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 A refined Timoshenko beam model which takes into account warping of cross 
sections is presented. The model extends St. Venant’s theory of uniform torsion 
to a generic loading of beam. Kinetic and kinematic assumptions, virtual work 
expression of full elasticity problem, and principle of virtual work are used to 
bring the presentation to the usual context of engineering models. A new 
definition of the warping displacement in terms of a variational problem is one 
of the outcomes.  Warping displacements, refined constitutive equations, and 
correction factors for rectangle, open annular, and angle cross sections of 
isotropic material are used as application examples. Shear correction factors 
are found to be purely geometrical quantities depending only on the shape of 
cross section, which contradicts many findings in literature.  

© 2015 MIM Research Group. All rights reserved. 
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1. Introduction 

The standard Timoshenko beam model assumes that cross sections of beam move as 
rigid bodies in deformation which is a well-known source for modelling error. In refined 
beam models, a warping displacement part of the kinematic assumption aims to reduce 
the modelling error due to that source. Improved kinematics have an effect on the 
constitutive equation and may also affect the beam equations. Effective properties and 
corrections factors for the standard constitutive equation are the most popular ways to 
represent the effect on the constitutive equation. Warping in pure torsion is a classical 
topic and St. Venant’s theory of uniform torsion is considered as the correct way to 
calculate the effective polar moment of a cross section [1]. Discussion on the warping 
displacement and correction factor e.g. in pure shear seems not to have settled yet and, 
even in the simplest case of rectangular cross section of isotropic material, a general 
agreement on methodology and value of the factor is lacking [2-12].  

A generic computational method for finding the warping displacement and the effective 
constitutive equation of an elastic Timoshenko beam is suggested. The method exploits 
the ideas presented already in [4] but combines these in a novel manner to extend St. 
Venant’s theory of uniform torsion to generic loading of beam. The starting point consists 
of virtual work expression of full elasticity problem and a set of kinematic assumptions. 
To end up with a coherent theory, principle of virtual work is used to find the equations 
associated with the standard beam displacement and warping displacement parts. 
Although an ‘a priori’ selection of the warping displacement is possible [13-14], finding 
the correct form seems to require the more generic approach of the present study even in 
simple cases. Defining the refined model by an explicit set of kinetic and kinematic 
assumptions brings the presentation to the usual context of engineering models and 
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should be relatively easy to follow. Consistency with the classical theories for uniform 
torsion by St. Venant and thin walled elastic beam by Vlasov [15] are novelties of the 
present theory. 

Warping displacements, refined constitutive equations, and correction factors for 
rectangle, open annular, and angle cross sections of isotropic material are used as 
application examples. Effective rigidities in torsion, obtained in the examples, coincide 
with St. Venant’s theory of uniform torsion in all cases. However, in contrast to many 
findings in literature, shear correction factor turns out to be a purely geometrical 
quantity depending only on the shape of cross section.  

2. Standard model  

A short review of the standard Timoshenko beam model derivation aids in understanding 
the steps with the refined model. The domain of the prismatic body is denoted by 

3Ω Z in which the cross section 2Ω  is constant for simplicity and Z . The 
standard beam model assumes that cross sections move as rigid bodies in deformation, 
i.e. according to kinematical assumption 

0 0θ ρru u   , (1) 

in which the first and second terms on the right hand side describe displacement due to 
translation 0u  and rotation 0θ of the cross section, respectively. If the z-axis is aligned 
with the axis of the prismatic body, the relative position vector ρ Ω  xi yj  and the 
kinetic assumption of the model can be written as 

σ σ 0xx yy  . (2) 

Actually, the normal stress components are assumed to be negligible compared e.g. to 
σzz  due to bending. The role of the kinetic assumption is just to reduce the tendency for a 
too stiff behaviour of the standard beam model due to the rather severe kinematic 
assumption (Eq (1)).  

Virtual work expression of the standard Timoshenko beam model 

T TT

0 0

0 0

δ δδε
δ

δθ δθδκ 

        
                 

         
 r ZZ Z

u uF Ff
W dz dz

M Mm
 (3) 

follows from the virtual work expression of the full elasticity problem when the 
kinematic assumption (1) is applied there. The terms from left to right are virtual work 
expressions of internal forces, external volume forces, and external area forces. Denoting 
derivative with respect to the axial z-coordinate with prime, the strain measures in Eq (3) 
are defined by 

0 0ε θu k   , (4) 

0κ θ , (5) 

and their work conjugates by 

Ω
c

σ ε

κρ ( σ)

A CkF
dA

M C Bk

       
        

          
  (6) 
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in which the integral is over the cross section and cC is the conjugate of C . The first form 
of Eq (6) is the definition of force resultants. In the second form, the matrix depends on 
the geometry of cross section, selection of the coordinate system, and requires a material 
model satisfying the kinetic assumption (Eq (2)).  ‘a priori’. The matrix representation, 
based on the linearly elastic material model, is the standard constitutive equation of the 
Timoshenko beam model.1 

What remains after these steps, is just an exercise on principle of virtual work with 
expression in Eq (3) and the fundamental lemma of variation calculus. The outcome is the 
boundary value problem for the standard Timoshenko beam model containing as the 
unknown functions translation 0 ( )u z and rotation of the cross-section 0θ ( )z . The great 
benefit of the dimension reduction method, outlined here in connection with the 
standard assumptions in Eqs (1) and (2), is that the steps are essentially the same 
irrespective of the details of the assumptions used. 

3. Refined model 

To take into account the possible warping of cross sections, the kinematic assumption in 
Eq (1) is replaced by 

Δru u u     (7) 

in which the warping displacement Δu  satisfies orthogonality Δru u  (specified later in 
more detail) to make the decomposition unique. The starting point corresponds to 
representation e.g. in [4] and in many other references about refined beam theories. 
Here, however, the warping displacement is expressed in terms of the strain measures in 
Eqs (4) and (5) as 

ε κΔ ( , , ) Δ ( , ) ε( ) Δ ( , ) κ( )u x y z u x y z u x y z     (8) 

in which εΔu  and κΔu are the warping modes. Eqs (7) and (8) compose the kinematic 
assumptions of the refined beam model. Additional assumption 

ε κ 0    (9) 

is imposed in the present study to stick to the idea of St. Venant’s theory of uniform 
torsion. The refined model does not use any kinetic assumptions. 

Considering the virtual work expression of the full linear elasticity problem as given, 
assumptions in Eqs (7-9) define the refined model uniquely and what remains is just 
manipulation with steps described in connection with the standard model. The main 
difference is that the virtual work expression contains also the warping modes as 
unknowns. The same idea has been used in [16-18] for finding the effective material 
properties of cellular material. 

3.1. Warping mode calculation 

Principle of virtual work can be applied in two steps. First, assuming that the warping 
modes are given so that their variations vanish, virtual work expression boils down to the 
standard form in Eq (3). The only difference is that stress in Eq (6) takes into account the 
warping displacement too. Second, assuming that the standard displacement part is given 
so that its variation vanishes, principle of virtual work implies the definition of warping 
displacement in terms of a variational problem. There, the goal is to find Δ (Ω)u U  such 
that 

c
Ω

δ (δ Δ ) : σ 0   W u dA  δΔ (Ω)u U   (10) 
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in which 

Ω
(Ω) {Δ : λ Δ 0 λ (Ω)}     r r rU u udA U  (11) 

and rigid body motions of the cross section is denoted by (Ω)rU . Constraint definition in 
Eq (11) is the precise meaning of condition Δru u  imposed on the warping 
displacement in Eq (7). Although not necessary, external distributed forces have been 
assumed to be of the same form as ru . Then virtual work of external distributed forces 
vanish on the warping displacement and only the term for the internal forces remains. 
Solution to the variational problem is unique as rigid body motion of the cross section Ω  
has been excluded from the warping displacement. 

As a simple example, in a pure shear of rectangle cross section with ε ε 0 y z  and  
κ 0  (see Fig. 1), solution to the warping displacement is given by 

3

2

5
)εΔ (

4 3
x

x x
u k

L
 . (12) 

The warping displacements e.g. in [13-14, 19-21] are similar but orthogonality is not 
satisfied. Simple exact solutions of this form are, however, quite exceptional and the 
variational problem needs to be solved numerically in almost all cases of practical 
interest. The finite element method, used in the examples to follow, is based on the 
virtual work expression in Eq (10), Lagrange multiplier method to enforce the 
orthogonality of the displacement parts, and a non-structured mesh of quadratic triangle 
elements.  

4. Application examples  

As application examples, finite element method is used to find the warping modes and 
refined constitutive equations for rectangular, open annular, and angle cross sections 
shown in Fig. 1. Material is assumed to be linearly elastic, homogeneous, and isotropic 
with Young’s modulusE , Poisson’s ratio ν , and shear modulus / (2 2ν) G E . Difference 
between the standard and refined constitutive equations is quantified by correction 
factors. Shear correction factors are also compared with the expressions in literature. 
Effective torsion rigidity of the refined model coincides with the prediction by St. 
Venant’s theory of uniform torsion. 

First, the six warping modes are solved by giving the value one to each component of ε  
and κ  at a time the other components being zeros. After that, the representation in Eq 
(8) follows from linearity. Finally, integration over the cross section, as indicated by Eq 
(6), gives A , B , and C  of the refined constitutive equation. In all the cases of Fig. 1, the 
outcome can be expressed in the form 

1 2(κ κ )A GA ii j j EAkk   ,  (13) 

3( ) κ ( )x y x yB E I ii I j j G I I kk    ,  (14) 

4κ ( )x yC G A I I ik  ,  (15) 

in which A, xI  and yI  are the integrals of 1, 2y  and 2x  over the cross section in the same 
order. The values of the four correction factors 1κ , 2κ , 3κ , and 4κ depend on the shape 
of the cross section but not on the material properties. In the standard constitutive 
equation, 1 2 3κ κ κ 1    and 4κ 0 . 
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Fig. 1 Cross sections depending on geometrical parameters H, L, and t. Origin of the 
coordinate system is placed at the area centroid 

4.1. Rectangular cross section 

Fig. 2 shows the warping modes for / 1H L  (square) and ν 0.3 . The S-shaped shear 
warping modes for εx  and εy  are of the polynomial form in  Eq (12). The planar warping 
modes for εz , κx , and κy  are due to the Poisson effect and they vanish for ν 0 .  

 

Fig. 2 Warping modes for  square cross section. On the first and seconds rows, warping 

modes for εx , εy , εz  and κx , κy , κz , respectively 

Table 1 shows the correction factors as functions of shape α / [0,1] H L . It is 
noteworthy that shear correction factors are constants 1 2κ κ 5 / 6  . Rectangular cross 
section has been discussed in various references with different outcomes. Expressions of 

1κ and 2κ in [7, 9-10, 22] depend on the Poisson’s ratio and shape of the cross section. 
Expression in [4] depends on the Poisson’s ratio but coincides with the prediction here 
for ν 0 . According to [5], the present value 5 / 6  has been suggested already in 1897 by 
Föppl. In this particular case, torsion and area centroids coincide and the effective polar 
moment J  by St. Venant’s theory of uniform torsion and the torsion correction factor 3κ  
are related by 3κ ( ) x yJ I I .  
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Table 1 Correction factors as functions of shape α /H L  

Shape (α) Shear (κ1) Shear (κ2) Torsion (κ3) Connection (κ4) 

1 0.833 0.833 0.843 0.000 

3/4 0.833 0.833 0.779 0.000 
1/2 0.833 0.833 0.549 0.000 
1/4 0.833 0.833 0.198 0.000 

1/16 0.833 0.833 0.015 0.000 
1/32 0.833 0.833 0.003 0.000 

4.2. Open annular cross section 

Open annular cross section in Fig. 1 is another benchmark case due to geometrical 
simplicity and poor accuracy of the standard model in a torsion problem. For a closed 
cross section, the standard constitutive equation is acceptable. However, if the cross 
section is cut to the centre point to make it open, modelling error in the standard 
constitutive equation is significant. Furthermore, shear and torsion modes are connected 
in the refined constitutive equation, whereas the connection does not exist in the 
standard constitutive equation. Severe warping in εx  and κz  modes is obvious from     
Fig.  3 for / 1/ 4t L  and ν 0.3 . Again, the planar modes for εz , κx  and κy  are due to 
the Poisson effect.  

 

Fig. 3 Warping modes for open annular cross section. On the first and seconds rows, 

warping modes for εx , εy , εz  and κx , κy , κz , respectively 

Table 2 shows the correction factors as functions of shape α / [0,1] t L . The 
expressions for the solid cross section in [4, 7, 20-22] depend on the Poisson’s ratio in 
different ways, but all coincide with the present value 2κ 6 / 7 when ν 0 . The 
expressions of 2κ in [4, 21] for a thin wall depend on the Poisson’s ratio but agree quite 
well with the prediction here when ν 0 . Values 1κ 1/ 6  and 2κ 1/ 2 in [2] for a thin 
profile are the same as obtained here. The more generic expression in [4, 22] depend on 
the Poisson’s ratio and shape.  When ν 0  the expressions coincide and give a good fit to 

2κ  in Table 2. As the torsion and area centroids of an open annular cross section do not 
coincide, polar moment J  by St. Venant’s theory and torsion correction factor 3κ  cannot 
be compared directly but relationship 2 / zz xz xxGJ B C A  has to be used instead.  
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Table 2 Correction factors as functions of shape α / t L  

Shape (α) Shear (κ1) Shear (κ2) Torsion (κ3) Connection (κ4) 

1 0.451 0.857 0.750 -0.294 

3/4 0.328 0.812 0.741 -0.325 

1/2 0.238 0.682 0.722 -0.338 

1/4 0.184 0.551 0.688 -0.336 

1/16 0.168 0.503 0.668 -0.336 

1/32 0.167 0.501 0.667 -0.333 

4.3. Angle cross section 

The modelling error in the standard constitutive equation is significant for the thin 
walled angle cross sections in Fig. 1. The shear and torsion modes are connected in the 
refined constitutive equation unless / 1t L , whereas the connection does not exist in the 
standard constitutive equation. Fig. 4 shows the warping modes for α 1/ 4  and ν 0.3 . 
The out-of-plane warping modes are also in this case εx , εy , and κz . Although not obvious 
from the figure, εz , κx , and κy  are planar warping modes due to the Poisson effect. 

 

Fig. 4 Warping modes for angle cross section. On the first and seconds rows, warping 

modes for εx , εy , εz  and κx , κy , κz , respectively 

Table 3 shows the correction factors as functions of shape α / [0,1] t L . The limit case 
α / 1 t L  corresponds to a solid rectangle discussed in the rectangle cross section 
example with a coordinate system rotated 45°. Comparison of the first row values in 
Table 1 and Table 3 indicates that orientation of the axes does not affect the correction 
factors of a square. Angle cross section has been discussed only in a few references 
although it is quite common in engineering work. The shear correction factors in [12], for 
a relatively thin profile and ν 0.3 , are in good agreement with the values in Table 3. 
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Table 3 Correction factors as functions of shape α / t L  

Shape (α) Shear (κ1) Shear (κ2) Torsion (κ3) Connection (κ4) 

1 0.833 0.833 0.843 0.000 

3/4 0.842 0.829 0.856 0.011 

1/2 0.783 0.813 0.733 -0.072 

1/4 0.572 0.671 0.445 -0.282 

1/16 0.443 0.440 0.276 -0.334 

1/32 0.429 0.423 0.260 -0.330 

5. Concluding remarks  

Dimension reduction, based on the principle of virtual work and a set of kinematical and 
kinetic assumptions, is the common framework for the derivation of engineering models 
like beam, plate and shell. The consistent method has freedom only in the assumptions 
used and therefore any improvement is necessarily related with these. In the application 
here, the kinematic assumption of the standard Timoshenko beam model was modified 
by a warping displacement part and the kinetic assumption of the standard Timoshenko 
beam model was omitted. The warping modes were treated as unknown functions to be 
solved from a variational problem implied by the principle of virtual work. Additional 
kinematic assumptions in Eq (9) was used to extend St. Venant’s theory of uniform 
torsion to generic loading of a beam.  

Quoting [7] “It is perhaps surprising that even the macroscopic behaviour of a beam with 
a rectangular section made from homogeneous, isotropic, linearly-elastic material is not 
generally understood”. The more recent references indicate that the problem still persist. 
The various non-matching refinements of the beam model are the obvious source for the 
non-matching results for the shear correction factor and discussions are likely to 
continue until some agreement is achieved. The present definition, based on set of 
assumptions, allows discussion of the refined model without e.g. the many technical 
details of solving the warping displacement numerically. Orthogonality of the 
displacement parts in Eq (7) is essential for a unique solution. Representation in Eq (8)  
preserves the idea of having translation and rotation of the cross sections as the 
unknowns of the beam model. Finally, assumption in Eq (9) is an extension of the 
assumption by St. Venant in the theory of uniform torsion. With assumption in Eq (9), the 
standard and refined beam models differ only in the constitutive equations.  

It is noteworthy, that near warping constraints like clamped edges, assumption in Eq (9) 
induces modelling error that cannot be treated in a coherent manner by correction 
factors only. If assumption in Eq (9) is omitted, the outcome is a higher order theory for 
non-uniform warping discussed for thin walled cross sections in [13].  
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