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Article Info Abstract

Article History: Excessive sand in concrete undermines structural integrity by increasing porosity
and reducing durability, necessitating non-destructive quality control methods. This
study introduces a wavelet-based approach using discrete wavelet transform multi-
Accepted 10 June 2025 resolution analysis (DWT-MRA) to detect sand excess defects. Cylindrical specimens
(16x32 cm) of reference concrete (350 kg/m> cement) and sand-excess concrete

Received 09 Mar 2025

Keywords: (30% surplus sand) were analyzed via ultrasonic testing (Pundit PL-200), with
Batching fault; signals processed in MATLAB. Results identified distinct patterns: reference concrete
Excess sand; showed stable signals (70% in categories C1-C4), while sand-excess specimens
Concrete; exhibited anomalies (60% in C7-C10) linked to interfacial defects and porosity. Signal
Wavelet signal analysis; decomposition revealed longitudinal amplitude spikes and transverse attenuation in
Ultrasound signals defective samples, correlated with wavelet coefficients. Recurring values (-

32.640/32.624 vs. 31/47) served as diagnostic markers, validated through
redundancy analysis. The method’s computational efficiency, bypassing machine
learning, enables real-time defect detection, offering a scalable, non-destructive
solution for structural health monitoring and quality assurance in concrete
production.

© 2025 MIM Research Group. All rights reserved.

1. Introduction

Concrete is a heterogeneous material composed of a mixture of aggregates, sand, and paste (cement,
water). This material is a key element in our living environment, and due to its durability, mechanical
performance, ease of manufacture, and use, it is widely utilized in the construction of various building
structural elements in different geometric shapes. Rebai et al. [1]. As a result, concrete has become one
of the most economically significant and extensively used materials globally.

Research on concrete properties and non-destructive testing (NDT) methods has evolved significantly.
Kovler and Roussel [2] comprehensively analyzed the physicochemical and mechanical properties of
fresh and hardened concrete, emphasizing factors influencing workability, strength, and durability.
Pedram et al. [3] experimentally evaluated heat transition mechanisms in concrete with subsurface
defects using infrared thermography, demonstrating its efficacy in detecting voids and delaminations.
Joshaghani and Shokrabadi [4] explored ground-penetrating radar (GPR) applications in concrete
pavements, highlighting its utility for thickness measurement and rebar detection. Schabowicz [5]
reviewed NDT techniques (ultrasonic, radiographic) for material characterization in civil engineering,
stressing their role in quality assurance. Lin et al. [6] developed empirical models to predict ultrasonic
pulse velocity (UPV) in concrete, correlating it with compressive strength and mix parameters. Kogbara
et al. [7] assessed NDT methods for LNG containment concrete, identifying thermal and mechanical
performance criteria for cryogenic environments.
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Advances in signal processing and machine learning have enhanced defect detection. Ouahabi [8]
introduced multiresolution analysis (MRA) frameworks for signal and image processing, laying the
groundwork for wavelet-based applications. Arbaoui et al. [9] combined wavelet MRA with deep
learning to detect and monitor concrete cracks, achieving high accuracy through hierarchical feature
extraction. Guo et al. [10] reviewed wavelet analysis applications, emphasizing its advantages in
denoising, feature extraction, and multi-scale data interpretation. Further, A hybrid deep learning
system based on wavelets was proposed by Arbaoui et al. [11] for real-time crack monitoring and was
validated through case studies focused on structural health monitoring. This system was developed
following ultrasonic testing conducted on cylindrical specimens measuring 16x32 cm, prepared in
accordance with current standards [12-14]. In the present study, MATLAB software [15] will be used
to perform a detailed decomposition and analysis of ultrasonic signals, using the same type of
specimens.

Recent studies have advanced non-destructive testing and computational methods for material
analysis. Hashmi et al. [16-17] proposed models using ultrasonic pulse velocity (UPV) and rebound
hammer number (RHN) to estimate age-dependent compressive strength of low-calcium fly ash
concrete, demonstrating UPV’s reliability over RHN for high fly ash content. Kang et al. [18] introduced
a 3D multi-resolution CNN for super-resolution MRI reconstruction, leveraging structural similarities
between T1lw and T2w images to enhance edge details. Arbaoui et al. [19] combined wavelet-based
multiresolution analysis with CNNs to detect concrete dosage defects using ultrasound signals. Luo et
al. [20] developed a Mallat algorithm-based system for detecting broken wire rope strands in hanging
baskets, utilizing wavelet denoising for stable signal analysis. Mandala et al. [21] optimized atrial
fibrillation detection by evaluating Daubechies wavelet basis functions and decomposition levels in ECG
signal processing. Machorro-Lopez et al. [22] correlated acoustic emission signals processed with
wavelet transforms to structural damage stages in concrete beams. Hu et al. [23] integrated wavelet
packet transform with GA-BPNN to classify concrete defects via ultrasonic signals, achieving 91.33%
accuracy. Mousavi et al. [24] employed variational mode decomposition and machine learning to assess
tree health using ultrasonic data, achieving 100% lab accuracy.

Further research focuses on material composition and durability. Amriou et al. [25] analyzed gravel-
sand ratios in concrete, linking increased gravel content to higher strength and lower porosity. Borisiuk
and Kochenkova [26] evaluated sand grades’ effects on sand concrete properties, emphasizing reduced
voidness for improved structural performance. Lee [27] reviewed physicochemical mechanisms
driving concrete degradation, highlighting water’s role in freeze-thaw cycles, chloride penetration, and
corrosion. Sahni and Bashar [28] studied waste foundry sand as a natural sand substitute, noting
reduced workability but comparable strength at <30% replacement. Jadhav et al. [29] compared river
and crushed sand in M30 concrete, observing consistent strength gain with river sand despite initial
lower workability. Advanced ultrasonic techniques will be developed to non-destructively quantify
porosity gradients in functionally graded materials (FGMs), enabling real-time monitoring of
microstructural evolution and enhancing predictive models for performance optimization in critical
engineering applications. [30-32].

This study addresses this challenge by proposing a discrete wavelet transform (DWT)-based multi-
resolution analysis (MRA) framework to detect sand excess defects in concrete. Cylindrical specimens
(16x32 cm) of reference (350 kg/m> cement) and sand-excess (30% surplus sand) concrete were
analyzed using ultrasonic testing (Pundit PL-200). Signals were decomposed via Daubechies wavelets
in MATLARB, isolating defect-specific features through approximation and detail coefficients. Results
demonstrate that sand-excess concrete exhibits 60% dominance in categories (C7-C10), longitudinal
amplitude spikes, and transverse attenuation, correlating with porosity and interfacial defects. By
enhancing sensitivity to compositional deviations, this methodology advances preemptive quality
assurance, reducing reliance on destructive testing while aligning with industrial demands for
sustainable, high-precision construction practices.
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2. Materials and Methods

The methodology of this study was structured into three phases to establish a comprehensive database
for identifying concrete composition defects. First, cylindrical specimens (16 x 32 cm) were prepared
using two concrete mixes: a standard formulation with 350 kg/m?® cement content and a defective mix
incorporating a 30% excess sand content. Second, Non-Destructive Testing (NDT) was conducted using
ultrasonic probes to acquire transverse and longitudinal signals, which were systematically recorded,
categorized, and stored. Finally, the acquired signals were processed through wavelet-based multi-
resolution analysis (MRA) using MATLAB software to extract defect-specific features and enhance
classification accuracy.

Fig. 1 illustrates the methodological workflow encompassing specimen preparation, ultrasonic testing,
signal acquisition, wavelet decomposition, and statistical analysis to detect sand excess defects in
concrete.

Specimen .| Ultrasonic Signal .| Statistical . Wavelet

preparation - testing acquisition analysis decomposition

Fig. 1. Methodological workflow

2.1 Preparation of Specimens

Cylindrical concrete specimens were produced in accordance with current standards [12, 13] through
five key stages: material selection and preparation, dosing and mixing, pouring, curing, and final
grinding. The following constituents were utilized in the fabrication of test specimens:

Fine Sand "BOUSSAADA" (FSB);

Washed Crushed Sand 0/4 "SARL ETPHB TAMRAF" (WCS);

Crushed Gravel (CG) 3/8 "SARL MEZIANE";

Crushed Gravel (CG) 8/15 "SARL MEZIANE";

Crushed Gravel (CG) 15/25 "SARL MEZIANE";

Cement "SEG Sour El-Ghozlane."

The proportions of constituents were determined using the Faury method, achieving a 28-day
compressive strength exceeding 25 MPa, as detailed in Table 1, where (FCC) indicates the Formulation
of Control Concrete.

Table 1. Proportions of concrete constituents for reference (FCC) and sand-excess (FCC + 30% S)
mixes

Constituent FCC FCC +30%S FCC FCC+30%S
(1m?) (1m? (0.05 m?) (0.05 m?)
WCS 0/4 (kg) 730 949 36 46.80
FSB (kg) 130 130 7 7
CG 3/8 (kg) 110 110 6 6
CG 8/15 (kg) 455 455 23 23
CG 15/25 (kg) 425 425 21 21
Cement CPJ-CEM II 42.5 (kg) 350 350 17.50 17.50
Mixing Water (L) 180 200 9 10
Water/Cement Ratio 0.51 0.57 0.51 0.57

Seven specimens were fabricated using control concrete dosed at 350 kg/m® cement content, alongside
seven specimens incorporating a 30% sand excess. All specimens were cast in galvanized metal molds
(16 x 32 cm) with standardized vibration to ensure uniformity. Following demolding, the specimens
were cured for 28 days under controlled conditions (20°C, 98% relative humidity). Post-curing, surface
roughness was eliminated using a Deluxe Hi-Kenma TSURU-TSURU concrete grinder (Fig. 2) to achieve
smooth, test-ready surfaces.
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Fig. 2. The five stages involved in making and preparing test specimens . (a) selection and
preparation, (b) dosing and mixing, (c) pouring, (d) curing, and (e) final grinding

2.2 Preparation of Specimens

In Non-destructive testing (NDT) was performed on the prepared 16 x 32 cm cylindrical specimens
[14] using a "Pundit PL-200" ultrasonic device (Fig. 3). The system employs two transducers
characterized by a P-wave pulse velocity with a maximum frequency of 54 kHz, operating at pulse
speeds of 100-400 Vpp and a pulse echo range of 0.1-1200 ps. Signal acquisition was facilitated by a 7-
inch touchscreen (800 x 480 pixels) integrated with a dual-core processor and 8 GB internal memory,
ensuring high-resolution waveform visualization.

Fig. 3. Longitudinal ultrasonic measurement using the Pundit PL-200 device
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The ultrasonic pulse velocity (UPV) method correlates with the material’'s modulus of elasticity and
density; however, its estimation of compressive strength remains approximate due to the absence of a
universal physical relationship [15]. Key influencing factors include concrete age, aggregate-to-cement
ratio, and moisture content. Higher UPV values indicate superior material quality, reflecting enhanced
strength, homogeneity, and density. Transducers were positioned at transverse intervals of 4 cm along
the specimen length (yielding 7 signals per specimen) and longitudinally at the specimen ends, centered
within 4 cm and 8 cm diameter circles (yielding 3 signals). Testing was conducted on seven control
specimens and seven specimens with a 30% sand excess.

2.3 Signal Processing by Multiresolution Analysis Using Wavelets

Multi-resolution analysis (MRA) can be conceptualized as a mathematical framework analogous to
observing a signal at varying scales zooming in to resolve fine details and zooming out to capture
broader structures [16-18]. Formally, MRA approximates a signal at multiple resolutions through
orthogonal projections onto nested subspaces {Vj}, j€Z. Each approximation at resolution j is governed
by a discrete filter that dictates information loss between successive resolutions. A complementary
family of subspaces {Wj}, jEZ. is derived from {Vj}, where Wj represents the orthogonal complement of
Vjin Vj-1:

Vi—1=Vj+ Wjforj € ZwithVj L Wj 8]

In contrast to {Vj} spaces which are spaces of approximations, {Wj } spaces are spaces of details, so the
previous expression can mean that an element of the approximation space oflevel (j - 1) is decomposed
into the approximation of level (j) which is coarser, and the detail of level (j). The wavelet is a finite
energy function W¥:

ftpll’(t)dt=0,‘v’0£p <n (2)
R
The continuous wavelet transforms of a signal X € L2(R) at time "p" and scale "s" is defined by:
+00
1 t—u
Wy(u,s) =< X, ¥, >= X()—=v¥* (—) dt (3)
» \/E S

Where W is the conjugate complex of W. The discrete wavelet transform is then denoted:

d (G, k) = We(u=2"k,s=277),(j,k) € ZxZ (4)

[ v1 ) [ wi |

(Lv2 )
i

Fig. 4. Schematic of multi-resolution analysis (MRA) illustrating the decomposition of a signal into
approximation (Vj) and detail (Wj) subspaces

[ w2 |

The wavelet transform’s inherent redundancy is mitigated by constructing an orthonormal basis
{Wj,k}(j,k)EZ for L2(R). Signal decomposition into this basis involves iterative discrete convolutions
with low-pass (h) and high-pass filters, followed by decimation ({2) to retain alternate samples. This
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process, implemented via the Mallat algorithm [19], computes approximation and detail coefficients
through cascaded filtering and subsampling (Fig. 5).

k.

aj h P G h V2 — 9=

v
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Fig. 5. Signal decomposition workflow using low-pass (h) and high-pass (g) filters, with decimation
(12) at each stage

Daubechies wavelets [20], exemplified by the second-order (N=2) variant (Fig. 6). constitute a family
of compactly supported orthogonal wavelets for their balance between localization and smoothness.

Amplitude

Fig. 6. Daubechies wavelet (order N=2) used for discrete wavelet decomposition

3. Results and Discussions

3.1 Digital Processing of The Database

The analysis of ultrasonic signal distributions between reference and sand-excess concrete reveals
distinct patterns critical to defect identification. As illustrated in Fig. 7 reference concrete exhibits a
pronounced dominance in signal categories C1-C5, which correspond to baseline amplitudes and noise-
free waveforms. This consistency aligns with the homogeneous microstructure and uniform density
expected in properly proportioned concrete. In contrast, sand-excess concrete demonstrates a marked
shift toward categories C6-C10, characterized by irregular waveforms and elevated amplitudes. These
anomalies are attributed to increased porosity and interfacial defects arising from the disproportionate
sand content, which disrupts aggregate-cement bonding and introduces microstructural heterogeneity.
Further quantification of these trends is provided in Fig. 8, where reference concrete signals in
categories C1-C4 constitute over 70% of total occurrences, reflecting stable ultrasonic wave
propagation through a cohesive material matrix. Conversely, sand-excess concrete shows a
predominance of categories C7-C10, contributing more than 60% of signals. This divergence
underscores the sensitivity of ultrasonic testing to compositional deviations, as excess sand alters the
material’s acoustic impedance and wave attenuation properties.

The observed variability in signal behavior can be contextualized through wavelet analysis. The
prominence of C6-C10 categories in sand-excess concrete correlates with high-frequency wavelet
coefficients, which capture localized discontinuities such as voids and microcracks. In contrast, the
dominance of C1-C5 categories in reference concrete corresponds to low-frequency approximations,
indicative of bulk material integrity. This dichotomy validates the utility of multi-resolution analysis in
isolating defect-related features from background noise. From a practical perspective, the categorical
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shift from C1-C5 to C6-C10 serves as a robust diagnostic marker for sand-related defects. Automated
quality control systems leveraging this criterion could flag batches exceeding a 20% contribution from
C6-C10 signals, enabling real-time detection of formulation errors. Such an approach reduces reliance
on destructive testing while enhancing the scalability of structural health monitoring. The values
presented in Table 2 represent mathematical indices extracted from the ultrasonic signal and are
specific to the Pundit PL-200 device. These indices were used as reference patterns, and their frequency
of occurrence within the measured signal was calculated to assess their repetitiveness.
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Fig. 7. Distribution of signal value occurrences in reference concrete vs. sand-excess concrete
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Fig. 8. Percentage contribution of signal categories in reference concrete vs. sand-excess concrete

Table 2. Redundancy statistics for values in the signals studied

Number of

CATYGORY Type of concrete Value Percentage (%)
occurrences
Reference concrete 32 624 6020 6.90
CATYGORY1 concrete + 30 % sand 47 1838 2.11
Reference concrete -32 640 6010 6.89
CATYGORY2 concrete + 30 % sand 32 624 1682 1.93
Reference concrete 47 1794 2.06
CATYGORY3 concrete + 30 % sand -32 640 1656 1.90
Reference concrete 63 797 0.91
CATYGORY4 concrete + 30 % sand 31 1636 1.88
Reference concrete 15 381 0.44
CATYGORYS concrete + 30 % sand 63 760 0.87
CATYGORY6 Reference concrete 79 153 0.18
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concrete + 30 % sand 15 576 0.66

Ref. ¢ 0 103 0.12

CATYGORY7 concrete + 30 % sand 79 222 0.25
Ref. ¢ 191 54 0.06

mcows e
Ref. ¢ 111 53 0.06

CATYGORYS concrete + 30 % sand 64 145 0.17
Ref. ¢ 398 52 0.06

CATYGORY10 concrete + 30 % sand 127 139 0.16

3.2 Superposition of Ultrasonic Signals

The ultrasonic signals acquired from reference concrete and sand-excess concrete (30% additional
sand) were processed using MATLAB software. Amplitude values, extracted from the Proceq PL-Link
database, were superimposed to compare longitudinal and transverse waveforms at identical
measurement positions. Fig. 9 illustrates the superimposition of signals for both concrete types. A
pronounced divergence is observed between the waveforms:

o Longitudinal Signals (Fig. 9a): The reference concrete exhibits a stable, low-amplitude waveform,
whereas the sand-excess concrete shows intermittent amplitude spikes and phase shifts.

e Transverse Signals (Fig. 9b): The sand-excess concrete displays reduced signal coherence, with
higher attenuation and irregular peaks compared to the reference concrete.

Amplitude[%]
1

Reference Concrete
— Concrete + 30% Sand

100 | | | i i | i
o 100 200 300 400 500 600 700 800

Time [us]

(a)

Amplitude[%]

Reference Concrete
—Concrete + 30% Sand

00 | i i i i | i
o 100 200 300 400 500 600 700 800

Time [us]

(b)
Fig. 9. Superimposed ultrasonic signals (a) Longitudinal comparison showing amplitude spikes in
sand-excess concrete (30% sand), (b) Transverse comparison highlighting signal attenuation in
sand-excess concrete (30% sand)

The distinct signal behavior arises from microstructural disparities induced by 30% excess sand. In
sand-excess concrete, the overabundance of fine particles disrupts the aggregate-cement matrix,
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increasing porosity and creating interfacial voids. These defects scatter ultrasonic waves, manifesting
as amplitude spikes (Fig. 9a) and attenuated waveforms (Fig. 9b). Conversely, the homogeneous
microstructure of reference concrete facilitates consistent wave propagation, yielding stable signals.
The longitudinal signal anomalies (Fig. 9a)) correlate with high-frequency wavelet coefficients,
capturing localized voids, while transverse signal attenuation (Fig. 9b) aligns with energy dissipation
due to reduced material density.

3.3 Signal Decomposition via Wavelet Analysis

Using the "wavelet toolbox" interface of the "MATLAB" calculation code, we decomposed the signals by
using the discrete wavelet transform "DWT" in 04 levels, in this case the second-order Daubechies
wavelet, which enabled us to analyse the signals obtained at different scales (resolution). The results of
this decomposition are the detail and approximation coefficients, with graphical representations of
these coefficients until we obtain the smoothest version of our original signal. This "DWT" transform
also enables us to denoise signals characterised by a high level of noise, in order to improve accuracy
during information extraction. Analysis of ultrasonic signals decomposed using the Discrete Wavelet
Transform (DWT) revealed significant differences between the reference concrete and the concrete
with a 30% excess of sand, in both propagation directions (longitudinal and transverse). A detailed
interpretation of each decomposition figure is given below:

T T T T T
i \[\/\A/\/\/V\W
.50 -
1 I 1 ! 1 1 1
100 200 300 400 500 600 700

Detail(s) at level(s) 1234

o

100 200 300 400 500 600 700
Details Coefficients

IIIIIIIHHII}I|IW‘IH IHI~||I NI

=

w

Level number
N

100 200 300 400 500 600 700
[ e ]

Scale of colors from MIN 1o MAX

Fig. 10. Longitudinal signal approximation and detail coefficients for reference concrete

1 1
100 200 300 400 500 600 700
Detail(s) atlevel(s) 1234

| |
100 200 300 400 500 600 700
Details Coefiicients

Now -

Level number

100 200 300 400 500 600 700

[ ]
Scale of colors from MIN 1o MAX

Fig. 11. Transverse signal detail and approximation coefficients for reference concrete
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This figure (Fig. 10) shows a clear signal with a regular and well-defined waveform. The detail
coefficients from the DWT, especially at levels 1 and 2, are concentrated around the central part of the
signal (Time = 200-350 us), indicating good transmission of ultrasonic energy. The relatively high
amplitude and coherent structure suggest that the material is homogeneous and dense, with no major
internal disturbances. Compared to the previous figure, In the figure above (Fig. 11), the signal appears
slightly more attenuated, which is expected in the transverse direction. However, the waveform
remains regular, and the extracted details are well localized, although less intense than in the
longitudinal case. The energy is mostly concentrated in the lower detail levels, confirming that the
material is healthy, but the transverse direction causes more wave dispersion.

1 1 1 | 1 1 1
100 200 300 400 500 600 700
Detail(s) atlevel(s) 1234

100 200 300 400 500 600 700

Level number

100 200 300 400 500 600 700
[ ]
Scale of colors from MIN to MAX

Fig. 12. Longitudinal signal approximation and detail coefficients for sand-excess concrete (30%
sand)

50

-50

| | | |
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100 200 300 400 500 600 700

Details Coefficients

w

)

Level number

100 200 300 400 500 600 700
S ]
Scale of colors from MIN to MAX

Fig. 13. Transverse signal approximation and detail coefficients for sand-excess concrete (30%
sand)

This graphical representation (Fig. 12) shows a noticeable decrease in signal amplitude and a more
irregular waveform. The detail coefficients are more spread out, especially from levels 1 to 3. The
energy is distributed over a larger portion of the signal, reflecting unstable propagation and the
presence of micro-defects. These observations are typical of a heterogeneous concrete, where the
excess sand results in poor compaction and multiple interfaces that disturb wave travel.
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This illustration (Fig. 13) shows the most pronounced effect of the defect. The signal is strongly
attenuated from the beginning, with an asymmetric envelope and lower frequency content. The DWT
coefficient distribution shows energy concentrated in a narrow time range (Time = 100-200 us),
followed by a general weakening. This indicates strong energy absorption due to internal heterogeneity
and significant scattering. This response is characteristic of a disorganized and porous structure. These
observations confirm that excess sand significantly degrades ultrasonic wave transmission, and that
this degradation is both visually and quantitatively detectable using the Discrete Wavelet Transform.
Each figure clearly demonstrates the ability of this method to reveal the internal structure of concrete,
highlighting differences in behavior depending on the propagation direction and the condition of the
material.

3.4 Comparative Analysis with Existing Methods

The proposed methodology is contextualized within the broader landscape of wavelet-based signal
processing techniques, with key distinctions highlighted against prior studies:

Machorro-Lopez et al. [21] employed continuous wavelet transforms (CWT) with Gaussian wavelets to
analyze acoustic emission (AE) signals from concrete beams under flexural loading. Their approach
focused on post-processing waveform data to compute wavelet energy (WE) for damage detection,
identifying the Gaussian wavelet as optimal for capturing fracture-related features. In contrast, the
present study utilizes discrete wavelet transforms (DWT) with Daubechies wavelets,
emphasizing compositional defects rather than mechanical damage. By directly comparing
decomposition coefficients between reference and sand-excess concrete, this work bypasses the need
for energy-based metrics, offering a granular resolution of material heterogeneity.

Hu et al. [22] integrated wavelet packet transforms (WPT) with a hybrid genetic algorithm-
backpropagation neural network (GA-BPNN) to classify concrete defects. While their method enhances
anomaly detection accuracy through machine learning, it requires extensive training datasets and
computational resources. This study, conversely, relies on coefficient-based statistical analysis,
enabling defect identification without supervised learning, thus reducing complexity and improving
scalability for real-time quality control.

Mousavi et al. [23] applied variational mode decomposition (VMD) to ultrasonic signals from wood
samples, targeting physical defects such as voids and decay. Although their work shares a similar non-
destructive testing framework, the focus diverges significantly: this research addresses material
composition flaws (sand excess) rather than structural voids. The use of DWT here provides a more
interpretable decomposition for quantifying constituent-related anomalies, which are less visually
apparent than physical discontinuities.

e Methodological Distinction: Unlike CWT/WPT-based studies [21-22], this work leverages DWT’s
multi-resolution capabilities to isolate compositional defects through coefficient analysis,
avoiding reliance on energy thresholds or machine learning.

o Application Scope: Expands ultrasonic testing beyond physical defect detection [23] to diagnose
formulation errors, a critical advancement for preemptive quality assurance in concrete
production.

o Practical Efficiency: The coefficient-driven approach reduces computational overhead compared
to hybrid ML methods [22], aligning with industrial needs for rapid, on-site assessments.

4. Conclusions

This study establishes a wavelet-based framework for non-destructive identification of sand excess
defects in concrete, leveraging multi-resolution analysis (MRA) to isolate compositional anomalies. Key
findings demonstrate that ultrasonic signal redundancy and distribution patterns serve as robust
indicators of material integrity:

o Signal Characterization: The reference concrete exhibited a recurrence of dominant index values
(-32, 640, 32, 624), with approximately 70% concentrated within categories C1-C4, indicating a
homogeneous microstructure. In contrast, the sand-rich concrete showed repeated values (31,
47), with around 60% falling within categories C7-C10. This distribution is attributed to
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increased porosity and interfacial defects resulting from the breakdown of the aggregate-cement
bond.

e Wavelet Decomposition: Discrete wavelet transform (DWT) with Daubechies wavelets
distinguished defects through approximation coefficients (bulk properties) and detail
coefficients (localized voids). Longitudinal signal superimposition revealed amplitude spikes,
while transverse analysis highlighted attenuation, correlating with microstructural
heterogeneity.

e Methodological Innovation: The coefficient-driven approach eliminates dependency on machine
learning, reducing computational complexity and enabling real-time defect detection without
extensive training datasets.

Diverging from prior studies focused on physical defects, this work targets formulation errors,
advancing ultrasonic testing for preemptive quality control. The integration of MRA enhances
sensitivity to subtle compositional deviations, offering a scalable alternative to destructive methods.

Future research should expand the signal database to encompass diverse defect types (aggregate
deficiencies, water-cement ratio imbalances) and integrate adaptive algorithms for automated, real-
time anomaly classification. Such advancements will further minimize manual intervention, aligning
with industrial demands for efficient, high-precision structural.
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