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This work conducted experimental research into the flow and mechanical
characteristics of self-compacting geopolymer concrete (SCGC) made from
ecologically beneficial byproducts of industry such as ground granulated blast
furnace slag (GGBFS) and metakaolin (MK). Through trial and error, the mix's
proportion of self-compacting geopolymer concrete (SCGC) was determined. The
mass fraction of GGBFS with metakaolin was varied by 0%, 10%, 20%, and 30%
by mass for all molarities, including 8M, 10M, and 12M. The superplasticizer (S.P.)
dose of 1.5% and the fluid-to-binder (F/B) ratio of 0.37 by mass were held constant
for each mix percentage, with the extra water content being changed
correspondingly. Workability properties were assessed in addition to mechanical
properties, which comprised compressive strength, split tensile strength, flexural
strength, shear strength, and impact strength. The application of machine learning
algorithms to forecast the compressive strength of SCGC is the focus of this study.
Specifically, Random Forest (RF), Gradient Boost, and Extreme Gradient Boost
(XGB) are utilized. Different success measures, like Root mean squared error
(RMSE), mean squared error (MSE), mean absolute error (MAE), and R-squared
(R?), are used to judge these methods. The Gradient Boost model outperforms the
others, achieving an R2 score of 0.934 on training data and 0.929 on test data,
showecasing its precision and accuracy. The success of the Gradient Boost model
can be attributed to its incorporation of randomness and ensemble diversity,
making it a powerful tool for predicting compressive strength in various scenarios.

© 2025 MIM Research Group. All rights reserved.

1. Introduction

The constant winds of change are ever-present in the field of environmental sustainability and
design, where carbon dioxide emissions monitoring is used as a comparison metric. The speed
with which this change is occurring within our sphere of influence is particularly disturbing. The
dominant ideologies that have guided the development of our economy and manufacturing have
recently shown signals of extreme unsustain ableness. Our modern world has been shaped in
fundamental and widespread ways through the ecological reverberations caused by the
unstoppable rise of population and the relentless advance of urbanization. Understanding this
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complex transition requires analyzing its constituent parts, with due consideration provided to
both past data and anticipated future tendencies. Ordinary concrete is a composite miracle in the
world of building supplies, consisting of just 12% cement, 8% mixing water, and 80% aggregate.
This means that every year, in addition to the astonishing 1.6 billion tons of cement produced
worldwide [1], the concrete industry consumes almost 10 billion tons of sand and rock, along
with a billion tons of mixing water. The concrete industry is the undisputed giant, using a massive
12.6 billion tons of raw materials every year, making it the world's top natural resource
consumer [2]. Cement, the immovable foundation of conventional concrete, is seeing a surge in
demand as a result of rising concrete demand. With the unstoppable storm of population growth
and the relentless gears of industrialization, the shadow of pollution resulting from cement
manufacture grows larger by the year. Unfortunately, cement production is expected to increase
from its current 7% of global CO; emissions to 17% in the future. At the crossroads of a rapidly
expanding sector of construction and a need for environmental stability, a search for harmony
begins. Because of this, the cement industry must go beyond its existing narrative, which is
centered on increasing cement replacement levels and expanding the use of industrial by-
products as SCMs. People are calling for a big change to get rid of cement and instead synthesize
new materials that are better for the environment and use less energy [3]. The invention of
geopolymer concrete marked a new era in the industry, one that eliminated dealing with the
massive fuel costs associated with traditional high-temperature kilns. When compared to the
emissions created by one ton of Portland cement, the 0.18 tons of CO; produced by the burning
of carbon fuel per ton of Geopolymeric cement is a significant improvement. With the
development of self-compact geopolymer technology, a novel, non-conventional, cement-free
binder has emerged, a wonder that self-compacts without segregation, flowing seamlessly into
every corner, undisturbed by obstructive barriers, and embracing formwork with remarkable
ease [4].

Metakaolin is widely recognized as a key raw material in the synthesis of geopolymers due to the
substantial contributions it makes to our understanding of the material because of the high
concentrations of Si0z and Al;03 it contains[5]-[7]. In a chemical synergy, calcium hydroxide and
metakaolin combine forces to generate hydrated calcium aluminates and silico aluminates,
resulting in a significant enhancement of binding strength. Metakaolin boasts an extensive
surface area of 12,000 m?/g, far surpassing that of regular cement [2]. But the fact remains
metakaolin's demand places limits on the field of strength creation [8]. When playing with fly ash
and GGBFS [9], its high aluminum concentration makes it the silicon-reduction expert. Although
cement's demand is unrelenting, it may not be necessary to call for the expansion of current
cement plants if available fly ash, GGBFS, and metakaolin are used efficiently [10]. These
developments have strengthened the construction industry to the point where it can achieve
complete sustainability [11]. And in this complicated web, the investigation's principal aim
becomes clear. Still, the primary focus of this study is on the enhancement and functionality of
GGBFS-Metakaolin-based self-compacting geopolymer concrete (SCGC). Here, GGBFS plays the
role of reference mix, setting the context for the introduction of metakaolin at 0%, 10%, 20%,
and 30% of the total mass of GGBFS, respectively. The primary objective of this research is to
investigate the relationship between workability and strength, specifically highlighting the
complex correlations that arise from the extensive domain of machine learning techniques and
compressive strength. A continuous investigation is being conducted to thoroughly examine the
complex aspects of microstructural properties, a field that is both mysterious and complicated
featuring elaborate structures and intricate patterns.

In the world of materials, scientists like Daniel L.Y. Kong [12] have discovered some interesting
connections between different substances, like fly ash and metakaolin, and their strength when
exposed to high temperatures. They use special tools to look closely at the materials. They found
that fly-ash-based geopolymer materials have tiny pathways that help moisture escape when
heated, which keeps the material strong. But metakaolin-based geopolymer materials don't have
these pathways and can become weaker. In the present study, Siddique et al.[13] investigate the
mysterious phenomenon of water absorption in geopolymer concrete. A complex novel emerges,
whereby the amounts of water absorption fluctuate within the mysterious range of 5.8-7.1%. In
this context, the central character is the 12M mix, an individual distinguished by its notable
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attributes of low water absorption and a substantial volume of permeable voids. The
performance shown on the platform of material science demonstrates a profound correlation,
whereby the combination of minimal water absorption and permeable void volume results in
the emergence of remarkable compressive strength. The author, Jiale Shen et al. [14], discusses
machine learning algorithms like gradient boost (GB), random forest (RF), and extreme gradient
boost (XGB). Their main interest was in the compressive strength of geopolymers made from
building and demolition waste (CDWG). The results are appealing, and the accuracy of the
predictions goes beyond R2> 0.9, striking great heights. Among the maestros, GB and XGB rise to
the top, making RF look weak in comparison.

1.1 Research Significance

The novel approach to the study of self-compacting concrete using metakaolin has been
extensively carried out and the various machine learning algorithms and strength parameters
have been extensively discussed in detail. These new findings point the way toward material
optimization and sustainable construction materials. Machine learning in geopolymer concrete
is emerging research that will improve the understanding, design, and optimization of
geopolymer concrete properties. Geopolymer concrete, a more sustainable alternative to
traditional Portland cement concrete, is made using industrial by-products such as slag and
metakaolin. Various Machine learning (ML) methods can significantly enhance the performance
prediction, mix design optimization, and quality control of this material. The new things that
have been conducted in this current research are the prediction of experimental results with
random forest, gradient boost, extreme gradient boost, evaluation, mean absolute error, mean
square error, root mean square error, and R Square.

2. Materials

The binder materials employed in the experimental work are GGBFS and Metakaolin. GGBFS is
rich in calcium oxide whereas metakaolin is rich in alumina & silica. Hence the use of these two
binders will result in long strength gain and early-stage reactivity ensuring balanced strength
development. Other materials like fly ash, Rice husk ash, and sugarcane bagasse ash can also be
used, but GGBS and Metakaolin show higher reactivity, especially in cold conditions, where fly
ash and other binders can take longer to react. Concrete with GGBS & metakaolin tends to have
low thermal shrinkage and creep compared to other materials. This property is essential for
large-scale construction.

2.1. Ground-Granulated Blast Furnace Slag (GGBFS)

Silica and calcium oxide make up GGBFS, a granular, non-metallic substance crushed to less than
45 microns [15]. The physical and chemical characteristics of GGBS are shown in Table 1. The
chemical composition test results of GGBFS are in accordance with the specifications.

GGBS|
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Fig. 1. (a) SEM image of GGBFS; (b) XRD Diffraction patterns of GGBFS
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The morphology of the GGBFS SEM micrographs Fig 1 (a) is approximately angular, brittle, and
elongated. The GGBFS XRD reveals the presence of a notable amorphous phase composed of
alumina, calcite, and quartz Fig 1 (b). From Fig.1(a) SEM image it is noticed that the GGBS
material is angular in shape with irregularly shaped particles present in it.

2.2. Metakaolin

Metakaolin is a pure, amorphous, extremely reactive pozzolana aluminium silicate that forms
stable hydrates with lime in water and gives mortar hydraulic characteristics. The physical and
chemical characteristics of Metakaolin are in Table 1. Powder-based Metakaolin Fig 2 (a) SEM
micrographs are amorphous. Metakaolin XRD Fig 2 (b) reveals MK humps and peaks from 20° to
35°, indicating an amorphous phase with quartz, mullite, muscovite, and anatase peaks. From
Fig.2(a) SEM image, it is seen that metakaolin shows platy in nature.

T
‘ Metakaoline

Q-Quartz
M-Mullite
MC-Muscovite
A-Anatase

Intensity

-{" ; 10 20 30 40 50 60 70 80
$3400 10.0kV 7:0mm x50 2 4 0.00m 2-0 (degrees)
(b)

Fig. 2. (a) SEM image of metakaolin; (b) XRD diffraction of metakaolin

Table 1. Physical and chemical properties of GGBFS and metakaolin

Parameters GGBFS Metakaolin
Physical Properties
Color Light grey White
Specific Gravity 2.7 2.01
Surface Area 450 m?/kg 1200 m2/kg
Chemical Properties
Si0; 33.77% 52%
CaO 33.77%
Al 03 13.24% 42.2%
MgO 8.46%
Fe;03 0.05% 0.7%
Mno 0.65% ---
Sulphide Sulphur 2.23% ---
Total chlorides 0.01% ---

2.3. Alkaline Activators Preparation

This study employed an alkaline solution of NaOH and Na;SiO3;. Sodium silicate aids in binder
dissolution. Sodium hydroxide pellets in water create a solution at the right concentration. The
molar content of sodium hydroxide solution varies. Before mixing with sodium silicate, this
solution undergoes treatment for 24 hours. After mixing, the polymerization process reacts and
produces heat, so leave it for 20 minutes before using. The entire research used a ratio of sodium
silicate solution to sodium hydroxide is 2.5. Sodium hydroxide pellets have 99% purity and 2.13
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specific gravity. The Sodium silicate consists of 14.43% Na20, 29.55% of SiO, 56.11% of water
with 74 Pa.sec viscosity specific gravity of 1.55 and pH is 12.

2.4. Super Plasticizer (S.P)

Master Glenium SKY 823 has a pH of >6, a relative density of 1.08 + 0.01 at 250 °C, and a chloride
ion concentration of <0.2%.

2.5. Aggregates

Using M-SAND as a fine aggregate, this study found 2.59 specific gravity, 2.2% water absorption,
and grade “Zone I1”. The coarse aggregate employed in this study has 2.67 specific gravity, 0.65%
water absorption, 15.23% combination index, and 28.98% crushing value. The test sample meets
[S: 383-2011 standard [16].

2.6. Mix Proportions

In the current study, metakaolin was employed to substitute twelve GGBFS blends at mass
proportions of 0%, 10%, 20%, and 30% with 8M,10M, and 12M of sodium hydroxide solution.
For SCGC workability, the superplasticizer was held at 12% for all molarities and the binder was
adjusted with extra water according to molarities by mass to gain the required workability of
SCGC. Table 2 shows the GGBS/metakaolin-based SCGC Mix Proportion details

Table 2. Mix proportion of GGBFS/Metakaolin-based SCGC

Mixes Cor]rgli;:lc?rfgnts GGBFS Mei[iilkao M-Sand Agg:erg:te I\\I/\?e(l)tls;l: Naa5i0s Molarity V]%/);ttrei
(%) Ke/mD)  (kg/ma  K8/MI (kgma)  (kgmy K&MD Mg
M1 GGBI\F/[SKlOOOZ% & 434.68 0 695 1044 64.75 161.875 8M 6
M2 GGSI;S?OOOZJ & 391.21 43.47 695 1044 64.75 161.875 8M 8
M3 GG]]?AI;‘(SZSOOU;f & 347.74 86.94 695 1044 64.75 161.875 8M 10.5
M4 GG3§(537000Z] & 304.28 130.4 695 1044 64.75 161.875 8M 12.5
M5 GGBI\P;[SI<10()()2% & 434.68 0 695 1044 66.18 165.45 10M 6.5
M6 GG]]\g/[li(Slgooﬂjf & 391.21 43.47 695 1044 66.18 165.45 10M 9
M7 GG]\%[P}:(SZSOOUZ] & 347.74 86.94 695 1044 66.18 165.45 10M 11
M8 GGSI;S;OOOZJ & 304.28 130.4 695 1044 66.18 165.45 10M 13
M9 GGBI\F/'IS;(IO(T);?)% & 434.68 0 695 1044 67.5 168.77 12M 7
M10 GG;i[f(SlgO%Z] & 391.21 43.47 695 1044 67.5 168.77 12M 10.5
M11 GGSI;SZBOOOZJ & 347.74 86.94 695 1044 67.5 168.77 12M 12
M12 GG]]\g/[l;(S;OOUjf & 304.28 130.4 695 1044 67.5 168.77 12M 14

2.7. Preparation of Concrete, Casting/Curing

Before making the new SCGC, GGBFS, metakaolin, and manufactured sand were blended in the
right amounts. The coarse aggregate was then added to the mixer in a specific proportion in a
saturated dry surface (SSD) state and mechanically mixed for 2.5 min. After the dry mix, a well-
shacked liquid combination (F/B) with the alkaline solution, superplasticizer, and additional
water was pumped into the mixer for at least 3 minutes to combine it. Extra water has been
added to the mix based on trial and error to maintain the flowability of the developed self-
compacting geopolymer concrete. The addition of extra water was necessary to achieve the
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desired workability of the self-compacting geopolymer concrete. Without sufficient water, the
concrete would have been too dry and difficult to work with. The freshly formed concrete was
evaluated for significant working characteristics to categorize self-compacting concrete. Also,
slump flow, V-funnel, and L-box tests were assessed for workability properties. Hardened
properties for specimens were produced following new SCGC testing. After vigorous hand
mixing, the new concrete was poured into moulds without compaction into cubes, cylinders,
prisms, etc,, filling all moulds spaces with their weight. Scraping the specimens top removed
surplus material and flattened them. Three samples were cast and evaluated for each
combination in the experiment. After casting, samples, and moulds were oven-baked at 700 °C
for 24 hours. After this oven-drying cycle, the study samples were taken from the moulds and
kept at room temperature until test day.

3. Fresh Properties and Test Results of SCGC

The fresh characteristics of SCGC mixes were assessed using three SCC parameters according to
EFNARC guidelines [16]. They are filling, passing, and segregation resistance. The current
research assessed these features for all molarities utilizing Slump Flow, V-Funnel, and L-Box.
Table 3 displays the workability test results.

Table 3. Workability test results for SCGC

Range of
Mixes MiT M2 M3 M4 M5 M6 M7 M8 M9 M10 M1l M12 workability
values for
SCC
Slump
Flow 685 660 655 655 675 655 650 640 660 650 650 635 650-800
(mm) mm
V-
Funnel 109 115 12 13 11 12 12.5 135 12 12.21 13 14
6-12 Sec
(sec)
L-Box 089 085 084 082 087 083 083 082 085 0.82 0.8 0.79
(H2/H1) ' ' ' ' ' ' ' ' ' ) ) ) 0.8-1.0

As shown in Fig 1 (a), GGBFS particles are flaky and elongated and have a large surface area,
while metakaolin particles are amorphous and have a large surface area (Fig 2 (a) and Table 1),
making it difficult to achieve the EFNARC-required flow. The slump flow is lowered for
10%,20%and 30% metakaolin replacement by 3.6% to 4.3%, 2.9% to 5.1%, and 1.5% to 3.7%
compared to the control mix (GGBFS 100) for 8M, 10M, and 12M. Slump flow percentage
decreases by 3.6% for reference mix M1 from 8M to 12M, 1.5%, 0.7%, and 3.05% for mixes M2,
M3, and M4. The V-funnel test evaluates the filling capability of SCGC, showing an increase in
flow time with metakaolin percentage. At 12M, all values slightly exceeded the specified limit.
Substituting 10%,20% and 30% metakaolin for the control mix increases V-funnel flow time by
5.5% to 19.26%, 9% to 22.72%, and 1.75% to 16.66%, respectively.
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Fig. 3. Slump flow value for all the mixes
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Fig 5. L Box ratios for all the mixes

The V-funnel flow time for reference mix M1 increased by 10% from 8M to 12M, while for mixes
M2, M3, and M4, it increased by 6.17%, 8.33%, and 7.7%, respectively. The blocking ratio of L-
box decreases with increased metakaolin content and sodium hydroxide concentration, similar
to slump flow and V-Funnel test results. However, replacements of metakaolin with 10%, 20%,
and 30% decrease the blocking ratio by 4.50% to 7.86%, 4.6% to 5.7%, and 3.5% to 7.0%,
respectively. The percentage decrease from 8M to 12M for replacing GGBFS with metakaolin by
0%, 10%, 20%, and 30% is 4.5%, 3.52%, 4.76%, and 3.65%, respectively.

4. Hardened Properties of Self-Compacting Geopolymer Concrete
4.1. Compressive Strength Tests

This experiment evaluated the compressive strength of a cube sample 100mm in a digital
2000KN compression testing machine (CTM) following IS 516-1959 [17] guidelines. The study
found that increasing the percentage of metakaolin in the sample resulted in a decrease in
strength. However, as the molarity increased, the strength also increased [3].

The percentage decrease in strength by replacing GGBFS with 10%, 20%, and 30% of metakaolin
when compared to the control mix GGBFS 100 at the end of 90 days was around 2.10% 4.21%
12.63% for 8M, 7.54%,11.32%,16.03% for 10M and 8.20%,11.47%,6.40% for 12M of sodium
hydroxide solution. The percentage increase in strength from 8M to 10M and from 10M to 12M
at the end of 90days was 11.57% and 15.09% for the M1 series, 5.37% and 14.28% for the M2
series, 3.23% and 14.89% for the M3 series, and 9.87% and 14.60% for the M4 series. Table 4
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shows compressive strength test results and Fig 6 shows compressive strength values for
various mixes.

Table 4. Compressive strength test results in MPa

Mix Id 3 days 7 days 28 days 56 days 90 days Molarity
M1 41 42 45 46 47.5
M2 40.5 41.5 44 45 46.5 3
M3 39 40 42.5 44 45.5
M4 38 38.5 40 40.5 41.5
M5 46 47.5 50 51.5 53
M6 43 44 47 47.5 49 10
M7 41.5 42 44.5 46 47
M8 40 41 43 44 44.5
M9 49 50 56.5 59 61
M10 47.5 48 53.5 55 56 12
M11 45 46 52 53 54
M12 44 44.5 49 50 51
70
- 2a
60 o
— - 90 days
% so Ll [ Al 1l
-'_5 1 1 1 17 s — ] u _
%” ao Al H et AT i T
2 30
UE-J- |
5 207
10
o] T

T T T T T T T T T T T T T T T T T T T T T T
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12
Mix ID

Fig 6. Compressive strength test results

4.2. Split Tensile Strength Tests

The experiment was conducted in a CTM on a 150 mm diameter and 300 mm height cylinder
specimen according to IS 516-1959 [17]. The tensile strength decreased with increased
metakaolin content and increased with increased molarity compared to the control mix.

Table 5. split strength test results in MPa

Mix Id 7 Days 28 Days 56 Days Molarity

M1 4.25 4.67 4.73

M2 3.96 4.2 4.38 3
M3 3.82 3.96 4.1

M4 3.53 3.67 3.82

M5 4.7 4.85 5

M6 4.37 4.5 49 10
M7 4.2 4.35 4.5

M8 3.9 4.2 4.25

M9 5.2 5.5 5.55

M10 4.8 4.95 4.98 12
M11 4.6 4.7 4.74

M12 4.3 4.5 4.63
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The percentage decrease in strength by replacing GGBFS with 10%, 20%, and 30 % of metakaolin
when compared to the control mix GGBFS 100 at the end of 56 days was around 7.39%,
13.32%,19.23% for 8M, 2%,10%,7.64% for 10M and 10.27%,17.08%,19.87% for 12M. After 56
days, the M1 series increased by 5.70% and 11% from 8M to 10M and 10M to 12M, the M2 series
by 11.87% and 1.63%, the M3 series 9.75% and 5.33%, and the M4 series 8.94%. Table 5 shows
split strength test results and Fig 7 shows split tensile strength values for various mixes.

6
7 Days
— | 28 Days

. — 56 Days
© 5 — _ ——
(o' o ] — -
= _ i 71 1
= | ] B N - —
B 4] B T _ |
| o —
e —
=
w
o 34
7
|
Q
-
= 2
o
w

1 4

0 T T

T T T T T
M1 M2 M3 M4 M5 M6 M7 M8 M9 MI10 M11 M12
Mix ID

Fig 7. Split tensile strength test results

4.3. Flexural Strength Tests

The 100x100x500 mm sample was tested in a flexural testing machine. Increasing metakaolin
concentration lowers flexural strength, whereas increases with greater molarity. At 56 days, the
percentage drop in strength for 10%,20% & 30% replacement of GGBFS when compared to
control mix GGBFS100 was around 1.65%,2.68%,6.40% for 8M, 1.1%,3%,4% for 10M and
19.20%, 22.24%,21.28% for 12.

Table 6. Flexural strength test results in MPa

Mix Id 7 Days 28 Days 56 Days Molarity

M1 4.62 4.68 4.85

M2 4.57 4.59 4.77 8
M3 451 4.65 4.72

M4 4.37 4.49 4.54

M5 4.35 4.92 5

M6 4.7 4.85 495 10
M7 461 4.77 4.85

M8 4.4 4.72 4.8

M9 5.1 5.45 6.25

M10 4.82 492 5.05 12
M11 4.75 481 4.86

M12 4.6 4.72 492

M1 series strength increases from 8M to 10M and 10M to 12M at 56 days are 3.09% and 25%,
M2 series is 3.77% and 2.02%, M3 series is 2.75% and 0.2%, and M4 series is 5.72% and 2.5%.
Table 6 shows flexural strength test results and Fig 8 shows flexural strength values for various
mixes.
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Fig 8. Flexural strength test results

4.4. Shear Strength Tests

Bairagi and Modhera [18] and Baruah and Talukdar [19] recommended applying shear strength
tests on an L-shaped shear test specimen on self-compacting geopolymer concrete in the absence
of a code. Inserting a 90x 60 x150 mm steel block into 150 mm side-cube moulds before pouring
concrete generated the samples. Shear test specimen details are in Fig 9. In a CTM system, the
sample was loaded till failure.

Fig. 9. Details of the shear test

Table 7. Shear strength test results in MPa

Mix Id 7 Days 28 Days 56 Days Molarity
M1 4.44 4.6 4.65
M2 3.89 4.05 4.15 8
M3 3.22 3.35 3.47
M4 2.95 3 3.1
M5 4.5 4.65 4.7
M6 3.97 4.1 4.2 10
M7 3.28 3.4 3.51
M8 3.02 3.07 3.14
M9 4.62 4.7 4.74
M10 4.2 4.25 4.3 12
M11 3.35 3.43 3.54
M12 31 3.15 3.2
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Replacement of GGBFS with metakaolin for 8M, 10M, and 12M lowers strength by 10.75,25.37%,
and 33.33% for 8M,10.63%,25.31% and 33.19% for 10M, and 9.28%,25.31% and 32.48% for
12M compared to control mix M1(GGBFS100) after 90 days. The M1 series has a 1.07% and
0.85% strength increase from 8M to 10M and 10M to 12M after 90 days, whereas the M2 series
has 1.20% and 2.38%, the M3 series 1.15% and 0.85%, and the M4 series 1.29% and 1.91%. IS
456-2000 [20] suggests M20 grade (conventional) concrete has a maximum shear strength of
2.5 MPa. Regardless of molarity, all mixtures, including the reference mix, exceeded 2. 5MPa.ln
recent studies, it was also observed that geopolymer concrete gave remarkable and positive
results for bonding and interface [27]. Table 7 shows shear strength test results and Fig 10 shows
shear strength values for various mixes.

: . . 7 Days
5 28 Days
- - T 56 Days
= (] 1 |
o i
= = e ]
= ] N -
< B _ - L
S 31 — B
f =
£
w
& 27
()
<
w
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0 T T T 1 T T 1 T T T

1 T
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12
Mix ID

Fig. 10. Shear strength test results

4.5. Impact Strength

Self-compacting geopolymer concrete impact strengths were measured using Schruder's impact
test equipment. This is exactly 150 mm-diameter, 60 mm-thick samples were selected. Fig 11 (a)
& (b) show a 45.4 N hammer (ball) from 457 mm being lowered in Schruder's impact evaluation
system. Observe the number of blows needed for the first and final breakdown. The final crack
indicates that the specimen has structurally failed under the impact loads. Cracks in the sample
sufficiently under impact loads at least three of four concrete portions on the base plate are the
ultimate failure.

Fig 11. (a) Impact test setup; (b) failure of impact specimen
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Table 8. Impact Energy of GGBS/Metakaolin-based SCGC

28 Days 56 Days 90Days
Mix Molarity First . First Final First Final
Final crack

crack crack crack crack crack
M1 1515 1597 1618 1722 1743 1805
M2 aM 1452 1494 1514 1556 1597 1639
M3 1348 1411 1411 1452 1514 1556
M4 1183 1245 1245 1286 1328 1390
M5 1618 1701 1763 1846 1867 1950
M6 10M 1556 1639 1618 1680 1701 1763
M7 1494 1577 1556 1618 1639 1722
M8 1411 1514 1473 1535 1514 1556
M9 1660 1763 1888 1950 2012 2157
M10 1597 1660 1701 1763 1805 1867
M11 12M 1535 1597 1618 1680 1701 1763
M12 1452 1514 1535 1597 1618 1680

Based on ACI Committee 544's [21] procedure, Table 8 displays specimen impact strengths and
ultimate failure. GGBFS is replaced with metakaolin for 10%, 20%, and 30% and evaluated for all
molarities at 28, 56, and 90 days. As the metakaolin content increases, compressive strength
increases but the impact resistance decreases. This is due to the denser, more brittle matrix
formed by the metakaolin, which reduces the material's ability to absorb and distribute impact
energy, leading to cracks under impact loads. The energy absorption capacity of SCGC increased
with molarity regardless of the mix, and a 10% substitution of GGBFS with metakaolin improved
energy absorption for all testing days. The percentage improvement in strength at ultimate
failure from 8M to 10M and 10M to 12M with 10% metakaolin substitution of GGBFS at 90 days
is 7.56% and 5.89%.

5. Microstructure Studies

The SEM images from Fig 12 (a)-(b) & (e) -(f) for 8 molarity and Fig 12 (c)-(d) & (g) - (h) for 12
molarity of hardened geopolymer concrete samples after 3 days and 28 days compressive
strength tests made with GGBFS100 mix (GGBFS100%) and GM70 mix (GGBFS 70% and
metakaolin 30%) demonstrate binder composition and molarity microstructure. Early-stage
hydration of calcium aluminates produces needle-shaped prismatic crystals referred to as
Ettringite [Fig. 12 (a)]. At 28 days, this Ettringite vanished and became a solid concrete structure
[Fig. 12(b)]. All SEM image of SCGC having 12 M of Na (OH) solution show a thick GGBFS
composite microstructure with slag grains and few microfractures. High-pozzolanic GGBFS
particles produce a denser matrix, resulting in better strength after 28 days. GGBFS composite
SEM images (b), (d), (f), and (h) reveal good matrix-GGBFS particle interfacial bonding at 28 days.
GGBFS substituted with metakaolin did not show Ettringite. The SEM images from (e) to (h)
indicate a strong, compact microstructure as metakaolin expanded due to its huge surface area.
As seen in SEM images (e) and (f), metakaolin concentration increases in C-S-H crystals after 3
days. Higher curing times diminish C-S-H crystals by increasing their strength. Due to the large
surface area of GGBFS and metakaolin, extra water was provided to ensure flow, resulting in the
increase of small pores and micro-cracks as seen in SEM images from (e) and (h), which may
explain the decrease in strength with increased metakaolin content. Higher amounts of NaOH
break up metakaolinite particles and make the bond between monomers more reactive, which
makes the geopolymer's intermolecular bonding stronger. SEM images (c), (d), (g), and (h) of
SCGC having 12 M of Na (OH) solution have a more compact and denser microstructure than (a),
(b), (e), and (f). Samuel Demie et al. [22] used a field emission scanning microscope (FESEM) to
analyze SP dosage. They found dense ITZ development between aggregate and binder matrix at
high SP dosages and vice versa, resulting in high compressive strength.
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(a) GGBFS100 for 3 days (8M) (b) GGBFS100 for 28 days (8M)

(g) GGBFS70+MK30 for 3 days h) GGBFS70+MK30 for 28Days

Fig. 12. SEM images of GGBFS/Metakaolin based SCGC w.r.t Different binder composition and
molarity
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6. Application of Machine Learning (ML) Methods
6.1 Random Forest

The Random Forest Regressor is a potent machine-learning algorithm employed for regression
tasks. Its core mechanism involves the amalgamation of multiple decision trees to improve the
robustness and accuracy of predictions. Each decision tree taught by a Random Forest (RF)
Regressor uses a unique, randomly selected section of the training data, some of which may be
repeated. This procedure is commonly referred to as bootstrap aggregating or bagging. The
amalgamation of these decision trees through ensemble averaging serves the dual purpose of
introducing randomness and mitigating overfitting, ultimately resulting in reduced variance and
an overall improvement in the model's predictive accuracy [23]. The algorithm is mentioned
below.

Training data D = {(x;, ¥;)}=,, number of trees T, number of features m to randomly select to
each split.

1. For each tree t (from 1 to T)

» Randomly sample n data points from D with replacement (bootstrapping).
» Use the bootstrapped dataset to train the t-th decision tree.
» Ateach splitin the tree:
e Randomly select mmm features from the total features.
¢ Find the best split using one of the selected features.
» Grow the tree until a stopping condition is met (e.g., max depth, minimum samples per

leaf).
2. Store the trained decision tree f;(x)
3. Prediction

If there are T decision trees in the forest, the prediction y For a new input x is the average of the
predictions from all trees:

T
1
§=7> £ m
t=1

Where; T is the total number of trees, f;(x) is the prediction from the t-th tree for input x.
6.2 Gradient Boost

Gradient Boosting is an ensemble machine learning technique that builds predictive models by
merging multiple weak learners, typically decision trees, sequentially. It begins with a simple
model and progressively adds more trees, each designed to correct the errors of the preceding
ones. Gradient Boosting minimizes the loss function gradient, adjusting model parameters to
improve predictions. It's highly effective for regression and classification tasks, providing robust
and accurate results. Regularization techniques like learning rate control the overfitting [24].
The formula for the calculation of the predicted values and the residual errors at each iteration
is mentioned below: Predicted Value (F) at iteration m:

Fp(x) = Fyn—1)(x) + learning rate * hy, (x) (2)

Fm(x) represents the predicted value after adding the m-th tree. F.1; (x) represents the
anticipated or projected value derived from the preceding iteration. learning rate is a
hyperparameter that quantifies the individual tree contributions (usually < 1). hy(x) is the
prediction made by the m-th decision tree. Residual Error (R) at iteration m:

Rin(x) =y — En(x) (3)
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Rm(x) represents the residual error, which is the key distinction between the actual target value
(v) and the predicted value at the m-th iteration (Fm(x)).

6.3 Extreme Gradient Boost

XGB is a well-known machine learning ensemble algorithm known for its exceptional
performance in regression and classification tasks. It enhances the traditional gradient boosting
technique by incorporating regularization, parallel processing, and handling missing data
effectively. XGB constructs a set of decision trees in an iterative fashion, optimizing them to
minimize a defined loss function. It employs gradient descent and a second-order gradient for
faster convergence. The algorithm's distinctive features include pruning to prevent overfitting
and automatic handling of missing values [24]. The algorithm is mentioned below. Training data
D ={(x;, ¥;)}i~,, number of boosting rounts T, learning rate n, loss function I(y, ¥), regularization
parameters y and 4.

1. Initialize the model:

e Setinitial predictions $;°= mean (y)
2. For each boosting round t (from 1 to T)

e Compute residuals for each observation:

~t-1
,rtl_ — _al(yl/\t:_y; ) [4)
ay;
e Train a decision tree f;(x) to fit the residuals 7;¢
e Calculate the leaf weights w;for the tree f;(x) using:

. . .t
Zleleafj T [5)

Zieleafj hlt + 2
e Where h{ is the second derivative of the loss function. Update predictions:

Pt =97 +nf,(x) (6)

3. Add regularization term:

n t
L= 213+ ) v (£ )
i=1 k=1
For a given dataset with n observations, the objective function £ to be minimized is:
n t
L= Y13+ ) L) )
i=1 k=1
Where; l(yiﬁt)is the loss function, typically Mean Squared Error for regression;
~t ~t)2
(') =i 5) 9)
L(fi)) is the regularization term that penalizes the complexity of each tree, fydefined as;

L(fi) = YT+ 22 T_, wj? (10)

Where; T is the number of leaves in the tree, Wj represents the weight of leafj.
6.4 Evaluation

The evaluation of regression models in machine learning encompasses the use of many measures
to assess their performance in predicting continuous numeric values. In this work, we have used
four evaluative metrics namely, Mean Absolute Error (MAE), Mean Squared Error (MSE), Root
Mean Squared Error (RMSE), R-squared (R?) Score [23].
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6.4.1 Mean Absolute Error (MAE)

The Mean Absolute Error (MAE) is a metric that quantifies the average absolute difference
between the anticipated values and the actual target values. It provides a straightforward
understanding of prediction errors [21].

1
MAE = (EZ(predicted — actual)) (11)

6.4.2 Mean Squared Error (MSE)

MSE calculates the average squared difference between predicted and actual values. It amplifies
the impact of larger errors and is widely used in regression evaluations.

MSE = (%) (E(predicted — actual)z) (12)

6.4.3 Root Mean Squared Error (RMSE)

RMSE provides an interpretable metric in the same units as the target variable and is calculated
as the square root of MSE. Large errors are penalized more severely than MAE.

RMSE = VMSE (13)

6.2.4 R-squared (R?) Score

R2 measures the proportion of the dispersion in the target variable that is predictable from the
independent variables. It ranges from 0 to 1, where 1 indicates a perfect fit and 0 implies that the
model doesn't explain any variance [25].

R2 =1 <MSE(model)> (1)

MSE (mean)
7. Results and Discussion

In this work, the ML models are implemented on the experimental dataset to predict the
compressive strength. Implementing ML models using optimization strategies improves
accuracy [26,28]. Table 9 lists hyperparameters and evaluation matrix findings.

Table 9: Optimization parameters and performance of ML algorithms

ML R2 R2

Model training test MAE MSE RMSE Optimized parameters
RF 0.909 0.822 1.122 2.486 1.576 n_estimator=100
XGB 0.935 0.845 0.575 1.851 1.360 Random state=42
GB 0.934 0.929 0.593 1.852 1.361 Learning rate=0.35

The optimized parameter(n_estimator=100) involves generating 100 independent trees,
contributing to improving the prediction accuracy. A higher value generally enhances the
performances of models. Random state 42 ensures reproducibility, and learning rate=0.35
controls step size, balancing model accuracy, and overfitting. Cross-fold validation is utilized
with value K=10 for all the ML models as another optimization approach. The results of the
individual models are discussed in detail below:

7.1 Random Forest

Fig 13 (a) depicts the correlation seen between the experimental values and the predicted values
obtained from the RF model. The scatter plot visually represents the training data with red data
points and the test data with blue data points. The solid black line represents the optimal fit of
the model, while the red and blue dotted lines represent the training and test datasets,
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respectively. The RF model was implemented, yielding an R2score of 0.909 on training data and
0.822 on test data.

Experiment vs Prediction - RF
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a R%-Test=0.822 -
& 55 1 ®
=
\
O 50 1
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7]
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Fig. 13. (a) Correlation between the actual and predicted RF model results and b) Error
graph- RF

Fig 13 (b) illustrates a similarity between the observed data points and the predicted ones by the
RF model. This is evident from the small discrepancies visible in the line graph, indicating a close
alignment between the actual and expected data.

7.2 Extreme Gradient Boost

Fig 14 (a) and (b) present a comparison of the predicted and observed outcomes generated by
the XGB model. The RF model's predictions on both the training and test data sets were
surpassed by the XGB model's implementation (R2=0.935 and R2 = 0.845, respectively).

The better accuracy observed in XGB compared to RF appears to be the result of gradient
boosting. This technique combines the predictions of multiple decision trees sequentially,
enabling it to capture intricate relationships in the data and improve accuracy. RF, on the other
hand, builds multiple decision trees independently and averages their predictions, which can be
more successful for certain complex datasets.
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Experiment vs Prediction - XGB
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Fig. 14. (a) Correlation between the actual and predicted XGB model results and (b) Error
graph- XGB

7.3 Gradient Boost

Fig 15 (a) and (b) provide an analysis in comparison to the observed and anticipated outputs of
the GB model. Fig 15 (a) presents the correlation between the experimental outcomes and the
predictions derived by the GB model. The GB model has been put into action successfully with
an impressive 0.934 RZ score on the training data and a commendable 0.929 on the test dataset.
The outcome of the GB model demonstrates a higher level of precision compared to the outputs
of the RF and XGB models.

The error graph- GB demonstrates a strong correspondence between the observed data points
and the anticipated data points, as evidenced by the low discrepancy observed in the line graph.
The GB model has demonstrated superior accuracy in comparison to alternative models, with
the fewest errors. The reasons for achieving the highest accuracy in the GB model are because of
the model's mechanism, such as randomness and ensemble diversity, which can greatly
contribute to improved performance.
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Experiment vs Prediction - GB
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Fig 15(a): Correlation between the actual and predicted GB model results and (b) Error
graph- GB

Firstly, the outcome of this randomness has the potential to various accuracy scores when the
models are trained multiple times. However, this presents an opportunity for improvement and
discovering even better results. If the GB model's random initialization aligns favorably, it has
the potential to produce even better accuracy. Secondly, the GB model offers the exciting
opportunity to combine with a diverse set of base models, such as decision trees with different
characteristics or other learners, to form a powerful ensemble. If the GB ensemble is well-
designed, it has the potential to outperform XGB.

8. Conclusion

o Workability parameters such as slump flow and L-Box values exhibited a decrease as
molarity increased due to the higher solute concentration leading to stronger
intermolecular forces, reducing flowability and causing slower movement through the
funnel, while V-funnel values demonstrated an increase So, as molarity increases, the
activator solution will be thicker and moves more slowly, which will cause higher V-funnel
values. The values were marginally greater than the specified limits of EFNARC at 10M and
12M for only the 30% replacement of GGBS with metakaolin.
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e The slump flow decreases by 3.6% to 4.3%, 2.9% to 5.1%, and 1.5% to 3.7% with 10%
and 30% metakaolin replacement for 8M, 10M, and 12M, while the V-funnel flow time rises
by 5.5% to 19.26%, 9% to 22.72%, and 1.75% to 16.66%. The slump flow & V funnel values
show low workability as metakaolin content increases. Similarly, the L-box test also shows
a decline in the blocking ratio, decreasing by 4.50% to 7.86% with higher metakaolin and
sodium hydroxide concentrations. This is due to metakaolin's higher pozzolanic nature
leading to higher water demand.

e The percentage increase in strength from 8M to 10M and from 10M to 12M at the end of
90days was 11.57% and 15.09% for the M1 series, 5.37% and 14.28% for the M2 series,
3.23% and 14.89% for the M3 series, and 9.87% and 14.60% for the M4 series. The
compression strength is enhanced with increasing molarity, irrespective of the mixture. As
the molarity increases the strength of SCGC increases due to the higher concentration of
sodium hydroxide solution leading to higher alumina-silicate gel and densified matrix in
the mix employed. The same trend is observed in the split tensile, flexural, and shear
strength of concrete. Irrespective of molarity, all mixtures, including the reference mix, the
shear strength exceeded 2.5MPa.

e Irrespective of the binder proportions and molarities, GGBS/Metakaolin-based oven-cured
SCGC generally gains strength with age. The GGBS and Metakaolin-based SCGC produce a
three-dimensional aluminosilicate network that binds the particles together, which gives
a higher strength gain in the mixes developed with respect to age, type of curing, and age
of curing.

e The compressive strength of SCGC exhibited a decrease across all ages as the volume of
metakaolin added to GGBS increased from 0% to 30% due to metakaolin appearing more
compact, uniform, and homogeneous, with fewer unreacted particles & has experienced
partial alkali activation.

e Anincrease in molarity and the passage of time both result in a more compact matrix and
fewer micro-cracks in GGBS composites, which translates to greater strength. However,
when metakaolin was used in place of GGBS, more water was needed to achieve flow; this
led to a rise in unreacted CSH crystals, microscopic gaps, and micro-cracks, resulting in a
less compact structure and a decrease in strength.

e As the percentage of metakaolin in the material increased, the impact resistance
decreased, and vice versa for GGBS. Energy absorption by SCGC increased with increasing
molarity, and 10% metakaolin substitution of GGBS resulted in the highest energy
absorption capacity across all test days. The denser microstructure formed by metakaolin
can reduce the material's ability to absorb energy upon impact. Additionally, metakaolin's
higher silica content can increase the overall brittleness of the geopolymer concrete,
limiting its capacity for deformation under impact loading.

e The gradient boost model exhibited superior performance due to its superior accuracy,
regularization, and ability to handle noisy data, making it ideal for optimizing mixes in
terms of mechanical properties compared to other machine learning models on the test
dataset, achieving an R2 of 0.929, MAE of 0.593, RMSE of 1.361, and MSE of 1.852 when
predicting the compressive strength of GGBS.

e RZtraining, R% test, MAE, MSE, and RMSE are helpful for assessing the model's accuracy,
error distribution, and ability to generalize, providing a comprehensive understanding of
model performances.

e The successful implementation of machine learning models has delivered impressive
results in accurately predicting compressive strength on our experimental dataset. These
models show great potential for applications in fields like construction and materials
science, with promising predictive accuracies.

e The results demonstrate that machine learning models with hyperparameter tuning are
highly effective in achieving enhanced prediction accuracy even on small datasets.

9. Future Scope of The Present Research

e The study can be extended further by employing natural fibers in self-compacting
geopolymer concrete.
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e This study can be extended to know the effect of temperature of SCGC with varying
temperatures (elevated temperature study)

e A durability study can be employed for the above mixes to study the effect of early and
long-term acid/salt exposure.

e Further, the sustainability analysis can be conducted for the above mix proportions.

e Cost analysis of Self-compacting geopolymer concrete can be studied.
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