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The use of FRP composites in the strengthening of existing structures has become
increasingly common. In the strengthening of reinforced concrete (RC) elements
using FRP through either the externally bonded reinforcement (EBR) or near-
surface mounted (NSM) methods, the interface between the FRP and the concrete
is typically the weakest link, which negatively affects the overall effectiveness of
the strengthening technique. One of the primary damage mechanisms observed in
RC members strengthened with NSM-CFRP strips is intermediate crack (IC)

debonding; debonding. To estimate the maximum debonding resistance that develops in the
Particle swarm NSM-CFRP strip against this type of failure, an existing analytical model in the
optimization; literature was recalibrated using Particle Swarm Optimization (PSO). While
NSM; preserving the original functional form proposed by the authors, four separate
CFRP strip models were developed. The resulting coefficients and performance metrics

(RMSE, MAE) were then compared with those of the existing model, which uses
fixed coefficients reported in the literature, based on the same dataset. The
recalibrated model achieved 6.9% improvement in MAE, demonstrating better
prediction accuracy and more consistent performance across individual runs.
These improvements can contribute to more efficient and reliable FRP
strengthening designs by improving the accuracy of debonding strength
estimation and enhancing economical design.

© 2025 MIM Research Group. All rights reserved.

1. Introduction

As reinforced concrete (RC) structures are exposed to increasing load demands or design
deficiencies, their structural performance may gradually deteriorate. In such cases, strengthening
techniques may become necessary to restore or enhance the load-carrying capacity, stiffness, or
ductility - particularly to extend service life and improve safety under seismic or heavy loading
conditions [1].

Recently, the use of Fiber Reinforced Polymer (FRP) composite materials in the strengthening of
reinforced concrete (RC) structures has become increasingly widespread. There are two commonly
adopted techniques for strengthening RC elements using composite materials: Externally Bonded
Reinforcement (EBR) and Near Surface Mounted (NSM) methods [2-3]. In the EBR technique, FRP
composites are bonded externally to the surface of the structural element, whereas in the NSM
technique, FRP composites are embedded into grooves cut into the concrete cover and bonded
using adhesives such as epoxy or repair mortars.

FRP composites are available in various forms, such as sheets, bars, and fabrics, and can be
manufactured using different constituent materials, including carbon, glass, and aramid fibers.
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Among these, Carbon Fiber Reinforced Polymer (CFRP) composites are the most widely used type.
Compared to other types such as GFRP and AFRP, CFRP composites are preferred in structural
strengthening applications due to their high tensile strength and stiffness, lower unit weight,
resistance to corrosion, favorable performance under fire exposure, better fatigue performance,
and more advanced manufacturing technologies. FRP materials exhibit linear elastic behavior up
to their ultimate tensile strength, beyond which they fail abruptly and lose their load-carrying

capacity.

In any strengthening application, it is ideal to fully utilize the mechanical properties of the FRP
material [4]. In RC elements strengthened with FRP, the interface between the FRP and concrete is
often the weakest link, and this interface plays a critical role in determining the effectiveness of the
strengthening technique [5]. One of the major failure modes observed in elements strengthened
with NSM-CFRP strips is known as intermediate crack (IC) debonding [6-8]. This failure typically
occurs when a flexural or tensile crack in the concrete intersects the bonded CFRP strip. At the
intersection point, cracks initiate at the FRP-concrete interface and often propagate into the
surrounding concrete substrate [6]. If these interface cracks coalesce and reach the end of the CFRP
strip, the deformation in the strip decreases significantly, leading to what is defined as
"intermediate crack debonding” (IC debonding) [6, 9] (Fig. 1).

lLoad 1Load

NSM-CFRP Strip Flexure Cracks

Steel Bar

Debonding Starts

IC Debonding

(c) (d)

Fig. 1. Schematic illustration of the IC debonding failure mechanism (a) Initial state with
applied load, (b) Development of flexural cracks intersecting the CFRP strip, (c) Initiation of
debonding at the NSM-CFRP strip-concrete interface, (d) Propagation and coalescence of
cracks leading to IC debonding failure

Several analytical models have been proposed in the literature to estimate the debonding strength
at the NSM-CFRP interface, based on experimental studies [6, 10-17]. However, these models were
generally calibrated using a limited number of experimental datasets. In the present study, the
objective is to improve the accuracy of the model developed by Seracino et al. [6] by recalibrating
its fixed parameters using Particle Swarm Optimization (PSO).

In recent years, the use of soft computing-based innovative approaches for solving civil engineering
problems has been increasingly adopted [18-21]. In this context, artificial neural networks (ANNs)
and/or machine learning (ML) techniques have been employed in various studies to predict or
estimate key structural parameters, such as the compressive strength of concrete [22-24], the
shear strength of reinforced concrete (RC) beams [25], the load-bearing capacity of strengthened
RC slabs [26-27], and the required number of FRP layers for strengthening RC members or frames
[28-29].

Lietal. [30] and Hu et al. [31] developed backpropagation neural network models to improve the
accuracy of predicting debonding deformations in RC beams strengthened with FRP. Ghaidan et al.
[32] applied multinomial logistic regression analysis to address the issue of concrete cover
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separation - a premature failure mode observed in RC beams strengthened using NSM-FRP
techniques.

Several studies in the literature have utilized Particle Swarm Optimization (PSO) for various
structural engineering applications [33-34]. Ghodousian et al. [35] employed PSO to evaluate the
interfacial bond strength of colored self-compacting concrete repair overlays. Mohammadizadeh
and Esfandnia [36], as well as Wahab et al. [37], applied various metaheuristic algorithms, including
PSO, to predict the compressive strength of reinforced concrete (RC) columns confined with FRP.

Nguyen and Ly [38] used Adaptive Neuro-Fuzzy Inference System (ANFIS) combined with PSO to
estimate the bond strength between CFRP and concrete. Su et al. [39] proposed a backpropagation
neural network model to predict the bond capacity at the NSM-CFRP-to-concrete interface. Kumar
et al. [40] predicted the bond strength between FRP and concrete surfaces using Artificial Neural
Networks (ANN), an optimized Artificial Bee Colony (ABC)-ANN, and Gaussian Process Regression
(GPR). In a subsequent study, Kumar et al. [41] employed a PSO-optimized ANN approach. Pei and
Wei [42] estimated this bond strength through an ant colony optimization-based ANFIS model.
Zhang et al. [43] utilized six different ANN models. These models predict bond strength and shear
capacity at the FRP-concrete interface. Tao and Xue [44] proposed a novel hybrid model. It
integrates PSO with Random Forest (RF) techniques to predict FRP-concrete bond strength.
Shbeeb et al. [45] applied both ANN and ANFIS methods. Xue et al. [46] validated the predictive
capability of Multivariate Adaptive Regression Splines (MARS) and Wavelet Neural Network
(WNN) algorithms for FRP-concrete bond strength. They also recalibrated these models using PSO.
Moreover, Haddad et al. [47] employed artificial neural networks to determine the bond strength
between EBR-FRP and heat-damaged concrete.

There are numerous studies in the literature predicting the debonding strength at the NSM-CFRP
and concrete interface using artificial intelligence and optimization algorithms. However, research
focusing on systematic improvement of existing analytical models through recalibration using
methods such as Particle Swarm Optimization (PSO) remains limited. This study aims to improve
the predictive accuracy of an existing analytical model [6] used to estimate the debonding strength
at the NSM-CFRP strip-concrete interface. To this end, while preserving the original mathematical
structure of the model, its constant coefficients were recalibrated using the Particle Swarm
Optimization (PSO) technique. By adapting the model - originally proposed in the literature with
fixed coefficients - to the available dataset through optimization, its prediction performance has
been enhanced. During the calibration process, Root Mean Square Error (RMSE) and Mean Absolute
Error (MAE) were used as cost functions, and two scenarios were considered: one with the first
two geometric coefficients fixed, and one with them included as variables. As a result of the
calibration, improvements of 0.73% in RMSE and 6.9% in MAE were achieved. Although these
numerical differences may appear small, they can contribute to the design of CFRP-strengthened
structures in a safer, more economical manner - avoiding unnecessary conservatism. In this
respect, the study brings data-driven refinement to existing analytical models and enables more
accurate predictions in structural engineering applications.

2. Material and Method
2.1. Material

Seracino et al. [6] proposed an analytical model to predict the debonding strength at the NSM CFRP
strip - concrete interface using experimental data compiled from the literature. In the present
study, the same experimental dataset was used to recalibrate the analytical model through the
Particle Swarm Optimization (PSO) method. The experiments were conducted on CFRP strips
embedded into concrete blocks using the NSM technique, and debonding strengths were obtained
under push-pull loading conditions. The loading was uniaxial and applied in a monotonic
(continuously increasing) manner. In the tested specimens, key parameters such as CFRP strip
width (dp), thickness (bp), elastic modulus (E;), embedment length (L), and concrete compressive
strength (f.) were varied. The ranges of these parameters are as follows: strip width (dp), 9.95 -
20.47 mm; strip thickness (bp), 1.2 - 2.9 mm; elastic modulus (E;), 144600 - 162300 MPa;
embedment length (L), 200 - 350 mm and concrete compressive strength (f;): 30 - 65 MPa. These
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parameters are the key factors influencing the debonding behavior at the NSM-CFRP interface and
are critical for the calibration and validation of the model. The dataset used in this study consists
of a total of 21 experimental tests, covering various combinations of the listed parameters.
Statistical information related to these parameters and the corresponding experimental debonding
strength results (Pexp) is provided in Table 1.

Table 1. Statistical data of the experimental dataset used in the study

E fe L Pex

dp (mm) by (mm) (MII’)a) (MPa) (mm) [kNp)

Mean 14.51 1.33 161,195.24 43.48 233.33 47.63

Standard Error 1.03 0.08 831.36 2.51 11.09 4.14
Median 10.56 1.26 161,800.00 50.00 200.00 45.10
Standard 471 0.36 3809.75 11.52 50.83 18.97

Deviation

Sample Variance 22.21 0.13 14,514,226.19 132.66 2583.33 359.83
Kurtosis -1.97 20.76 20.81 -1.45 -0.46 -1.54

Skewness 0.30 4.54 -4.55 -0.12 1.08 0.33
Range 10.52 1.70 17,700.00 35.00 150.00 54.90
Minimum 9.95 1.20 144,600.00 30.00 200.00 23.00
Maximum 20.47 2.90 162,300.00 65.00 350.00 77.90

Sample Size 21
2.2. Method

2.1.1 Analytical Model for Debonding Strength

Seracino et al. [6] proposed a generalized analytical model to predict the interfacial debonding
strength (Pic) of adhesively bonded strip-concrete interfaces. The model was developed by
considering an idealized bond-slip relationship of the strip-concrete interface. It is a practical
model applicable to strips used in both Externally Bonded Reinforcement (EBR) and Near Surface
Mounted (NSM) techniques, and it depends solely on the strip geometry and material properties.
The maximum debonding strength at the strip-concrete interface is expressed by Eq (1):

PIC=\/ Tnax X §maX'JLper X Ep X Ap (1)

Lpe,.=2df+b[ (2)
dfzdp+td, bf:bp+2tb (tdztbzlj (3)
A,=b, % d, (4)

Fig. 2 schematically illustrates the debonding failure plane that occurs at strip-to-concrete
interfaces and forms the conceptual foundation of the modeling approach adopted in this study.
The debonding surface is defined as the mortar layer that separates from the concrete substrate
while remaining attached to the CFRP strip. The transverse and longitudinal thicknesses of the
mortar layer adhered to the strip are denoted as t, and tg, respectively. In the model proposed by
Seracino et al. [6], these thicknesses are assumed to be constant and equal to 1 mm. The debonding
surface is represented as a rectangular failure region characterized by its width (b¢) and depth (ds),
which are geometrically related to the dimensions of the NSM CFRP strip (b, and dp). The parameter
Lper denotes the effective debonding length in the transverse section and plays a significant role in
the transfer of shear stress along the interface. In this context, dmax represents the maximum slip
displacement that occurs at the interface prior to complete debonding, while tmax denotes the
corresponding maximum shear stress. Together, these two quantities define the energy dissipation
capacity of the interface (Tmax * 8max), Which is modeled as a function of the aspect ratio (¢s) of the
failure plane and the cylindrical compressive strength of concrete (f;), as shown in Eq (5) and Eq
(6). As illustrated in Fig. 2, this modeling approach assumes that debonding occurs along a well-
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defined shear plane, the geometry of which governs the mechanical behavior of the bonded joint.
Therefore, Fig. 2 not only serves as a conceptual basis for the analytical model but also helps
visualize the physical meaning of the key parameters involved in the calibration process.

Ap
L k@\N

concrete surface

failure

plane
NSM strip|
m M d
Fig. 2. IC Debonding failure plane of the strip embedded in the groove (tb =td = 1 mm) [6]
dr
o= (5
br
§maX X TmaX:(CX W X fZ']) (6)

Here, the constants C, m, and n were optimized using linear regression analysis. The values of Smax
and Tmax, Which are necessary for determining the debonding strength, were obtained using Eq (7)
and Eq (8), respectively.

T =(0.80240.078¢7) x £ (7)

5 0.976¢7%
max—0.802+0.078¢p;

In the proposed analytical model for determining the debonding strength, the values of t, and tq
are assumed to be constant and equal to one, as stated in the study. Accordingly, by modifying Eq
(3), an expression containing constant coefficients is obtained (Eq 9).

(8)

di=d,+1, bg=b,+2 (9)

Within the scope of this study, the calibration of the constant values in the analytical model (1 and
2 due to tp and tg; 0.976, 0.526, 0.802, 0.078, and 0.6) was performed using Particle Swarm
Optimization (PSO). Since these values were originally treated as fixed coefficients in the model
equations, they were redefined as variable parameters (K, K3, ..., K7) in the optimization process.
This allowed the PSO algorithm to iteratively update their values during each run-in order to
identify the optimal set of coefficients. Based on the original analytical formulation and the
parameters described above, the modified model used in the optimization process is expressed in
Eq 10. In this equation, the constants are replaced by optimization variables (K; to K;) to allow for
calibration using PSO:

| / dy+hkr\ 4
| ko222
Pe= <k5+k5<?—:1:>>-4k7 k 3(bp+k2) )>)'J[Z(dp+kz)+(bp+k2)]-5p-(dp-bp) (10)

d,+k
<k5 +ks (—bi s

Table 2 presents the mapping between the parameters used in the PSO algorithm and their
corresponding constants in the analytical model.
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Table 2. Constants used in the model
PSO Parameter K1 K K3 Ks Ks K K7

Original Constant 1 2 0.976 0.526 0.802 0.078 0.6
Equation Number Eq9 Eq9 Eq8 Eq8 Eq7,Eq8 Eq7,Eq8 Eq7

K; and K, are geometric correction coefficients affecting the interaction area between the CFRP
strip and concrete (related to the adhesive thickness and width). They replace the constants 1 and
21in Eq9. K3 and K, represent the multiplier and exponent parameters used in the function defining
the maximum shear displacement, which governs the deformation characteristics of the interface.
K These replace the constants 0.976 and 0.526 in Eq 8. K5 and K¢ are linear coefficients associated
with @ in the maximum shear stress formula. They replace the values 0.802 and 0.078 in Eq 7 and
Eq 8, respectively. K; is the exponential parameter reflecting the influence of concrete compressive
strength and replaces the value 0.6 in Eq 7. These parameters are directly integrated into the
mathematical formulation of the model and are optimized to enhance prediction accuracy.

2.2.2 Partical Swarm Optimization

Particle Swarm Optimization (PSO) is a nature-inspired metaheuristic optimization algorithm
developed by Kennedy and Eberhart in 1995 [48]. The fundamental inspiration behind the
algorithm is the collective behavior exhibited by flocks of birds or schools of fish while searching
for food. Based on swarm intelligence, this algorithm is simple yet powerful [49-50]. PSO is widely
used to solve nonlinear and complex problems in continuous or discrete parameter spaces.

PSO operates on a swarm consisting of individuals called "particles," which represent a set of
potential solutions. Each particle corresponds to a point in the solution space and possesses certain
velocity and position information. Over time, these particles move toward better solutions by
learning from their own experiences as well as the best experiences of other particles in the swarm
[51]. Fundamentally, PSO relies on particles adjusting their positions toward the best position
found by any member of the swarm, and this process continues iteratively until the target is
achieved [52]. The flowchart illustrating the steps of the algorithm is presented in Fig. 3.

In PSO, the initial position (Eq 11) and velocity (Eq 12) of each particle are first determined [53].
The fitness values of each particle, which lie within the defined boundary limits, are then calculated
using Eq (13). In each iteration, the personal best (prest) values - representing the best solution a
particle has found so far - and the global best (gpest) values - representing the best solution found
by any particle in the entire population - are identified. Based on these two best values, the
velocities (Eq 14) and positions (Eq 15) of the particles are updated accordingly.

Xll X12 Xln
.. (11)
Vll V12 Vln
L (12)
Vi Vg enn Vi
[ (1) = f(X11, X125 - X1n)
B (13)
f(m) = f(Xml'XmZ' ---an)
Vig = WV;4 + cyrand, (pbest;q — X;3) + corand,(gbest — X;4) (14)
Xig = Xig +Vig (15)

Here, W represents the inertia weight; c1 and c; are the acceleration (or scaling) coefficients; Xiq
denotes the position, and Viq denotes the velocity of the particle. The terms rand; and rand; are
uniformly distributed random numbers between [0-1]. For problems with fewer parameters and
low complexity, a larger inertia weight value may be used, whereas for more complex problems, a
smaller value is generally preferred [54].
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Creation of Initial Swarm

Containing Random Determination of Each
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v
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Values of Particles

!

) 4
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YES

Solution (Swarm’s Best)

Fig. 3. Flowchart of the PSO algorithm [50]

To effectively operate the Particle Swarm Optimization (PSO) algorithm, an objective function is
required to evaluate the performance of each possible parameter combination within the solution
space. In this study, a PSO-based model was developed with the aim of modifying the constants in
the analytical model proposed by Seracino et al. [6] to achieve results that more closely match the
experimental data. The inertia weight (W) was set to 0.7. The cognitive (c;) and social (c3)
acceleration coefficients were taken as 1.5. The swarm size (m) was fixed at 30 particles, and the
maximum number of iterations was limited to 1000.

Two different error metrics were used to evaluate the predictive performance of the model: Mean
Absolute Error (MAE) and Root Mean Square Error (RMSE). These error metrics are calculated
based on the differences (i.e., errors) between the maximum load predicted by the PSO-calibrated
model and the experimentally obtained load values.

2.2.3 Root Mean Square Error (RMSE)

RMSE is the square root of the mean of the squared errors. Since it involves squaring the errors, it
penalizes larger errors more heavily.

n
1
RMSE= | — E (P, — P} ? (16)
i=1

2.2.4 Mean Absolute Error (MAE)

MAE is the mean of the absolute values of the errors. It directly reflects the magnitude of the
model’s prediction errors and treats all errors equally, regardless of their direction or size.
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mag=— 3 p,~ P (17)
i=1

In both error metrics, values approaching zero indicate higher model accuracy. While MAE
provides a general measure of the average error magnitude, RMSE reflects the model’s sensitivity
to larger deviations. In this study, RMSE and MAE were used as objective functions in the
optimization process, and the aim was to identify the set of coefficients that minimize these error
metrics.

2.2.5 Model Calibration

In this study, the original formula structure was preserved, and all models were calibrated using
Particle Swarm Optimization (PSO). The general procedure involved in putting the data, running
PSO with random initializations, calculating the selected error metric for each candidate coefficient
set at every iteration, retaining the coefficient set with the minimum error, and outputting the best
coefficients once the stopping criteria were met (Fig. 4).

Start —J‘ Enter Data —— > k1,k2 k3 k4,k5 k6 k7
| |
Min Error I PSO

Write

k1,k2,k3,k4,k5 k6 k7 | No_____ lteration Yes
number=i

Stop

Fig. 4. Flowchart of the model calibration process

In this study, the termination criterion of the PSO algorithm was defined as reaching the maximum
number of iterations. The error value was monitored by the decision-maker to evaluate the quality
of the obtained solutions; however, no automatic error-based stopping condition was applied. PSO
parameters remained consistent across all models to ensure that the comparison was based on the
choice of error metric and the status of the first two coefficients. The optimization target was the
"Pic" value, which corresponds to the expression originally defined in Eq 1 and reformulated in Eq
10 for optimization purposes.

In the first model, the objective is to minimize the error according to the RMSE criterion. To ensure
compatibility with the literature, K; and K, are kept fixed; PSO searches only over K; to K;. In the
flowchart, this is represented by the “PSO” block operating on a parameter set and the “Min Error
= RMSE” evaluation. The second model also focuses on RMSE but allows K; and K; to be free
parameters. Thus, PSO searches across all K; to K;, enabling an independent investigation of the
effect of including the first two coefficients in the calibration. The flow remains the same; only the
dimension of decision variables increases. In the third model, the error criterion is selected as MAE.
To maintain comparability with the literature, K; and K, are fixed; PSO works on Kz to K. The
difference in the flowchart is that the error is calculated as MAE in the “Min Error” step. Other steps
remain unchanged. The fourth model uses MAE as the error criterion and also includes k; and k; in
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the calibration; PSO optimizes all coefficients from K; to K;. Thus, the effect of fixing or calibrating
the first two coefficients on the MAE side is examined symmetrically alongside the RMSE side.

The software setup is consistent across all models. Each model is run with five independent trials;
the best, average, and standard deviation values obtained in each trial were recorded for later
reporting. Comparisons will be made along the axes of error metric selection (RMSE/MAE) and the
status of coefficients K; and K (fixed/free).

3. Results and Discussion

In this study, four models were developed using the same formula structure and all calibrated via
Particle Swarm Optimization (PSO) models with fixed parameters K; = 1 and K, = 2, and free
models where these two coefficients were also included in the calibration process. Regarding the
error criterion, two models were optimized based on RMSE and two models based on MAE. The
PSO search settings were kept constant throughout all experiments. Each model was run with five
independent trials using different random initializations, and for each trial, the best (minimum),
average, and standard deviation of the error values were reported (Table 3).

Table 3. Results of PSO analysis

Independent

Model Runs K1 Kz K3 Ka Ks Ke K7 RMSE MAE
1. 1.000 2.000 0845 0537 0521 0467 0633 0274
Model 1 2. 1.000 2.000 0845 0537 0462 0761 0633 0274
KoK, 3, 1.000 2.000 0845 0537 0379 0652 0633 0274
fixed, 4. 1.000 2.000 0.845 0537 0.610 0613 0633 0274
optimized 5. 1.000 2.000 0845 0537 0415 0495 0633 0274
based on Standard
RMSE el 0.000 0.000 0.000 0000 0.090 0.119 0.000  0.000
Mean 1.000 2.000 0.845 0.537 0477 0598 0633 0.274
1. 0500 2261 0983 0510 0429 0669 0.625 0273
2. 0500 2312 0988 0512 0271 0496 0624 0273
I"‘[/‘;Cr‘f;bzlg' 3. 0501 2274 0984 0510 0867 0.600 0.625 0273
optimized 4. 0500 2161 0975 0505 0.325 0.844 0626 0273
b cod o 5. 0.500 2284 0987 0510 0323 0542 0624 0273
RMSE Standard 00 0054 0005 0003 0244 0122 0001  0.000
Deviation
Mean 0.500 2258 0983 0509 0443 0.630 0625 0273
1. 1.000 2.000 0585 0565 0.759 0390 0.714 0.054
Model 3 2. 1.000 2.000 0604 0562 0764 0259 0.707 0.054
Ki-K, 3. 1.000 2.000 0.583 0.566 0458 0.506 0.715 0.054
fixed, 4. 1.000 2.000 0577 0569 0.524 0297 0.717 0.054
optimized 5. 1.000 2.000 0.587 0.565 0572 0.698 0.714 0.054
bal\s,[‘ifEOn Standard 5 04 6000 0010 0.003 0138 0163 0.004 0.000
Deviation
Mean 1.000 2.000 0587 0565 0.615 0430 0.713 0.054
1. 0500 2261 0983 0510 0429 0669 0.625 0.054
2. 0500 2312 0988 0512 0271 0496 0.624 0.054
Model 4 3. 0501 2274 0984 0510 0867 0.600 0.625 0.054
Z)I;’Sg?:;g 4. 0500 2.161 0.975 0.505 0.325 0.844 0.626 0.054
based on 5. 0.500 2.284 0987 0510 0323 0542 0.624 0.054
MAE Standard 00 0054 0005 0003 0244 0122 0.001 0.000
Deviation
Mean 0.500 2258 0.983 0509 0443 0.630 0.625 0.054
Coefficient
from 6. 1.000 2.000 0976 0526 0802 0.078 0600 0275 0.058
Literature

The convergence consistency of the PSO runs was evaluated by analyzing the means and standard
deviations of the coefficients (K;-K-) and the error values obtained from the five independent runs
for each model. Overall, all four models demonstrated strong convergence stability, with most
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coefficients and error metrics exhibiting near-zero standard deviations. In Model 1, K;-K, and K,
were highly stable, while K5 (std  0.090) and K¢ (std = 0.119) showed relatively higher variability.
In Models 2 and 4, K, (std = 0.054) and especially K5 (std = 0.244) displayed greater fluctuations,
while the other parameters and error metrics remained consistent. In Model 3, K3 and K, converged
almost perfectly, with only Ks (std # 0.138) showing minor variability. The negligible variation in
RMSE and MAE across all models confirms the reliability and reproducibility of PSO-based
calibration. The obtained performance results and coefficient sets were compared with the existing
method in the literature and its fixed coefficients, with the RMSE and MAE values of the reference
method on the same dataset also presented. This approach clearly highlights the effects of treating
the first two coefficients as adjustable and the choice of optimization criterion (RMSE/MAE).

Each of the four models was run using PSO with 5 independent trials, and the results were
evaluated according to the model type using either RMSE or MAE. In the models optimized based
on RMSE, the model with fixed K; and K, (RMSE-Fixed) consistently produced an RMSE of 0.274
across all trials, whereas the model with K; and K, treated as adjustable parameters (RMSE-Free)
achieved an RMSE of 0.273 in every trial. This indicates that including K; and K; in the calibration
yielded a small but consistent improvement of approximately 0.36% in RMSE. For the models
optimized according to MAE, both the MAE-Fixed and MAE-Free models maintained a constant
MAE value of 0.054 across all trials, suggesting that allowing K; and K to vary did not provide any
additional benefit within the reported precision for MAE. Although the coefficients in the models
with adjustable parameters (particularly K;-Kg) showed some variability across the five
independent trials, the optimized error metrics (RMSE and MAE) remained highly consistent, with
minimum, mean, and standard deviation values nearly identical. Given that the metrics did not vary
over the 5 trials (min = mean = std = 0), it can be concluded that PSO converged reliably for this
problem. While parameter standard deviations are generally low, some degree of correlation
among parameters may exist, which is common in multi-parameter calibrations. This likely
contributes to the consistent error metrics despite small parameter variations. Overall, the results
indicate reliable and reproducible convergence of the PSO algorithm. Examining the parameter
patterns reveals that in the RMSE-Fixed model (with K; = 1 and K, = 2), the coefficients K5 and Kg
were mainly adjusted between trials, whereas in the RMSE-Free model, K; converged around 0.500
and K, ranged approximately between 2.16 and 2.31. This suggests that setting the first two
coefficients as adjustable redefined the equilibrium among the remaining coefficients (e.g., Ks and
K¢) and led to a slight reduction in RMSE. In the MAE group, the MAE-Fixed model highlighted
bands of K3 = 0.58 - 0.60 and K, = 0.56-0.57, while in the MAE-Free model, K; and K, again
converged to similar ranges as in the RMSE-Free model, despite the MAE value remaining constant.
This indicates that the MAE metric, which is more robust against outliers, did not reflect
performance gains from allowing K; and K, to vary, whereas RMSE, being more sensitive to larger
errors, showed a small but positive effect. In summary, treating K; and K, as adjustable parameters
provided a marginal but consistent improvement in RMSE, while no significant difference was
observed based on MAE.

When compared to the literature method coefficients (K; = 1, K; = 2, K3 = 0.976, K, = 0.526, Ks5 =
0.802, K¢ = 0.078, K, =0.600) and performance values (RMSE = 0.275, MAE = 0.058), the PSO-based
models demonstrated improvements: the RMSE-Fixed model reduced RMSE to 0.274, achieving
approximately a 0.36% improvement, while the RMSE-Free model further reduced RMSE to 0.273,
corresponding to about a 0.73% enhancement. For the MAE-focused models, both fixed and flexible
cases resulted in an MAE of 0.054, representing a roughly 6.9% decrease compared to the
literature. In other words, treating K; and K, as adjustable parameters produced a small but
consistent additional gain in RMSE, whereas the MAE remained unchanged.

The 6.9% reduction in MAE indicates a significant improvement in the overall accuracy and
consistency of the model, which is particularly advantageous when generalizing to different
structural configurations. This enhancement contributes to more reliable safety assessments,
reduced overdesign, and improved efficiency in the use of strengthening materials such as CFRP.
These aspects highlight the practical engineering relevance of the improvements achieved through
the proposed recalibration approach.
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The prediction results obtained using the model parameters that showed the best performance
through the PSO method are compared with the experimental data and presented in Fig. 5. The
proximity of the data points to the linear reference line indicates the success of the calibration and
that the model provides results closer to the experimental values.
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Fig. 5. Scatter plot of experimental vs. PSO-predicted IC debonding strength

4. Conclusion

In this study, the aim was to recalibrate an existing analytical model [6] in the literature that
estimates the bond strength required to prevent debonding at the NSM-CFRP strip-concrete
interface, using the Particle Swarm Optimization (PSO) algorithm. The original structure of the
model was preserved. Four different model configurations were evaluated, in which the first two
coefficients (K; and K;) were kept constant or considered as optimization parameters. Each
configuration was tested through five independent runs under identical PSO settings. Prediction
accuracy was evaluated using Root Mean Square Error (RMSE) and Mean Absolute Error (MAE)
metrics.

The results show that the PSO-based recalibration improves the predictive performance of the
original model, particularly in terms of MAE. The 6.9% reduction in MAE represents a notable
improvement in the model’s overall consistency. The observed enhancement enables safer and
more efficient structural design by reducing the need for excessive material use and improving the
accuracy of performance predictions. These findings demonstrate the engineering relevance of the
recalibrated model, offering practical benefits in real-world strengthening applications. Scatter
plots comparing experimental and predicted loads confirm that the proposed models provide a
closer fit to the experimental data. Moreover, the consistent performance across all five trials
indicates that the PSO algorithm converged reliably for this specific problem.

The main contribution of this study is to demonstrate the applicability of metaheuristic
optimization techniques such as PSO in calibrating bond strength models for NSM CFRP-concrete
joints. Without adding complexity to the original model, it was shown that prediction accuracy can
be improved by selectively recalibrating specific coefficients and choosing appropriate error
metrics. This approach supports more reliable strength estimations, reduces overdesign, and
promotes more efficient use of CFRP strips in strengthening applications.

However, the findings of this study are limited by the dataset and interface configuration used. The
dataset is relatively small, and the calibration is restricted to specific NSM CFRP-concrete joint
configurations. Future studies should aim to include broader datasets encompassing various
concrete grades, groove dimensions, and different types and sizes of FRP materials. Additionally,
testing other optimization methods or hybrid approaches may further enhance model performance
and generalizability.
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