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Article Info Abstract

Article History: Functionally graded materials (FGMs) are a type of composite material whose
microstructure is not homogeneous, differing at each coordinate position. The
development of FGM material technology is an important and strategic effort to
Accepted 29 May 2025 meet the needs of an increasingly advanced industry. Theoretically, an important
topic that is commonly discussed for mechanical applications is the analytical
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keywords: solution of stress distribution in FGM materials subjected to mechanical loads.
Cylindrical FGM; Previous studies have proposed a stress distribution solution in cylindrical FGM,
Analytical solution; but the solution is inaccurate in certain applications. Other studies propose stress
Stress distribution distribution solutions, but with different boundary conditions. The present study

proposes a new solution different from previous studies and valid for applying to
cylindrical FGMs with more general inhomogeneity. The developed solution uses
a power function to determine the inhomogeneity constant and applies internal
pressure under axisymmetric conditions. The solution proposed in this study was
validated through numerical simulations (FEM), and a good agreement is obtained
with an error value of less than 2.77%. Moreover, the proposed solution shows
good agreement with experimental data from previous studies.

© 2025 MIM Research Group. All rights reserved.

1. Introduction

One of the problems in industrial applications is the difficulty of obtaining products from a
homogeneous material that meets all property requirements. For example, it isn't easy to produce
pipes that are strong, corrosion-resistant, and heat-resistant at the same time using a homogeneous
material. These properties can be obtained by combining the advantages of several different
materials into a composite material. Such composite materials can be categorized as functionally
graded materials (FGMs), whose microstructure differs at each coordinate position with a specific
gradient. Different properties include Young's modulus, shear modulus, and density [1], [2]. FGM
materials can be categorized as continuous degradation and layered degradation [3]. Examples of
continuous degradation of FGM are bamboo [4] and bone [5], while examples of step degradation
FGM are layered composite cylinders [6], [7]. With FGM technology, advantages can be obtained,
for example, to reduce the intensity factor on the plane and lateral tensions, to obtain a more even
distribution of tension, and to improve thermal performance [8], [9].

The development of FGM material technology includes various fields of study, such as raw
materials, production processes, mechanical property analysis, and design methods [3]. FGM
materials have been used in various fields of application, for example, in the construction of deep
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offshore oil and gas operations [10, 11], high-pressure vessels [12, 13], heat-resistant and
corrosion-resistant pipes for geothermal power plants [14, 15], and reactor tubes in nuclear
structures [16]. For the future, it is predicted that FGM materials will be increasingly needed due
to technological advances in various industrial fields, but in this article, the discussion is limited to
cylindrical structure FGM. Examples of previous studies include the static analysis of FGM
cylindrical shells and the effects of stress concentration [17, 18], the vibration and stability of FGM
cylindrical shells subjected to external pressures [19, 20], and the nonstationary response of
stepped composite cylindrical shells with drop-off plies under moving random loads [21]. Recently,
FGM laminated composite cylinders have been researched for the construction of submerged
floating tunnel bridges (SFT-Bridges), which require strong, ductile, and corrosion-resistant
structures [22-24].

Cylindrical FGM is commonly used in the industrial sector, for example, for pipes and pressure
vessels. The properties of the modulus of elasticity are modeled as exponential equations, where
the exponent is the degree of inhomogeneity (). With an exponential equation, the value of the
modulus of elasticity can be determined at each coordinate position. The value of the modulus of
elasticity is assumed to vary as E(r) = E,r? along the wall thickness. E, is the stiffness on the
outermost surface (r = 1), and B is the empirically determined inhomogeneity constant. An
important theme discussed in this study is the equation of stress distribution at each point along
the radial axis. Previously, the exact solution had been published by [25], who used mathematical
methods to obtain an exact solution for stress distribution in cylinders. The solution was developed
from a boundary condition where there was only internal pressure on the inner surface of the
cylinder. The article [25] presents the results of radial stress distribution and circumferential stress
distribution, as well as the influence of variations in the modulus of elasticity of materials on the
distribution of stress.

The problem is that the hoop stress equation proposed by [25] is only valid for =1, but not for
other {8 values. In addition, the article does not explain in detail the process of developing the
equation, making it difficult to understand. Twenty years later, [26] made a new proposal for a
stress distribution analytical solution in cylindrical FGM. However, this proposal does not precisely
address the existing problems because the solutions developed are based on different boundary
conditions. The boundary conditions include: (first) internal pressure applied on the inner surface
and tension applied on the outer surface; (second) fixed displacement applied on the inner surface
and tension on the outer surface; and (third) internal pressure applied on the inner surface and
fixed displacement on the outer surface. Nevertheless, the research in [26] provides a more detailed
explanation of the equation development process, making it easier to follow.

This study proposes a new equation for the distribution of hoop stress in cylindrical FGMs with
varying inhomogeneity constants (-2 < f# < 2). The solution is developed from the boundary
conditions: internal pressure is applied on the inner surface, while no pressure or constraint is
applied on the outer surface, as done by [25], and it adopts the method proposed by [26]. The stress
distribution equation obtained in this study is different from that proposed by [25] and
[26]. Furthermore, this solution has been compared with FEM and experimental results, where the
experimental study refers to the research conducted by [27]. From the comparative study, it can be
seen that the proposed analytical solution shows good agreement with FEM with an error value of
less than 2.77%. In addition, this equation was also validated with experiments. This research has
been partially presented at a conference [28], and in this article, it is presented in more detail and
comprehensively.

2. Model and Analytical Solution

Figure 1 displays the FGM cylinder model with radial coordinates 7 and displacement coordinates
u. R, represents the outermost radius of the cylinder, and its coordinate is defined in Equation (1).

r=7/R,, u=1iu/R, (1)
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A = TUG
B

Fig. 1. FGM cylinder cross-section and its coordinate system

Radial strains and hoop strains are analyzed under the plane-strain assumption, so the equilibrium
equation is given as shown in Equation (2) [25], [26], [28].

d
€9=€¢=E €r=_u; Yro =VYrp = Yop =0 (2)
T dr

The material is assumed to be isotropic, with a constant Poisson's ratio and a radially varying
Young's modulus. Using the power function, the value of elasticity in radius variation can be seen

in Equation (3) [25]. E, is the value of Young's modulus on the outermost surface (r/R, = 1), and
B is the gradient constant of inhomogeneity.

E(r) = E,rP (3)
The constitutive equation can be seen in Equation (4) and Equation (5).
0r = C11& + C1289, 09 = C126 + (1189 + (1264 (4)

Here,

E,(1-v) E,v
Cu = cur <(1 T - 217)) T L=t ((1 Ty - 21])) A

The non-trivial equilibrium is Equation (6), and radial displacement is Equation (7).

d r r
0. 0. Og —0 (6)

dr r
"+ B+ D+ @B -Du=0 (7)

The symbol v* is a simplified form of the Poisson's ratio, where v* = v/(1 — v). Equation (7) can
be solved using the second-order Cauchy-Euler equation, assuming the solution as shown in
Equation (8). The characteristics of the equation and its roots are given in Equations (9) and (10),
respectively.

du d*u

== mrm-1, 7= m(m — 1)rm=2 (8)
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m?>+pm+ @p—-1)=0 )

my = %(—B —VB?— 4B - 1)), m, = %(—ﬁ +B% - 4B — 1)) (10)

To solve for the variable m, there are three conditions based on the Cauchy-Euler formula. These
conditions are as follows [26].

e The values m; and m, are real and different (m; # m,); then the solution is as seen in
Equation (11).
u=Ar™ 4+ Br™ (11)

e The values m; and m, are real and equal (m; = m, = m); then the solution is as seen in
Equation (12).

u=(A+Blnr)r™ (12)
e Thevalues m; and m, are imaginary (m,; = x + yi, m, = x — yi); then the solution is as seen
in Equation (13).
u= (Acos(ylnr) + Bsin(yInr))r* (13)

Since the material has a Poison value ratio of 0 < v < 0.5,then 0 < v* < 1,and 0 < v*? <1, Thus,
the value of the square under the root sign in equation (10) is as seen in Equation (14).

A=pB?—4@wB—-1)=(PB*-2v)2+41—-v?) >0 (14)

The values A and B are parameters that depend on two boundary conditions [25]:

e (1) Boundary condition 1: On the inner surface of the cylinder, internal pressure, P, is applied
as seen in Equation (15).

e (2) Boundary condition 2: On the outer surface of the cylinder, no pressure is applied, as seen
in Equation (16).

Boundary condition 1: o, (%) =-—P

° 15)
Ri m2—1 Ri m2—1 Ri m1—1 Ri mz—l (
& =mA (R_o) + m,B (R_o) ; Eg=A (R_o) + B (R_o)
.. , Ro\ _
Boundary condition 2: o, (Ro) =0 (16)
& = mA + m,B; g =A+B

Parameter A and parameter B can be obtained in the following stages:

e Determine parameter B by eliminating parameter A from boundary condition 1 and
boundary condition 2.

From boundary condition 1: Substitute Equation (4) into Equation (15) as seen in Equation (17).

—P = Cllgr + 61289

-» = (e )(&f (s - (&)’”2‘1>
“\@+v)a-2v)/\R, \R, 2" \R, (17)
E,v RNP ([ (R\™! R\t
+ ((1 T 217)) (R_O) <A (RT,) +B (R_O> )
Suppose:
X = (Gam) dY = (Gi) (18)
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Arrange Equation (17) into Equation (19).
P =x (2 ma ()" x (2 mas (8™ () a2
@) 5 ()"
R \P R;\™171 R\P (R\™M™1 R\P R;\M271 (13)
= (x (;T,) m ()" ) G )ar (x G me () 4
i \Nmy—1
V(@) G )8
Parameter A can be obtained as seen in Equation (20).
R;

P (E)l_ﬁ (1 +v)(1 - 2v) + (E,(1 — v)m, + E,v) (:;)m B

(Eo(1 = vymy + E,v) (2)™

From the boundary condition 2: Substitute Equation (4) into Equation (16) as seen in Equation
(21).

—-A= (20)

0 = Cllsr + Clzgg (21)
We obtain Equation (22) by assuming X and Y as written in Equation (18).

0=XmA+Xm,B+YA+YB 22)

Parameter A can be obtained as seen in Equation (23).
R\
—B(E,(1 - v)m; + Eov) (<)
o

(Eo(1 = vmy + Egv) (2)™

Parameter B can be obtained by eliminating parameter A by adding Equation (20) and Equation
(23), as seen in Equation (24).

A= (23)

P(}%)l_ﬁ(l+v)(1—2v)

= —m N
B((R) -() ) w+a-vmy)
e Determine parameter A by eliminating parameter B from boundary condition 1 and

boundary condition 2.

(24)

Similar to point (1), from boundary condition 1 and boundary condition 2, parameter B is obtained
as seen in Equation (25) and Equation (26), respectively.

p (;l;)l_ﬁ (1 + )1~ 20) + By (1 = vmy + Eg) (2)" 4

—B = (25)

(Eo(1 = vIm, + Epv) (2)™
. —A(E,(1 —v)my + E,v) (:;;T?lmz (26)
(Eo(1 = v)my + Eov) (32)

Parameter A is obtained by eliminating parameter B by adding Equation (25) and Equation (26),
as seen in Equation (27).
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p(%)l_ﬁ(uv)(l—zm

A = - R; mtl) R;\M2 (27)
(7)) -(R) )w+a-vm)
From Equation (4), radial stress can be determined as shown in Equation (28). By substituting

parameter A as defined in Equation (27) and parameter B as defined in Equation (24), the radial
stress is obtained as shown in Equation (29).

0y = C11& + C12&p,

_ (_Eo(1-v) B my—1 my—1 Eov B mi—1
= (Gamim) TP mAr™ ™ 4 maBrm ) + () AT+ (28)
Br™ma—1)
\1-B8
P(%) (r™ — ymz)rh-1

— 29

NGO -
Ro Ro

Similarly, from Equation (4), hoop stress can be determined as seen in Equation (30). By

substituting parameter A as written in Equation (27) and parameter B as written in Equation (24),

the hoop stress is obtained as seen in Equation (31). The simple form is as written in Equation (32),
where y; and y, are as stated by Equation (33).

0p = C12& + €118

E,v . .
B ((1 +v)(1 - 217)) rf(myAr™=1 4+ m,Brm="1)
< Eo(l - U)

1+v)(1-2v)

(30)

)Tﬁ (Ar™a~1 4 prmz—1)
[of?} r\1-B _ rR\17F -
CPrm(em 4 (A=) om v = D =D () A7 - P (om + - 0)m@-D-D(E) T (31
m@w—-1-1Dmw-1)-1) ((:;)m - (:;)m)
R; 1_ﬁ —
(R—) rf 1()(1_)(2)
Og = >

-1 - v ma -1 - ) ()" - (&)™)
x1=Prm(vmy, + (1 —v))(m(v—1) — v)
X2 = Pr™ (vm1 + (- v))(mz v—1)—-v)

(32)

(33)

3. Results and Discussion

The analytical solution proposed in the present study will be validated by comparing FEM and
experimental analysis. In the FEM analysis, the cylinder is assumed to be an axisymmetric plane
stress by creating layers of material with different stiffness, as has been done in a previous study
[28]. Each layer has a thickness value of (0.6 < T/RO < 1) which refers to previous research [25].

The radial and hoop stress distributions are shown for each general inhomogeneity constant (-2 <
B < 2). Meanwhile, the validation of the present study against experimental studies is by comparing
it with previous research [27], which performed experiments on thick-walled cylinders by applying
internal pressure caused by the penetration of a tapered cylinder.

3.1. FEM Validation

The finite element model developed in this study refers to the work of Gashemi [29], as presented
in Table 1. The simulation employs the PLANE183 element type, with material properties defined
by Young’s modulus (E) and Poisson’s ratio (v). Incorporates a quadrilateral mesh configuration
with axisymmetric behavior and internal pressure in the FEM model was applied as a surface load.
Figure 2 presents the model along with the corresponding meshing results.
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Table 1. Model and parameters [29].

Parameters Symbol Value Unit

Internal Pressure P 7 MPa

Inner Radius Ri 30 mm

Outer Radius R, 50 mm
Inhomogeneity Constanta B -2,-1,0,1,2 -
Poisson’s Ratio v 0.3 -

Young’s Modulus E 72 GPa

Convergence tests have been conducted to evaluate the effect of the number of cylindrical layers
on the stability of the stress values, as shown in Figure 3. The results indicate that convergence
begins at a layer count of n = 20, but a more precise data stability occurs at n = 160. A comparison
of the stress values from FEM in this study against reference studies can be seen in Table 2, with a
maximum error rate of 4.32% for hoop stress. These results indicate that the accuracy of the FEM
method in this study can be considered sufficient.

100 mm

Fig. 2. The model, along with the corresponding meshing results

—¥—a/P @r=0,8

-0,28

-0,29

-0,30

o/P

-0,31

-0,32 . . . . - .
0 50 100 150 200
Fig. 3. Convergence Behavior of Stress Values to the Number of Cylinder Layers (n)

The next step is to validate the analytical solution developed in the present study against the FEM
simulation results. The important themes discussed are radial and hoop stress distribution for
general inhomogeneity constants. For radial stress, the solution previously proposed by [25] is the
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same as the solution in the present study, as seen in Figures 4(a) and 4(b). Both solutions are valid
when compared to FEM analysis; thus, there are no issues with these solutions and they are not
important to discuss further. However, the problem is that the hoop stress distribution solution
proposed by [25] is invalid when compared to the FEM analysis, as seen in Figure 5(a). For this
reason, a new solution is proposed in the present study and proven to be valid for all inhomogeneity
constants (-2 < f§ < 2), as can be seen in Figure 5(b).

Table 2. A comparison of the stress values from FEM in this study against reference studies.

r/R Present Study Ghasemi[29] Error (%)
0
or/P og/P or/P og/P or/P og/P
0.60 -0.9971 1.6757 -1.0000 1.6160 0.2857 3.6952
0.65 -0.8000 1.6243 -0.8020 1.5570 0.2494 43215
0.70 -0.6343 1.5857 -0.6350 1.5250 0.1125 3.9813
0.75 -0.4914 1.5571 -0.4910 1.5020 0.0873 3.6713
0.80 -0.3671 1.5357 -0.3670 1.4860 0.0389 3.3455
0.85 -0.2586 1.5200 -0.2590 1.4740 0.1655 3.1208
0.90 -0.1629 1.5100 -0.1630 1.4670 0.0876 2.9312
0.95 -0.0771 1.5029 -0.0770 1.4630 0.1855 2.7243
1.00 0.0000 1.4257 0.0000 1.4540 0.0000 1.9500
0.0+ - 0.0 o
-0.24
-0.4
2 a
-0 ° .08
=L
=2
A -0.8 4
Previous study [25] Present Study
FEM * FEM
1.0 - T T T 1 -1.0 / T T T 1
06 0.7 0.8 0.9 1.0 06 0.7 08 09 1.0
iR, "R,
(a) (b)

Fig. 4. Validation of radial stress to FEM (a) Previous study [25], (b) Present study

35+
3.0+

2.5+

o /P

Previous study [25]
FEM

3.5

3.0

(a)

—— Present Study
FEM

p=2 B ool S e B2
p=1 = B
p=0 B=0
p=-1 = o f=-l
p=-2 T f=-2
0.5
' T T T T
e 0.6 0.7 0.8 0.9 1.0
r.’RD
(b)

Fig. 5. Validation of hoop stress to FEM (a) Previous study [25], (b) Present study
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Several noteworthy observations indicate that stress distribution can be effectively controlled
through engineered material gradation using FGMs [30]; in particular, for hoop stress in FGM
cylinders, a more uniform hoop stress distribution can be achieved, especially when the value of 8
equals 1 [31]. A recent numerical investigation by [32] also demonstrated that variations in the
inhomogeneity parameter and Poisson’s ratio significantly influence the thermoelastic stress and
displacement fields in rotating thick-walled FGM cylinders, reinforcing the importance of accurate
modeling in pressure vessel design under coupled mechanical and thermal loads

3.2. Experimental Validation

Experimental validation refers to previous research [27], with equipment as seen in Figure 6.
Radial and hoop stresses are measured at several points on a cylinder made of homogeneous
material (inhomogeneity constant § = 0). The penetration of a tapered cylinder results in pressure
on the inner surface of the cylinder, which is considered to represent internal pressure. Several
strain gauges were installed at the appropriate points and orientations to measure the radial and
hoop strain within the range of R; = 90.5 mm to R, = 140.5 mm.

Hydralic ram to @

produce loading

L]

Space bar | @
\\K\\\E; ‘I'»
" Instrumen-
Dial gauge tation
Lubricating oil A? Pl\lzg Thick-
\‘ cylinder
\

OH [T o

[ Strain-
gauge

Fig. 6 Equipment used for the experiment and a schematic drawing showing

all the parts of the apparatus and their interconnections [27]

Table 3. The strain gauge readings for variations in penetration depth

Penetration depth (mm) 0.96 1.92 2.64 3.26 4.48
Channel no. Strain gauge readings
1 -11 -30 -44 -55 -80
3 -16 -41 -61 -77 -111
5 -25 -55 -79 -99 -144
7 -30 -78 -117 -151 -220
9 -37 -110 -200 -264 -334
11 53 110 155 198 271
13 61 128 180 227 312
15 69 149 210 265 366
17 77 178 251 317 439
19 94 222 313 398 551

Table 3 shows the strain gauge readings for variations in penetration depth. In the experiment,
channels 1, 3, 5, 7, and 9 are strain gauges used to measure radial stress, while channels 11, 13, 15,
17, and 19 are strain gauges used to measure hoop stress. For ease of understanding, the data in
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Table 3 is rearranged to show the radial strain and hoop strain values at variations in radius values,
respectively, as shown in Table 4.

Table 4. The radial strain and hoop strain values at variations in radius values

Strain gauge readings on each space bar penetration (um)
0.96 mm 192 mm 264mm 326 mm 4.48 mm

r(mm) Types of strain gauges

90.5 & -37 -110 -200 -264 -334
' &g 94 222 313 398 551
103.0 & -30 -78 -117 -151 -220
' &g 77 178 251 317 439
1155 & -25 -55 -79 -99 -144
&g 69 149 210 265 366

& -16 -41 -61 -77 -111

1280 &g 61 128 180 227 312
& -11 -30 -44 -55 -80

140.5 g 53 110 155 198 271

Radial stress is calculated by Equation (34), and hoop stress is calculated by Equation (35). Table
5 shows radial and hoop stress variations at radius (r) values.

(&r +vep) (34)

o':
"1 —p2

(35)

0p = (g9 + ver)

1 —v2

Table 5. Radial and hoop stress at radius (r) values variations

r (mm) Stress Stress value on each space bar penetration (MPa)

orientation 096 mm 1.92 mm 2.64 mm 3.26 mm 4.48 mm

90.5 oy -2.011 -9.920 -24.251 -33.051 -38.560
' Og 18.949 43.200 57.829 72.869 103.040
103 o -1.577 -5.623 -9.531 -12.777 -20.183
Og 15.543 35.337 49.349 62.103 85.257

1155 oy -0.983 -2.354 -3.657 -4.457 -7.817
' Og 14.057 30.286 42.583 53.783 73.783
128 o 0.526 -0.594 -1.600 -2.034 -3.977
Og 12.846 26.446 36.960 46.606 63.703

1405 oy 1.120 0.686 0.571 1.006 0.297
Og 11.360 23.086 32.411 41.486 56.457

Table 6. The equivalent internal pressures

Space bar penetration (mm) Internal Pressure (MPa)
0.96 3.13
1.92 15.15
2.64 40.05
3.26 55.40
4.48 61.65

The next step is to convert the depth of penetration of the space bar into internal pressure,
assuming that the radial stress on the inner surface is equal to the internal pressure. The
equivalence between the penetration depth of the space bar and the internal pressure is obtained
from the regression process and is assumed to be a 2nd-order polynomial, as shown in Table 6.
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Thus, the radial stress and hoop stress distribution graphs can be plotted with equivalent internal
pressure, as shown in Figures 7, 8,9, 10, and 11.

20

Present study
B Exp. study [27]

hoop stress (o)

P ———

e ——— T " radial stress (o)

-5

9

T T T T T T T T T T
0 100 110 120 130 140
r {mm)

Fig. 7. Radial and hoop stress with a penetration of the space bar of 0.96 mm (P = 3.13 MPa)

19 Present study
40 B Exp. study [27]
304
—
204 hoop stress (g,)
™
s
~ 10
[s]
0 - n
| ]
radial stress (rjr)
10—
T T T T T T T T T T
920 100 110 120 130 140

r (mm)

Fig. 8. Radial and hoop stress with a penetration of the space bar of 1.92 mm (P = 15.15 MPa)

60

50

40
30

20

a(MPa)

-10

-20

-30

10

B Present study
= Exp. sudy [27]

hoop stress (Er;) T

——Tadial stress ()

T T T T T T T T T T
80 100 110 120 130 140
R

o

Fig. 9. Radial and hoop stress with a penetration of the space bar of 2.64 mm (P = 40.05 MPa)
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80 - Present study
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Fig. 11. Radial and hoop stress with a penetration of the space bar of 4.48 mm (P = 61.65 MPa)

The experimental validation conducted in this study has confirmed the reliability of the proposed
analytical solution, although only in the homogeneous case ( = 0). For other values of 8, further
investigation remains to be conducted in the future. Additionally, the feasibility of using the tapered
cylindrical penetration technique to simulate internal pressure in thick-walled cylinders has been
acknowledged, as also reported by [33]. This approach is particularly valuable when direct
pressurization is not practical, either technically or economically. Regression analysis, which links
the depth of penetration with the equivalent internal pressure through a second-order polynomial,
allows for the practical translation of experimental displacement measurements into stress
conditions within the analytical domain. This mapping is crucial for bridging the gap between
physical testing and theoretical modeling.

4. Conclusions

The use of functionally graded materials (FGMs) offers a strategic solution to meet the demands of
modern industry, owing to their customizable nature that allows for specific property
requirements in engineering applications. Previous researchers have proposed analytical solutions
for stress distribution in the radial direction, but those solutions are not accurate for general
inhomogeneity constants. The present study introduces a more accurate analytical solution to
overcome these limitations. In this formulation, the characteristics of material inhomogeneity are
defined using a power function, and internal pressure is applied under axisymmetric conditions.

The analytical solution in this present study has been validated with the finite element method
(FEM) model, with a maximum error of less than 2.77%. The FEM model was created with sizes
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and parameters referring to previous similar studies. The type of element used is PLANE183,
defining material properties based on elastic modulus and Poisson's ratio. The model is divided
into 160 layers based on convergence testing. The FEM results obtained have been consistent and
valid compared to previous reference comparisons and are considered suitable for use.
Furthermore, the validation of the experimental study also shows the accuracy of the proposed
analytical solution, although it is limited only to homogeneous materials with an inhomogeneity
constant f§ equal to zero. It is important to acknowledge that experimental validation for materials
with non-zero £ values has not been conducted, and further research is needed for the future.

The main contribution of this research lies in the specific boundary conditions: internal pressure is
applied to the inner surface while the outer surface remains pressure-free. Caution should be
emphasized when extending the application beyond these conditions. To strengthen the analysis,
several previous studies involving FGM under various loading conditions have been reviewed to
highlight the novelty and relevance of this work in advancing the analytical approach for graded
materials. The proposed solution provides a reliable and practical framework for the design and
evaluation of FGM cylinders, particularly in high-pressure applications where material gradation
has a significant impact on structural behavior. Future research is expected to extend the
experimental validation to a wider range of f values and investigate more complex boundary
conditions, thus improving the general applicability of the developed analytical model.
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List of Notations

Symbol Description Unit
r Radial coordinate -
R; Inner radius of the cylinder mm
R, Outer radius of the cylinder mm
u(r) Radial displacement as a function of r -
oy Radial stress MPa
oy Hoop (circumferential) stress MPa
E(r) Young’s modulus as a function of r GPa
v Poisson’s ratio (assumed constant) -
B Inhomogeneity constant -
A B Constants determined by boundary conditions -
p Internal pressure applied to the inner surface MPa
& Radial strain -
P Hoop (circumferential) strain -
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