            [ho,PvalueWe31]=adtest(e31,'Distribution',dist); 
            Wpars31=wblfit(s31); 
            dist=makedist('Weibull','A',Wpars31(1),'B',Wpars31(2)); 
            [ho,PvalueWs31]=adtest(s31,'Distribution',dist); 
            avge31=mean(e31);  stde31=std(e31); 
            avgs31=mean(s31);  stds31=std(s31); 
 
            Wpare41=wblfit(e41); 
            dist=makedist('Weibull','A',Wpare41(1),'B',Wpare41(2)); 
            [ho,PvalueWe41]=adtest(e41,'Distribution',dist);             
            Wpars41=wblfit(s41); 
            dist=makedist('Weibull','A',Wpars41(1),'B',Wpars41(2)); 
            [ho,PvalueWs41]=adtest(s41,'Distribution',dist); 
            avge41=mean(e41);  stde41=std(e41); 
             
            avgs41=mean(s41);  stds41=std(s41); 
             
            Wpare51=wblfit(e51); 
            dist=makedist('Weibull','A',Wpare51(1),'B',Wpare51(2)); 
            [ho,PvalueWe51]=adtest(e51,'Distribution',dist);             
            Wpars51=wblfit(s51); 
            dist=makedist('Weibull','A',Wpars51(1),'B',Wpars51(2)); 
            [ho,PvalueWs51]=adtest(s51,'Distribution',dist); 
            avge51=mean(e51);  stde51=std(e51); 
            avgs51=mean(s51);  stds51=std(s51); 
             
            cont=0; 
             
            for i=1:4:size(s12,2) 
                cont=cont+1; 
                Wpare12(cont,:)=wblfit(e12(i:i+3)); 
                dist=makedist('Weibull','A',Wpare12(cont,1),'B',Wpare12(cont,2)); 
                [ho,PvalueWe12(cont)]=adtest(e12(i:i+3),'Distribution',dist);                 
                Wpars12(cont,:)=wblfit(s12(i:i+3)); 
                dist=makedist('Weibull','A',Wpars12(cont,1),'B',Wpars12(cont,2)); 
                [ho,PvalueWs12(cont)]=adtest(s12(i:i+3),'Distribution',dist); 
                avge12(cont)=mean(e12(i:i+3));  stde12(cont)=std(e12(i:i+3)); 
                avgs12(cont)=mean(s12(i:i+3));  stds12(cont)=std(s12(i:i+3)); 
                Wpare22(cont,:)=wblfit(e22(i:i+3)); 
                dist=makedist('Weibull','A',Wpare22(cont,1),'B',Wpare22(cont,2)); 
                [ho,PvalueWe22(cont)]=adtest(e22(i:i+3),'Distribution',dist);  
                Wpars22(cont,:)=wblfit(s22(i:i+3)); 
                dist=makedist('Weibull','A',Wpars22(cont,1),'B',Wpars22(cont,2)); 
                [ho,PvalueWs22(cont)]=adtest(s22(i:i+3),'Distribution',dist); 
                avge22(cont)=mean(e22(i:i+3));  stde22(cont)=std(e22(i:i+3)); 
                avgs22(cont)=mean(s22(i:i+3));  stds22(cont)=std(s22(i:i+3));    
                Wpare32(cont,:)=wblfit(e32(i:i+3)); 
                dist=makedist('Weibull','A',Wpare32(cont,1),'B',Wpare32(cont,2)); 
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                [ho,PvalueWe32(cont)]=adtest(e32(i:i+3),'Distribution',dist); 
                Wpars32(cont,:)=wblfit(s32(i:i+3)); 
                dist=makedist('Weibull','A',Wpars32(cont,1),'B',Wpars32(cont,2)); 
                [ho,PvalueWs32(cont)]=adtest(s32(i:i+3),'Distribution',dist); 
                avge32(cont)=mean(e32(i:i+3));  stde32(cont)=std(e32(i:i+3)); 
                avgs32(cont)=mean(s32(i:i+3));  stds32(cont)=std(s32(i:i+3)); 
                Wpare42(cont,:)=wblfit(e42(i:i+3)); 
                dist=makedist('Weibull','A',Wpare42(cont,1),'B',Wpare42(cont,2)); 
                [ho,PvalueWe42(cont)]=adtest(e42(i:i+3),'Distribution',dist);         
                Wpars42(cont,:)=wblfit(s42(i:i+3)); 
                dist=makedist('Weibull','A',Wpars42(cont,1),'B',Wpars42(cont,2)); 
                [ho,PvalueWs42(cont)]=adtest(s42(i:i+3),'Distribution',dist); 
                avge42(cont)=mean(e42(i:i+3)); 
                stde42(cont)=std(e42(i:i+3)); 
                avgs42(cont)=mean(s42(i:i+3)); 
                stds42(cont)=std(s42(i:i+3));    
                Wpare52(cont,:)=wblfit(e52(i:i+3)); 
                dist=makedist('Weibull','A',Wpare52(cont,1),'B',Wpare52(cont,2)); 
                [ho,PvalueWe52(cont)]=adtest(e52(i:i+3),'Distribution',dist);                 
                Wpars52(cont,:)=wblfit(s52(i:i+3)); 
                dist=makedist('Weibull','A',Wpars52(cont,1),'B',Wpars52(cont,2)); 
                [ho,PvalueWs52(cont)]=adtest(s52(i:i+3),'Distribution',dist); 
                avge52(cont)=mean(e52(i:i+3)); 
                stde52(cont)=std(e52(i:i+3)); 
                avgs52(cont)=mean(s52(i:i+3)); 
                stds52(cont)=std(s52(i:i+3)); 
            end 
            Wpare1=[Wpare11;Wpare12];  PvalueWe1=[PvalueWe11,PvalueWe12]'; 
            Wpars1=[Wpars11;Wpars12];  PvalueWs1=[PvalueWs11,PvalueWs12]'; 
            avge1=[avge11,avge12]';  stde1=[stde11,stde12]'; 
            avgs1=[avgs11,avgs12]';  stds1=[stds11,stds12]';   
            Wpare2=[Wpare21;Wpare22];  PvalueWe2=[PvalueWe21,PvalueWe22]'; 
            Wpars2=[Wpars21;Wpars22];  PvalueWs2=[PvalueWs21,PvalueWs22]'; 
            avge2=[avge21,avge22]';  stde2=[stde21,stde22]'; 
            avgs2=[avgs21,avgs22]';  stds2=[stds21,stds22]'; 
            Wpare3=[Wpare31;Wpare32];  PvalueWe3=[PvalueWe31,PvalueWe32]'; 
            Wpars3=[Wpars31;Wpars32];  PvalueWs3=[PvalueWs31,PvalueWs32]'; 
            avge3=[avge31,avge32]';  stde3=[stde31,stde32]'; 
            avgs3=[avgs31,avgs32]';  stds3=[stds31,stds32]'; 
            Wpare4=[Wpare41;Wpare42];  PvalueWe4=[PvalueWe41,PvalueWe42]'; 
            Wpars4=[Wpars41;Wpars42];  PvalueWs4=[PvalueWs41,PvalueWs42]'; 
            avge4=[avge41,avge42]';  stde4=[stde41,stde42]'; 
            avgs4=[avgs41,avgs42]';  stds4=[stds41,stds42]'; 
            Wpare5=[Wpare51;Wpare52];  PvalueWe5=[PvalueWe51,PvalueWe52]'; 
            Wpars5=[Wpars51;Wpars52];  PvalueWs5=[PvalueWs51,PvalueWs52]'; 
            avge5=[avge51,avge52]';  stde5=[stde51,stde52]'; 
            avgs5=[avgs51,avgs52]';  stds5=[stds51,stds52]';        
      
        case 2 
            aa='compresion par.xlsx'; 
            sesion=xlsread(aa,'DATOS',strcat('B',fini,':','B',ffin)); 
            zz='Modelos Constitutivos.xlsx'; 
            fc=xlsread(aa,'DATOS',strcat('V',fini,':','V',ffin)); 
            Ec=xlsread(aa,'DATOS',strcat('AI',fini,':','AI',ffin));%Modulo tangente 
            cont1=1; 
            cont2=1; 
            for i=1:4:(fin-ini+1) 
                if sesion(i)==1 || sesion(i)==2 || sesion(i)==5 ||... 
                        sesion(i)==7 || sesion(i)==13 
                    fc1(cont1:cont1+3)=fc(i:i+3); 
                    Ec1(cont1:cont1+3)=Ec(i:i+3); 
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                    cont1=cont1+4; 
                else 
                    fc2(cont2:cont2+3)=fc(i:i+3); 
                    Ec2(cont2:cont2+3)=Ec(i:i+3); 
                    cont2=cont2+4; 
                end 
            end       
            Wpar1=wblfit(fc1); 
            dist=makedist('Weibull','A',Wpar1(1),'B',Wpar1(2)); 
            [ho,pvalue]=adtest(fc1,'Distribution',dist); 
            PvalueW1=pvalue;   Wpar1E=wblfit(Ec1);         
            dist=makedist('Weibull','A',Wpar1E(1),'B',Wpar1E(2)); 
            [ho,pvalue]=adtest(Ec1,'Distribution',dist); 
            PvalueW1E=pvalue; 
            avgfc1=mean(fc1);  stdfc1=std(fc1); 
            avgEc1=mean(Ec1);  stdEc1=std(Ec1); 
    
            cont=0; 
            for i=1:4:size(fc2,2) 
                cont=cont+1; 
                param=wblfit(fc2(i:i+3));  Wpar2(cont,:)=param; 
                dist=makedist('Weibull','A',Wpar2(cont,1),'B',Wpar2(cont,2)); 
                [ho,pvalue]=adtest(fc2(i:i+3),'Distribution',dist); 
                PvalueW2(cont)=pvalue; 
                param=wblfit(Ec2(i:i+3));  Wpar2E(cont,:)=param; 
                dist=makedist('Weibull','A',Wpar2E(cont,1),'B',Wpar2E(cont,2)); 
                [ho,pvalue]=adtest(Ec2(i:i+3),'Distribution',dist); 
                PvalueW2E(cont)=pvalue; 
                avgfc2(cont)=mean(fc2(i:i+3));  stdfc2(cont)=std(fc2(i:i+3)); 
                avgEc2(cont)=mean(Ec2(i:i+3));  stdEc2(cont)=std(Ec2(i:i+3)); 
      end 
            Wpar=[Wpar1;Wpar2];  PvalueW=[PvalueW1,PvalueW2]'; 
            WparE=[Wpar1E;Wpar2E];  PvalueWE=[PvalueW1E,PvalueW2E]';   
            avgfc=[avgfc1,avgfc2]';  stdfc=[stdfc1,stdfc2]'; 
            avgEc=[avgEc1,avgEc2]';  stdEc=[stdEc1,stdEc2]'; 
        otherwise        
    end 
end 

Appendix 2 

MATLAB script for automation of SAP2000  
clear; 
clc; 
ini=62;  fin=121; 
Datosred=zeros(1010,(fin-ini+1)*2); 
for i=1:(fin-ini+1)     
    %1. Define which SAP to use: already open one (true) o new one (false) 
    if i==1 
        EnesteSAP=false(); 
    else 
        EnesteSAP=false(); 
    end 
    %2. Specify SAP file route (true) otherwise the last used SAP file route will be used. 
    EspecificarSAP=true(); 
     
    %3. Specify SAP file route. 
    DireccionSAP='C:\Program Files\Computers and Structures\SAP2000 22\SAP2000.exe'; 
     
    %4. Specify the route of the API to use. 
    DireccionAPIDLL='C:\Program Files\Computers and Structures\SAP2000 22\SAP2000v1.dll'; 
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    %5. Specify the route of the file where the model is located 
    DireccionCarpetaModelo='E:\David\Documentos\Estructuras\MAESTRÍA EN INGENIERÍA CIVIL\Vigas 
SFRSCC_SAP\Red neural'; 
    if ~exist(DireccionCarpetaModelo, 'dir') %If the file exists use it, otherwise create it 
        mkdir(DireccionCarpetaModelo); 
    end 
    NombreModelo=strcat(int2str(ini-1+i),'.sdb'); %Name of the model 
    DireccionModelo=strcat(DireccionCarpetaModelo,filesep,NombreModelo); %Text to route 
    %6. Create the API assistent. 
    a=NET.addAssembly(DireccionAPIDLL); 
    asistenteAPI=SAP2000v1.Helper; 
    asistenteAPI=NET.explicitCast(asistenteAPI,'SAP2000v1.cHelper'); 
     
    %7. Open SAP or use one already open. 
    if EnesteSAP 
        SapObject=asistenteAPI.GetObject('CSI.SAP2000.API.SapObject'); 
        SapObject=NET.explicitCast(SapObject,'SAP2000v1.cOAPI'); 
    else 
        if EspecificarSAP 
            SapObject=asistenteAPI.CreateObject(DireccionSAP); 
        else 
            SapObject=asistenteAPI.CreateObjectProgID('CSI.SAP2000.API.SapObject'); 
        end 
        SapObject = NET.explicitCast(SapObject,'SAP2000v1.cOAPI'); 
        SapObject.ApplicationStart; 
    end 
    asistenteAPI=0; 
   
    %8.Create SAP model 
    SapModel=NET.explicitCast(SapObject.SapModel,'SAP2000v1.cSapModel'); 
    ret=SapModel.InitializeNewModel; 
     
    %9. Open the SAP model. 
    File=NET.explicitCast(SapModel.File,'SAP2000v1.cFile'); 
    ret=File.OpenFile(DireccionModelo); 
        
    tic() 
    %15. Run the SAP model. 
    Analyze=NET.explicitCast(SapModel.Analyze,'SAP2000v1.cAnalyze'); 
    ret=Analyze.RunAnalysis(); 
 
    AnalysisResults=NET.explicitCast(SapModel.Results,'SAP2000v1.cAnalysisResults'); 
    AnalysisResultsSetup=NET.explicitCast(AnalysisResults.Setup,'SAP2000v1.cAnalysisResultsSetup'); 
     
    ret=AnalysisResultsSetup.DeselectAllCasesAndCombosForOutput; 
    ret=AnalysisResultsSetup.SetCaseSelectedForOutput("FPT-Cracking"); 
    ret=AnalysisResultsSetup.SetOptionNLStatic(2); 
  
    NumberResults=0; 
    Obj=NET.createArray('System.String',1010); 
    Elm=NET.createArray('System.String',1010); 
    ACase=NET.createArray('System.String',1010); 
    StepType=NET.createArray('System.String',1010); 
    StepNum=NET.createArray('System.Double',1010); 
    U1=NET.createArray('System.Double',1010);  U2=NET.createArray('System.Double',1010); 
    U3=NET.createArray('System.Double',1010);  R1=NET.createArray('System.Double',1010); 
    R2=NET.createArray('System.Double',1010);  R3=NET.createArray('System.Double',1010); 
        
[ret,NumberResults,Obj,Elm,ACase,StepType,StepNum,U1,U2,U3,R1,R2,R3]=AnalysisResults.JointDispl("21"
,SAP2000v1.eItemTypeElm.ObjectElm,... 
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        NumberResults,Obj,Elm,ACase,StepType,StepNum,U1,U2,U3,R1,R2,R3); 
     
    for j=1:NumberResults 
        Desplazamiento(j)=U3(j)*-1000; 
    end 
     
    NumberResults=0; 
    StepType=NET.createArray('System.String',1010); 
    StepNum=NET.createArray('System.Double',1010); 
    LoadCase=NET.createArray('System.String',1010); 
    Fx=NET.createArray('System.Double',1);  Fy=NET.createArray('System.Double',1); 
    Fz=NET.createArray('System.Double',1);  Mx=NET.createArray('System.Double',1); 
    My=NET.createArray('System.Double',1);  Mz=NET.createArray('System.Double',1); 
    gx=0;  gy=0;  gz=0; 
 
[ret,NumberResults,LoadCase,StepType,StepNum,Fx,Fy,Fz,Mx,My,Mz,gx,gy,gz]=AnalysisResults.BaseReact(
NumberResults,LoadCase,StepType,StepNum,... 
        Fx,Fy,Fz,Mx,My,Mz,gx,gy,gz); 
     
    for j=1:NumberResults 
        Carga(j)=Fz(j); 
    end 
     
    NumberResults=0; 
    StepType=NET.createArray('System.String',1010); 
    StepNum=NET.createArray('System.Double',1010); 
    LoadCase=NET.createArray('System.String',1010); 
    GD=NET.createArray('System.String',1010); 
    DType=NET.createArray('System.String',1); 
    Numbdat(i)=NumberResults; 
     
    %17. Close SAP 
        ret=SapModel.SetModelIsLocked(false()); 
        ret=SapObject.ApplicationExit(false()); 
        File=0; 
        PropMaterial=0;  PropFrame=0; 
        FrameObj=0;  AreaObj=0; 
        PointObj=0;  View=0; 
        LoadPatterns=0;  Analyze=0; 
        AnalysisResults=0; 
        AnalysisResultsSetup=0; 
        SapModel=0;  SapObject=0; 
        tiempo(2*i-1:2*i)=[toc()/60,0]; 
        Datosred(1:length(Desplazamiento),2*i-1:2*i)=[Desplazamiento',Carga']; 
        clear Desplazamiento Carga 
end 
 
xlswrite('Curvas ajustadas final.xlsx',Datosred,'Datos red neural','DT40') 
xlswrite('Curvas ajustadas final.xlsx',tiempo,'Datos red neural','DT38') 
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