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Article Info  Abstract 

Article History: 
 Functionally graded materials (FGMs) are a type of composite material whose 

microstructure is not homogeneous, differing at each coordinate position. The 
development of FGM material technology is an important and strategic effort to 
meet the needs of an increasingly advanced industry. Theoretically, an important 
topic that is commonly discussed for mechanical applications is the analytical 
solution of stress distribution in FGM materials subjected to mechanical loads. 
Previous studies have proposed a stress distribution solution in cylindrical FGM, 
but the solution is inaccurate in certain applications. Other studies propose stress 
distribution solutions, but with different boundary conditions. The present study 
proposes a new solution different from previous studies and valid for applying to 
cylindrical FGMs with more general inhomogeneity. The developed solution uses 
a power function to determine the inhomogeneity constant and applies internal 
pressure under axisymmetric conditions. The solution proposed in this study was 
validated through numerical simulations (FEM), and a good agreement is obtained 
with an error value of less than 2.77%. Moreover, the proposed solution shows 
good agreement with experimental data from previous studies.  
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1. Introduction 

One of the problems in industrial applications is the difficulty of obtaining products from a 
homogeneous material that meets all property requirements. For example, it isn't easy to produce 
pipes that are strong, corrosion-resistant, and heat-resistant at the same time using a homogeneous 
material. These properties can be obtained by combining the advantages of several different 
materials into a composite material. Such composite materials can be categorized as functionally 
graded materials (FGMs), whose microstructure differs at each coordinate position with a specific 
gradient. Different properties include Young's modulus, shear modulus, and density [1], [2]. FGM 
materials can be categorized as continuous degradation and layered degradation [3]. Examples of 
continuous degradation of FGM are bamboo [4] and bone [5], while examples of step degradation 
FGM are layered composite cylinders [6], [7]. With FGM technology, advantages can be obtained, 
for example, to reduce the intensity factor on the plane and lateral tensions, to obtain a more even 
distribution of tension, and to improve thermal performance [8], [9].  

The development of FGM material technology includes various fields of study, such as raw 
materials, production processes, mechanical property analysis, and design methods [3]. FGM 
materials have been used in various fields of application, for example, in the construction of deep 
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offshore oil and gas operations [10, 11], high-pressure vessels [12, 13], heat-resistant and 
corrosion-resistant pipes for geothermal power plants [14, 15], and reactor tubes in nuclear 
structures [16]. For the future, it is predicted that FGM materials will be increasingly needed due 
to technological advances in various industrial fields, but in this article, the discussion is limited to 
cylindrical structure FGM. Examples of previous studies include the static analysis of FGM 
cylindrical shells and the effects of stress concentration [17, 18], the vibration and stability of FGM 
cylindrical shells subjected to external pressures [19, 20], and the nonstationary response of 
stepped composite cylindrical shells with drop-off plies under moving random loads [21]. Recently, 
FGM laminated composite cylinders have been researched for the construction of submerged 
floating tunnel bridges (SFT-Bridges), which require strong, ductile, and corrosion-resistant 
structures [22-24]. 

Cylindrical FGM is commonly used in the industrial sector, for example, for pipes and pressure 
vessels. The properties of the modulus of elasticity are modeled as exponential equations, where 
the exponent is the degree of inhomogeneity (β). With an exponential equation, the value of the 
modulus of elasticity can be determined at each coordinate position. The value of the modulus of 

elasticity is assumed to vary as 𝐸(𝑟) = 𝐸𝑜𝑟𝛽 along the wall thickness. 𝐸𝑜 is the stiffness on the 
outermost surface (𝑟 = 1), and β is the empirically determined inhomogeneity constant. An 
important theme discussed in this study is the equation of stress distribution at each point along 
the radial axis. Previously, the exact solution had been published by [25], who used mathematical 
methods to obtain an exact solution for stress distribution in cylinders. The solution was developed 
from a boundary condition where there was only internal pressure on the inner surface of the 
cylinder. The article [25] presents the results of radial stress distribution and circumferential stress 
distribution, as well as the influence of variations in the modulus of elasticity of materials on the 
distribution of stress. 

The problem is that the hoop stress equation proposed by [25] is only valid for β=1, but not for 
other β values. In addition, the article does not explain in detail the process of developing the 
equation, making it difficult to understand. Twenty years later, [26] made a new proposal for a 
stress distribution analytical solution in cylindrical FGM. However, this proposal does not precisely 
address the existing problems because the solutions developed are based on different boundary 
conditions. The boundary conditions include: (first) internal pressure applied on the inner surface 
and tension applied on the outer surface; (second) fixed displacement applied on the inner surface 
and tension on the outer surface; and (third) internal pressure applied on the inner surface and 
fixed displacement on the outer surface. Nevertheless, the research in [26] provides a more detailed 
explanation of the equation development process, making it easier to follow. 

This study proposes a new equation for the distribution of hoop stress in cylindrical FGMs with 
varying inhomogeneity constants (-2 < β < 2). The solution is developed from the boundary 
conditions: internal pressure is applied on the inner surface, while no pressure or constraint is 
applied on the outer surface, as done by [25], and it adopts the method proposed by [26]. The stress 
distribution equation obtained in this study is different from that proposed by [25] and 
[26]. Furthermore, this solution has been compared with FEM and experimental results, where the 
experimental study refers to the research conducted by [27]. From the comparative study, it can be 
seen that the proposed analytical solution shows good agreement with FEM with an error value of 
less than 2.77%. In addition, this equation was also validated with experiments. This research has 
been partially presented at a conference [28], and in this article, it is presented in more detail and 
comprehensively. 

2. Model and Analytical Solution 

Figure 1 displays the FGM cylinder model with radial coordinates 𝑟̅ and displacement coordinates 
𝑢̅. 𝑅𝑜 represents the outermost radius of the cylinder, and its coordinate is defined in Equation (1). 

𝑟 = 𝑟̅/𝑅𝑜 ,      𝑢 = 𝑢̅/𝑅𝑜 (1) 
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Fig. 1. FGM cylinder cross-section and its coordinate system 

Radial strains and hoop strains are analyzed under the plane-strain assumption, so the equilibrium 
equation is given as shown in Equation (2) [25], [26], [28]. 

𝜀𝜃 = 𝜀𝜙 =
𝑢

𝑟
   𝜀𝑟 =

𝑑𝑢

𝑑𝑟
 ,    𝛾𝑟𝜃 = 𝛾𝑟𝜙 = 𝛾𝜃𝜙 = 0 (2) 

The material is assumed to be isotropic, with a constant Poisson's ratio and a radially varying 
Young's modulus. Using the power function, the value of elasticity in radius variation can be seen 
in Equation (3) [25]. 𝐸𝑜 is the value of Young's modulus on the outermost surface (𝑟/𝑅𝑜 = 1), and 
𝛽 is the gradient constant of inhomogeneity.  

 𝐸(𝑟) = 𝐸𝑜𝑟𝛽 (3) 

The constitutive equation can be seen in Equation (4) and Equation (5). 

𝜎𝑟 = 𝐶11𝜀𝑟 + 𝐶12𝜀𝜃,     𝜎𝜃 = 𝐶12𝜀𝑟 + 𝐶11𝜀𝜃 + 𝐶12𝜀𝜙     (4) 

Here, 

𝐶11 = 𝑐11𝑟𝛽 = (
𝐸𝑜(1 − 𝑣)

(1 + 𝑣)(1 − 2𝑣)
) 𝑟𝛽 ,      𝐶12 = 𝑐12𝑟𝛽 = (

𝐸𝑜𝑣

(1 + 𝑣)(1 − 2𝑣)
) 𝑟𝛽 (5) 

The non-trivial equilibrium is Equation (6), and radial displacement is Equation (7).  

𝑑𝜎𝑟

𝑑𝑟
+

𝜎𝑟 − 𝜎𝜃

𝑟
= 0 (6) 

𝑟2𝑢" + (𝛽 + 1)𝑟𝑢′ + (𝑣∗𝛽 − 1)𝑢 = 0 (7) 

The symbol 𝑣∗ is a simplified form of the Poisson's ratio, where 𝑣∗ = 𝑣/(1 − 𝑣). Equation (7) can 
be solved using the second-order Cauchy–Euler equation, assuming the solution as shown in 
Equation (8). The characteristics of the equation and its roots are given in Equations (9) and (10), 
respectively. 

𝑢 = 𝑟𝑚 ,      
𝑑𝑢

𝑑𝑟
= 𝑚𝑟𝑚−1 ,      

𝑑2𝑢

𝑑𝑟2
= 𝑚(𝑚 − 1)𝑟𝑚−2 (8) 

 

Ro 

𝜎𝜃 

 

𝜎𝜃 

 

𝜎𝑟 

 
𝜎𝑟 

 

Ri 

𝑟̅ 
P 
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𝑚2 + 𝛽𝑚 + (𝑣∗𝛽 − 1) = 0 (9) 

𝑚1 =
1

2
(−𝛽 − √𝛽2 − 4(𝑣∗𝛽 − 1)),        𝑚2 =

1

2
(−𝛽 + √𝛽2 − 4(𝑣∗𝛽 − 1)) (10) 

To solve for the variable m, there are three conditions based on the Cauchy-Euler formula. These 
conditions are as follows [26].  

• The values 𝑚1 and 𝑚2 are real and different (𝑚1 ≠ 𝑚2); then the solution is as seen in 
Equation (11). 

𝑢 = 𝐴𝑟𝑚1 + 𝐵𝑟𝑚2  (11) 

• The values 𝑚1 and 𝑚2 are real and equal (𝑚1 = 𝑚2 = 𝑚); then the solution is as seen in 
Equation (12). 

𝑢 = (𝐴 + 𝐵 𝑙𝑛 𝑟)𝑟𝑚  (12) 

• The values 𝑚1 and 𝑚2 are imaginary (𝑚1 = 𝑥 + 𝑦𝑖, 𝑚2 = 𝑥 − 𝑦𝑖); then the solution is as seen 
in Equation (13). 

𝑢 = (𝐴 𝑐𝑜𝑠(𝑦 𝑙𝑛 𝑟) + 𝐵 𝑠𝑖𝑛(𝑦 𝑙𝑛 𝑟))𝑟𝑥 (13) 

Since the material has a Poison value ratio of 0 < 𝑣 < 0.5, then 0 < 𝑣∗ < 1, and 0 < 𝑣∗2 < 1. Thus, 
the value of the square under the root sign in equation (10) is as seen in Equation (14). 

𝛥 = 𝛽2 − 4(𝑣∗𝛽 − 1) = (𝛽2 − 2𝑣∗)2 + 4(1 − 𝑣∗2) > 0 (14) 

The values 𝐴 and 𝐵 are parameters that depend on two boundary conditions [25]: 

• (1) Boundary condition 1: On the inner surface of the cylinder, internal pressure, 𝑃,  is applied 
as seen in Equation (15). 

• (2) Boundary condition 2: On the outer surface of the cylinder, no pressure is applied, as seen 
in Equation (16). 

Boundary condition 1: 𝜎𝑟 (
𝑅𝑖

𝑅𝑜
) = −𝑃 

𝜀𝑟 = 𝑚1𝐴 (
𝑅𝑖

𝑅𝑜
)

𝑚2−1

+ 𝑚2𝐵 (
𝑅𝑖

𝑅𝑜
)

𝑚2−1

;    𝜀𝜃 = 𝐴 (
𝑅𝑖

𝑅𝑜
)

𝑚1−1

+ 𝐵 (
𝑅𝑖

𝑅𝑜
)

𝑚2−1

 
(15) 

Boundary condition 2: 𝜎𝑟 (
𝑅𝑜

𝑅𝑜
) = 0 

𝜀𝑟 = 𝑚1𝐴 + 𝑚2𝐵;                        𝜀𝜃 = 𝐴 + 𝐵         
(16) 

Parameter 𝐴 and parameter 𝐵 can be obtained in the following stages: 

• Determine parameter 𝐵 by eliminating parameter 𝐴 from boundary condition 1 and 
boundary condition 2. 

From boundary condition 1: Substitute Equation (4) into Equation (15) as seen in Equation (17). 

−𝑃 = 𝐶11𝜀𝑟 + 𝐶12𝜀𝜃 

−𝑃 = (
𝐸𝑜(1 − 𝑣)

(1 + 𝑣)(1 − 2𝑣)
) (

𝑅𝑖

𝑅𝑜
)

𝛽

(𝑚1𝐴 (
𝑅𝑖

𝑅𝑜
)

𝑚1−1

+ 𝑚2𝐵 (
𝑅𝑖

𝑅𝑜
)

𝑚2−1

)

+ (
𝐸𝑜𝑣

(1 + 𝑣)(1 − 2𝑣)
) (

𝑅𝑖

𝑅𝑜
)

𝛽

(𝐴 (
𝑅𝑖

𝑅𝑜
)

𝑚1−1

+ 𝐵 (
𝑅𝑖

𝑅𝑜
)

𝑚2−1

) 

(17) 

Suppose: 

𝑋 = (
𝐸𝑜(1−𝑣)

(1+𝑣)(1−2𝑣)
), and 𝑌 = (

𝐸𝑜𝑣

(1+𝑣)(1−2𝑣)
)  (18) 
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Arrange Equation (17) into Equation (19). 

−𝑃 = 𝑋 (
𝑅𝑖

𝑅𝑜
)

𝛽

𝑚1𝐴 (
𝑅𝑖

𝑅𝑜
)

𝑚1−1

+ 𝑋 (
𝑅𝑖

𝑅𝑜
)

𝛽

𝑚2𝐵 (
𝑅𝑖

𝑅𝑜
)

𝑚2−1

+ 𝑌 (
𝑅𝑖

𝑅𝑜
)

𝛽

𝐴 (
𝑅𝑖

𝑅𝑜
)

𝑚1−1

+

𝑌 (
𝑅𝑖

𝑅𝑜
)

𝛽

𝐵 (
𝑅𝑖

𝑅𝑜
)

𝑚2−1

   

= (𝑋 (
𝑅𝑖

𝑅𝑜
)

𝛽

𝑚1 (
𝑅𝑖

𝑅𝑜
)

𝑚1−1

+ 𝑌 (
𝑅𝑖

𝑅𝑜
)

𝛽

(
𝑅𝑖

𝑅𝑜
)

𝑚1−1
) 𝐴 + (𝑋 (

𝑅𝑖

𝑅𝑜
)

𝛽

𝑚2 (
𝑅𝑖

𝑅𝑜
)

𝑚2−1

+

𝑌 (
𝑅𝑖

𝑅𝑜
)

𝛽

(
𝑅𝑖

𝑅𝑜
)

𝑚2−1
) 𝐵    

(19) 

Parameter 𝐴 can be obtained as seen in Equation (20). 

−𝐴 =
𝑃 (

𝑅𝑖

𝑅𝑜
)

1−𝛽
(1 + 𝑣)(1 − 2𝑣) + (𝐸𝑜(1 − 𝑣)𝑚2 + 𝐸𝑜𝑣) (

𝑅𝑖

𝑅𝑜
)

𝑚2

𝐵

(𝐸𝑜(1 − 𝑣)𝑚1 + 𝐸𝑜𝑣) (
𝑅𝑖

𝑅𝑜
)

𝑚1
 (20) 

From the boundary condition 2: Substitute Equation (4) into Equation (16) as seen in Equation 
(21). 

0 = 𝐶11𝜀𝑟 + 𝐶12𝜀𝜃  (21) 

We obtain Equation (22) by assuming 𝑋 and 𝑌 as written in Equation (18). 

0 = 𝑋𝑚1𝐴 + 𝑋𝑚2𝐵 + 𝑌𝐴 + 𝑌𝐵 
= (𝑋𝑚1 + 𝑌)𝐴 + (𝑋𝑚2 + 𝑌)𝐵 

(22) 

Parameter 𝐴 can be obtained as seen in Equation (23). 

𝐴 =
−𝐵(𝐸𝑜(1 − 𝑣)𝑚2 + 𝐸𝑜𝑣) (

𝑅𝑖

𝑅𝑜
)

𝑚1

(𝐸𝑜(1 − 𝑣)𝑚1 + 𝐸𝑜𝑣) (
𝑅𝑖

𝑅𝑜
)

𝑚1
 (23) 

Parameter 𝐵 can be obtained by eliminating parameter 𝐴 by adding Equation (20) and Equation 
(23), as seen in Equation (24). 

𝐵 =
𝑃(

𝑅𝑖
𝑅𝑜

)
1−𝛽

(1+𝑣)(1−2𝑣)

𝐸𝑜((
𝑅𝑖
𝑅𝑜

)
𝑚1

−(
𝑅𝑖
𝑅𝑜

)
𝑚2

)(𝑣+(1−𝑣)𝑚2)
  (24) 

• Determine parameter 𝐴 by eliminating parameter 𝐵 from boundary condition 1 and 
boundary condition 2. 

Similar to point (1), from boundary condition 1 and boundary condition 2, parameter 𝐵 is obtained 
as seen in Equation (25) and Equation (26), respectively. 

−𝐵 =
𝑃 (

𝑅𝑖

𝑅𝑜
)

1−𝛽
(1 + 𝑣)(1 − 2𝑣) + (𝐸𝑜(1 − 𝑣)𝑚1 + 𝐸𝑜𝑣) (

𝑅𝑖

𝑅𝑜
)

𝑚1

𝐴

(𝐸𝑜(1 − 𝑣)𝑚2 + 𝐸𝑜𝑣) (
𝑅𝑖

𝑅𝑜
)

𝑚2
 (25) 

𝐵 =
−𝐴(𝐸𝑜(1 − 𝑣)𝑚1 + 𝐸𝑜𝑣) (

𝑅𝑖

𝑅𝑜
)

𝑚2

(𝐸𝑜(1 − 𝑣)𝑚2 + 𝐸𝑜𝑣) (
𝑅𝑖

𝑅𝑜
)

𝑚2
 (26) 

Parameter 𝐴 is obtained by eliminating parameter 𝐵 by adding Equation (25) and Equation (26), 
as seen in Equation (27). 
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𝐴 = −
𝑃(

𝑅𝑖
𝑅𝑜

)
1−𝛽

(1+𝑣)(1−2𝑣)

𝐸𝑜((
𝑅𝑖
𝑅𝑜

)
𝑚1

−(
𝑅𝑖
𝑅𝑜

)
𝑚2

)(𝑣+(1−𝑣)𝑚1)
  (27) 

From Equation (4), radial stress can be determined as shown in Equation (28). By substituting 
parameter 𝐴 as defined in Equation (27) and parameter 𝐵 as defined in Equation (24), the radial 
stress is obtained as shown in Equation (29). 

𝜎𝑟 = 𝐶11𝜀𝑟 + 𝐶12𝜀𝜃,    

     = (
𝐸𝑜(1−𝑣)

(1+𝑣)(1−2𝑣)
) 𝑟𝛽(𝑚1𝐴𝑟𝑚1−1 + 𝑚2𝐵𝑟𝑚2−1) + (

𝐸𝑜𝑣

(1+𝑣)(1−2𝑣)
) 𝑟𝛽(𝐴𝑟𝑚1−1 +

𝐵𝑟𝑚2−1)  

(28) 

𝜎𝑟 =
𝑃 (

𝑅𝑖

𝑅𝑜
)

1−𝛽
(𝑟𝑚1 − 𝑟𝑚2)𝑟𝛽−1

(
𝑅𝑖

𝑅𝑜
)

𝑚1

− (
𝑅𝑖

𝑅𝑜
)

𝑚2
 (29) 

Similarly, from Equation (4), hoop stress can be determined as seen in Equation (30). By 
substituting parameter 𝐴 as written in Equation (27) and parameter 𝐵 as written in Equation (24), 
the hoop stress is obtained as seen in Equation (31). The simple form is as written in Equation (32), 
where 𝜒1 and 𝜒2 are as stated by Equation (33). 

𝜎𝜃 = 𝐶12𝜀𝑟 + 𝐶11𝜀𝜃  

= (
𝐸𝑜𝑣

(1 + 𝑣)(1 − 2𝑣)
) 𝑟𝛽(𝑚1𝐴𝑟𝑚1−1 + 𝑚2𝐵𝑟𝑚2−1)

+ (
𝐸𝑜(1 − 𝑣)

(1 + 𝑣)(1 − 2𝑣)
) 𝑟𝛽(𝐴𝑟𝑚1−1 + 𝐵𝑟𝑚2−1) 

(30) 

𝜎𝜃

=
𝑃𝑟𝑚1(𝑣𝑚1 + (1 − 𝑣))(𝑚2(𝑣 − 1) − 1) (

𝑅𝑖

𝑅𝑜
)

1−𝛽
𝑟𝛽−1 − 𝑃𝑟𝑚2(𝑣𝑚2 + (1 − 𝑣))(𝑚1(𝑣 − 1) − 1) (

𝑅𝑖

𝑅𝑜
)

1−𝛽
𝑟𝛽−1

(𝑚1(𝑣 − 1) − 1)(𝑚2(𝑣 − 1) − 1) ((
𝑅𝑖

𝑅𝑜
)

𝑚1

− (
𝑅𝑖

𝑅𝑜
)

𝑚2

)
 

(31) 

𝜎𝜃 =
(

𝑅𝑖

𝑅𝑜
)

1−𝛽

𝑟𝛽−1(𝜒1 − 𝜒2)

(𝑚1(𝑣 − 1) − 𝑣)(𝑚2(𝑣 − 1) − 𝑣) ((
𝑅𝑖

𝑅𝑜
)

𝑚1

− (
𝑅𝑖

𝑅𝑜
)

𝑚2

)
 (32) 

𝜒1 = 𝑃𝑟𝑚2(𝑣𝑚2 + (1 − 𝑣))(𝑚1(𝑣 − 1) − 𝑣) 

𝜒2 = 𝑃𝑟𝑚1(𝑣𝑚1 + (1 − 𝑣))(𝑚2(𝑣 − 1) − 𝑣) 
(33) 

3. Results and Discussion 

The analytical solution proposed in the present study will be validated by comparing FEM and 
experimental analysis. In the FEM analysis, the cylinder is assumed to be an axisymmetric plane 
stress by creating layers of material with different stiffness, as has been done in a previous study 
[28]. Each layer has a thickness value of (0.6 < 𝑟

𝑅𝑜
⁄ < 1) which refers to previous research [25]. 

The radial and hoop stress distributions are shown for each general inhomogeneity constant (-2 < 
β < 2). Meanwhile, the validation of the present study against experimental studies is by comparing 
it with previous research [27], which performed experiments on thick-walled cylinders by applying 
internal pressure caused by the penetration of a tapered cylinder. 

3.1. FEM Validation 

The finite element model developed in this study refers to the work of Gashemi [29], as presented 
in Table 1. The simulation employs the PLANE183 element type, with material properties defined 
by Young’s modulus (E) and Poisson’s ratio (ν). Incorporates a quadrilateral mesh configuration 
with axisymmetric behavior and internal pressure in the FEM model was applied as a surface load. 
Figure 2 presents the model along with the corresponding meshing results. 
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Table 1. Model and parameters [29]. 

Parameters Symbol Value Unit 

Internal Pressure P 7 MPa 

Inner Radius Ri 30 mm 

Outer Radius Ro 50 mm 

Inhomogeneity Constanta β -2, -1, 0, 1, 2 - 

Poisson’s Ratio ν 0.3 - 

Young’s Modulus E 72 GPa 
 

Convergence tests have been conducted to evaluate the effect of the number of cylindrical layers 
on the stability of the stress values, as shown in Figure 3. The results indicate that convergence 
begins at a layer count of n = 20, but a more precise data stability occurs at n = 160. A comparison 
of the stress values from FEM in this study against reference studies can be seen in Table 2, with a 
maximum error rate of 4.32% for hoop stress. These results indicate that the accuracy of the FEM 
method in this study can be considered sufficient. 

 

Fig. 2. The model, along with the corresponding meshing results 

 

Fig. 3. Convergence Behavior of Stress Values to the Number of Cylinder Layers (n) 

The next step is to validate the analytical solution developed in the present study against the FEM 
simulation results. The important themes discussed are radial and hoop stress distribution for 
general inhomogeneity constants. For radial stress, the solution previously proposed by [25] is the 
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same as the solution in the present study, as seen in Figures 4(a) and 4(b). Both solutions are valid 
when compared to FEM analysis; thus, there are no issues with these solutions and they are not 
important to discuss further. However, the problem is that the hoop stress distribution solution 
proposed by [25] is invalid when compared to the FEM analysis, as seen in Figure 5(a). For this 
reason, a new solution is proposed in the present study and proven to be valid for all inhomogeneity 
constants (−2 < β < 2), as can be seen in Figure 5(b).  

Table 2. A comparison of the stress values from FEM in this study against reference studies. 

r/R0 
Present Study  Ghasemi[29] Error (%) 

σr/P σθ/P σr/P σθ/P σr/P σθ/P 
0.60 -0.9971 1.6757 -1.0000 1.6160 0.2857 3.6952 
0.65 -0.8000 1.6243 -0.8020 1.5570 0.2494 4.3215 
0.70 -0.6343 1.5857 -0.6350 1.5250 0.1125 3.9813 
0.75 -0.4914 1.5571 -0.4910 1.5020 0.0873 3.6713 
0.80 -0.3671 1.5357 -0.3670 1.4860 0.0389 3.3455 
0.85 -0.2586 1.5200 -0.2590 1.4740 0.1655 3.1208 
0.90 -0.1629 1.5100 -0.1630 1.4670 0.0876 2.9312 
0.95 -0.0771 1.5029 -0.0770 1.4630 0.1855 2.7243 
1.00 0.0000 1.4257 0.0000 1.4540 0.0000 1.9500 

 

 

(a) 

 

(b) 

Fig. 4. Validation of radial stress to FEM (a) Previous study [25], (b) Present study 

 

(a) 

 

(b) 

Fig. 5. Validation of hoop stress to FEM (a) Previous study [25], (b) Present study 
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Several noteworthy observations indicate that stress distribution can be effectively controlled 
through engineered material gradation using FGMs [30]; in particular, for hoop stress in FGM 
cylinders, a more uniform hoop stress distribution can be achieved, especially when the value of β 
equals 1 [31]. A recent numerical investigation by [32] also demonstrated that variations in the 
inhomogeneity parameter and Poisson’s ratio significantly influence the thermoelastic stress and 
displacement fields in rotating thick-walled FGM cylinders, reinforcing the importance of accurate 
modeling in pressure vessel design under coupled mechanical and thermal loads 

3.2. Experimental Validation 

Experimental validation refers to previous research [27], with equipment as seen in Figure 6. 
Radial and hoop stresses are measured at several points on a cylinder made of homogeneous 
material (inhomogeneity constant β = 0). The penetration of a tapered cylinder results in pressure 
on the inner surface of the cylinder, which is considered to represent internal pressure. Several 
strain gauges were installed at the appropriate points and orientations to measure the radial and 
hoop strain within the range of Ri = 90.5 mm to Ro = 140.5 mm.  

 

Fig. 6 Equipment used for the experiment and a schematic drawing showing 

all the parts of the apparatus and their interconnections [27] 

Table 3. The strain gauge readings for variations in penetration depth 

 

Table 3 shows the strain gauge readings for variations in penetration depth. In the experiment, 
channels 1, 3, 5, 7, and 9 are strain gauges used to measure radial stress, while channels 11, 13, 15, 
17, and 19 are strain gauges used to measure hoop stress. For ease of understanding, the data in 

Penetration depth (mm) 0.96 1.92 2.64 3.26 4.48 
Channel no. Strain gauge readings 

1 -11 -30 -44 -55 -80 
3 -16 -41 -61 -77 -111 
5 -25 -55 -79 -99 -144 
7 -30 -78 -117 -151 -220 
9 -37 -110 -200 -264 -334 

11 53 110 155 198 271 
13 61 128 180 227 312 
15 69 149 210 265 366 
17 77 178 251 317 439 
19 94 222 313 398 551 
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Table 3 is rearranged to show the radial strain and hoop strain values at variations in radius values, 
respectively, as shown in Table 4. 

Table 4. The radial strain and hoop strain values at variations in radius values 

r (mm) Types of strain gauges 
Strain gauge readings on each space bar penetration (𝜇𝑚) 
0.96 mm 1.92 mm 2.64 mm 3.26 mm 4.48 mm 

90.5 
𝜀𝑟 -37 -110 -200 -264 -334 

𝜀𝜃 94 222 313 398 551 

103.0 
𝜀𝑟 -30 -78 -117 -151 -220 
𝜀𝜃 77 178 251 317 439 

115.5 
𝜀𝑟 -25 -55 -79 -99 -144 
𝜀𝜃 69 149 210 265 366 

128.0 
𝜀𝑟 -16 -41 -61 -77 -111 
𝜀𝜃 61 128 180 227 312 

140.5 
𝜀𝑟 -11 -30 -44 -55 -80 
𝜀𝜃 53 110 155 198 271 

 

Radial stress is calculated by Equation (34), and hoop stress is calculated by Equation (35). Table 
5 shows radial and hoop stress variations at radius (r) values. 

𝜎𝑟 =
𝐸

1 − 𝑣2
(𝜀𝑟 + 𝑣𝜀𝜃) (34) 

𝜎𝜃 =
𝐸

1 − 𝑣2
(𝜀𝜃 + 𝑣𝜀𝑟) 

(35) 

Table 5. Radial and hoop stress at radius (r) values variations 

r (mm) 
 Stress 

orientation 
Stress value on each space bar penetration (MPa) 

 0.96 mm 1.92 mm 2.64 mm 3.26 mm 4.48 mm 

90.5 
 𝜎𝑟 -2.011 -9.920 -24.251 -33.051 -38.560 
 𝜎𝜃 18.949 43.200 57.829 72.869 103.040 

103 
 𝜎𝑟 -1.577 -5.623 -9.531 -12.777 -20.183 
 𝜎𝜃 15.543 35.337 49.349 62.103 85.257 

115.5 
 𝜎𝑟 -0.983 -2.354 -3.657 -4.457 -7.817 
 𝜎𝜃 14.057 30.286 42.583 53.783 73.783 

128 
 𝜎𝑟 0.526 -0.594 -1.600 -2.034 -3.977 
 𝜎𝜃 12.846 26.446 36.960 46.606 63.703 

140.5 
 𝜎𝑟 1.120 0.686 0.571 1.006 0.297 
 𝜎𝜃 11.360 23.086 32.411 41.486 56.457 

 

Table 6. The equivalent internal pressures 

Space bar penetration (mm) Internal Pressure (MPa) 

0.96 3.13 

1.92 15.15 

2.64 40.05 

3.26 55.40 

4.48 61.65 
 

The next step is to convert the depth of penetration of the space bar into internal pressure, 
assuming that the radial stress on the inner surface is equal to the internal pressure. The 
equivalence between the penetration depth of the space bar and the internal pressure is obtained 
from the regression process and is assumed to be a 2nd-order polynomial, as shown in Table 6. 
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Thus, the radial stress and hoop stress distribution graphs can be plotted with equivalent internal 
pressure, as shown in Figures 7, 8, 9, 10, and 11. 

 

 
Fig. 7. Radial and hoop stress with a penetration of the space bar of 0.96 mm (P = 3.13 MPa) 

 

Fig. 8.  Radial and hoop stress with a penetration of the space bar of 1.92 mm (P = 15.15 MPa) 

 

 

Fig. 9. Radial and hoop stress with a penetration of the space bar of 2.64 mm (P = 40.05 MPa) 
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Fig. 10. Radial and hoop stress with a penetration of the space bar of 3.26 mm (P = 55.40 MPa) 

 

Fig. 11. Radial and hoop stress with a penetration of the space bar of 4.48 mm (P = 61.65 MPa) 

The experimental validation conducted in this study has confirmed the reliability of the proposed 
analytical solution, although only in the homogeneous case (β = 0). For other values of β, further 
investigation remains to be conducted in the future. Additionally, the feasibility of using the tapered 
cylindrical penetration technique to simulate internal pressure in thick-walled cylinders has been 
acknowledged, as also reported by [33]. This approach is particularly valuable when direct 
pressurization is not practical, either technically or economically. Regression analysis, which links 
the depth of penetration with the equivalent internal pressure through a second-order polynomial, 
allows for the practical translation of experimental displacement measurements into stress 
conditions within the analytical domain. This mapping is crucial for bridging the gap between 
physical testing and theoretical modeling. 

4. Conclusions 

The use of functionally graded materials (FGMs) offers a strategic solution to meet the demands of 
modern industry, owing to their customizable nature that allows for specific property 
requirements in engineering applications. Previous researchers have proposed analytical solutions 
for stress distribution in the radial direction, but those solutions are not accurate for general 
inhomogeneity constants. The present study introduces a more accurate analytical solution to 
overcome these limitations. In this formulation, the characteristics of material inhomogeneity are 
defined using a power function, and internal pressure is applied under axisymmetric conditions. 

The analytical solution in this present study has been validated with the finite element method 
(FEM) model, with a maximum error of less than 2.77%. The FEM model was created with sizes 
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and parameters referring to previous similar studies. The type of element used is PLANE183, 
defining material properties based on elastic modulus and Poisson's ratio. The model is divided 
into 160 layers based on convergence testing. The FEM results obtained have been consistent and 
valid compared to previous reference comparisons and are considered suitable for use. 
Furthermore, the validation of the experimental study also shows the accuracy of the proposed 
analytical solution, although it is limited only to homogeneous materials with an inhomogeneity 
constant β equal to zero. It is important to acknowledge that experimental validation for materials 
with non-zero β values has not been conducted, and further research is needed for the future. 

The main contribution of this research lies in the specific boundary conditions: internal pressure is 
applied to the inner surface while the outer surface remains pressure-free. Caution should be 
emphasized when extending the application beyond these conditions. To strengthen the analysis, 
several previous studies involving FGM under various loading conditions have been reviewed to 
highlight the novelty and relevance of this work in advancing the analytical approach for graded 
materials. The proposed solution provides a reliable and practical framework for the design and 
evaluation of FGM cylinders, particularly in high-pressure applications where material gradation 
has a significant impact on structural behavior. Future research is expected to extend the 
experimental validation to a wider range of β values and investigate more complex boundary 
conditions, thus improving the general applicability of the developed analytical model. 
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List of Notations 

Symbol Description Unit 

𝑟 Radial coordinate - 

𝑅𝑖   Inner radius of the cylinder mm 

𝑅𝑜  Outer radius of the cylinder mm 

𝑢(𝑟) Radial displacement as a function of 𝑟 - 

𝜎𝑟 Radial stress MPa 

𝜎𝜃 Hoop (circumferential) stress MPa 

𝐸(𝑟) Young’s modulus as a function of 𝑟  GPa 

𝑣 Poisson’s ratio (assumed constant) - 

𝛽 Inhomogeneity constant - 

A, B Constants determined by boundary conditions - 

P Internal pressure applied to the inner surface MPa 

𝜀𝑟 Radial strain - 

𝜀𝜃 Hoop (circumferential) strain - 
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