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 In this paper, unsteady squeezing flow of Casson nanofluid between two parallel 
plates embedded in a porous medium and subjected to magnetic field is analyzed. 
The developed systems of partial differential equations for the fluid flow models 
are converted to ordinary differential equations through suitable similarity 
variables. The obtained ordinary differential equation is solved using method of 
matched asymptotic expansion. The accuracies of the approximate analytical 
method for the small and large values of squeezing numbers are investigated. Good 
agreements are established between the results of the approximate analytical 
method and the results numerical method using fourth-fifth order Runge-Kutta-
Fehlberg method. Thereafter, the developed approximate analytical solutions are 
used to investigate the effects of pertinent flow parameters on the squeezing flow 
phenomena of the nanofluids between the two moving parallel plates. The results 
established that the as the squeezing number and magnetic field parameters 
decreases, the flow velocity increases when the plates come together. Also, the 
velocity of the nanofluids further decreases as the magnetic field parameter 
increases when the plates move apart. However, the velocity is found to be directly 
proportional to the nanoparticle concentration during the squeezing flow i.e. when 
the plates are coming together and an inverse variation between the velocity and 
nanoparticle concentration is recorded when the plates are moving apart.  It is 
hope that this study will enhance the understanding the phenomena of squeezing 
flow in various applications.  

© 2018 MIM Research Group. All rights reserved 
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1. Introduction 

The flow characteristics of fluid between two parallel plates have attracted many research 
interests. This is due to their several applications in engineering such as foodstuff 
processing, reactor fluidization, moving pistons, chocolate fillers, hydraulic lifts, electric 
motors, flow inside syringes and nasogastric tubes, compression, and injection, power 
transmission squeezed film, polymers processing etc. In such fluid flow applications and 
processes, the analysis of momentum equation is very essential. Following the pioneer 
work and the basic formulations of squeezing flows under lubrication assumptions by 
Stefan [1], there have been increasing research interests and many scientific studies on 
these types of flow. In a past work over some few decades, Reynolds [2] analyzed the 
squeezing flow between elliptic plates while Archibald [3] investigated the same problem 
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for rectangular plates. The earlier studies on squeezing flows were based on Reynolds 
equation which its insufficiencies for some cases have been shown by Jackson [4] and Usha 
and Sridharan [5]. Moreover, the nonlinear behaviours of the flow phenomena have 
attracted several attempts and renewed research interests aiming at properly analyzing 
and understanding the squeezing flows [5-14].   

Casson fluid is a non-Newtonian fluid first invented by Casson in 1959 [15, 16].  It is a shear 
thinning liquid which is assumed to have an infinite viscosity at zero rate of shear, a yield 
stress below which no flow occurs, and a zero viscosity at an infinite rate of shear [17]. It 
is based on the structure of liquid phase and interactive behaviour of solid of a two-phase 
suspension. It has ability to capture complex rheological properties of a fluid, unlike other 
simplified models such as the power law [18] and second, third or fourth-grade models 
[19]. The non-linear Casson’s constitutive equation has been found to describe accurately 
the flow curves of suspensions of pigments in lithographic varnishes used for preparation 
of printing inks. In particular, the Casson fluid model describes the flow characteristics of 
blood more accurately at low shear rates and when it flows through small blood vessels 
[20]. So, human blood can also be treated as a Casson fluid in the presence of several 
substances such as fibrinogen, globulin in aqueous base plasma, protein, and human red 
blood cells. Some famous examples of the Casson fluid include jelly, tomato sauce, honey, 
soup, concentrated fruit juices etc. Concentrated fluids like sauces, honey, juices, blood, 
and printing inks can be well described using the Casson model. Many researchers [21-30] 
studied the Casson fluid under different boundary conditions. Some find the solutions by 
using either approximate methods or numerical schemes and some find its exact analytical 
solutions. The solutions when the Casson fluids are in free convection flow with constant 
wall temperature are also determined. On the other hand, the flow behaviours of the 
Casson fluid in the presence of magnetic field and heat transfer is also an important 
research area. Therefore, Khalid et al. [31] focused on the unsteady flow of a Casson fluid 
past an oscillating vertical plate with constant wall temperature under the non-slip 
conditions. Application of Casson fluid for flow between two rotating cylinders is 
performed in [32]. The effect of magnetohydrodynamic (MHD) Casson fluid flow in a lateral 
direction past linear stretching sheet was explained by Nadeem et al. [33]. 

In the past and recent studies, different numerical and analytical approximate methods 
have been adopted to analyze the nonlinearity in the flow process [1-64]. It could be stated 
that the past efforts in analyzing the squeezing flow problems using approximate analytical 
methods have been largely based on the applications homotopy analysis method (HAM), 
Adomain decomposition method (ADM), differential transformation method (DTM), 
variational iteration method (VIM), variation of parameter method (VPM), optimal 
homotopy asymptotic method (OHAM) etc. However, the determination of the included 
unknowns (that will satisfy the second boundary conditions) accompanying the 
approximate analytical solutions of these methods in analyzing the nonlinear problems 
increases the computational cost and time. Further, numerical schemes are used for the 
determination of the unknown included parameters. Practically, this attests that the 
methods (HAM, ADM, VIM, VPM, DTM, OHAM, DJM, and TAM) can be classified as semi-
analytical methods rather than pure approximate analytical methods such as regular, 
singular and homotopy perturbation methods. Also, these methods (HAM, ADM, VIM, VPM, 
DTM, OHAM, DJM and TAM) traded off relative simplicity and low computational cost for 
high accuracy as compared to the perturbation methods. Indisputably, the relatively 
simple, low cost, highly accurate and total analytic method is still required in analyzing the 
process and nonlinear equations.  
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The relative simplicity and low computational cost have made perturbation methods to be 
widely applied in nonlinear analysis of science, non-science and engineering problems. 
Although, the validities of the solutions of the traditional perturbation methods are limited 
to small perturbation parameters and weak nonlinearities, there have been various 
attempts in recent times to overcome these deficiencies [65-72]. Therefore, over the years, 
the relative simplicity and high accuracy especially in the limit of small parameter have 
made perturbation methods interesting tools among the most frequently used 
approximate analytical methods. Although, perturbation methods provide in general, 
better results for small perturbation parameters, besides having handy mathematical 
formulations, they have been shown to have good accuracies, even for relatively large 
values of the perturbation parameter [65-72]. In the class of the perturbation methods, the 
method of matched asymptotic expansion (MMAE) is mostly used to determine a uniform 
and accurate approximation to the solution of singularly perturbed differential equations 
and to find global properties of differential equations. Moreover, to the best of the author’s 
knowledge, such perturbation method has not been used for the analysis of flow under 
consideration. Therefore, in this paper, method of matched asymptotic expansion is used 
to analyze the magnetohydrodynamic squeezing flow of Casson nanofluid between two 
parallel plates. The developed analytical solutions are used to study the effects of various 
parameters on the squeezing flow between two parallel plates. 

2. Model Development and Analytical Solutions 

Consider a Casson nanofluid flowing between two parallel plates placed at time-variant 
distance and under the influence of magnetic field as shown in the Fig. 1. It is assumed that 
the flow of the nanofluid is laminar, stable, incompressible, isothermal, non-reacting 
chemically, the nano-particles and base fluid are in thermal equilibrium and the physical 
properties are constant. The fluid conducts electrical energy as it flows unsteadily under 
magnetic force field. The fluid structure is everywhere in thermodynamic equilibrium and 
the plate is maintained at constant temperature.  

 

Fig. 1. Model diagram of MHD squeezing flow of nanofluid between two parallel plates 
embedded in a porous medium 

Consider a Casson nanofluid flowing between two parallel plates placed at time-variant 
distance and under the influence of magnetic field as shown in the Fig. 1. It is assumed that 
the flow of the nanofluid is laminar, stable, incompressible, isothermal, non-reacting 
chemically, the nano-particles and base fluid are in thermal equilibrium and the physical 
properties are constant. The fluid conducts electrical energy as it flows unsteadily under 
magnetic force field. The fluid structure is everywhere in thermodynamic equilibrium and 
the plate is maintained at constant temperature.  
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Using the rheological equation for an isotropic and incompressible Casson fluid, reported 
by Casson [15,16], is 

0     (1a) 
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(1b) 

where τ is the shear stress, τo is the Casson yield stress, μ is the dynamic viscosity,  is the 

shear rate, π = eijeij and eij is the (i,j)th component of the deformation rate, π is the product 
of the component of deformation rate with itself, πc is a critical value of this product based 
on the non-Newtonian model, μB the is plastic dynamic viscosity of the non-Newtonian fluid 
and py is the yield stress of the fluid. The velocity as well as the temperature is functions of 
y, t only. Following the assumptions, the governing equations for the flow are given as 
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where  

 1nf f s        (5a) 
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and the magnetic field parameter is given as  
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1
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(6) 

Under the assumption of no-slip condition, the appropriate boundary conditions are given 
as 
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On introducing the following dimensionless and similarity variables 
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One arrives at 
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Alternatively, Eq. (9a) can be written as it can be  
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(9b) 

 

with the boundary conditions  

0, 0, 0f f     

(10) 
1, 1, 0f f     

The physical properties of the copper nanoparticles, pure water and kerosene as the base 
fluids are shown in Table 1. 

Table 1: Physical properties of copper nanoparticles, water and kerosene 

 Density (kg/m3) Dynamic viscosity(kg/ms) 
Pure water 997.1 0.000891 
Kerosene 783.0 0.001640 

Copper 8933.0 - 

3. Method of Matched Asymptotic Expansion  

For small injection and suction at the walls where the permeation Reynolds number is 
small, the above Eq. (9) can easily be solved using regular perturbation method. It can 
easily be shown using the regular perturbation method (RPM) that the series solution of 
Eq. (9), in the absence of magnetic field under a non-porous medium is given as  
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We can also expressed the solution in Eq. (10a) as 
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(11b) 

However, for large values of permeation Reynolds number, the solution of the regular 
perturbation method breaks down. This is because the problem becomes a singular 
perturbation problem. In order to obtain an analytical solution that is uniformly valid for 
the whole length of flow, a singular perturbation method, method of matched asymptotic 
expansion is applied in this work.  

Integrating Eq. (9), one arrives at 
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where o  is space-invariant parameter. 

For the purpose of establishing the outer and inner expansions of Eq. (12) subject to the 
boundary conditions of Eq. (10), Eq. (12) is divided by “Re” to have 
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For ease of present analysis, Eq. (14) can be re-written as  
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Since ε is taken as the small perturbation parameter, it turns out that
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 will not disappear in the limiting case as 0.   

Since the small perturbation parameter multiplies the highest derivatives as shown in 
Eq.(15), then the above problem in Eq. (15) is a singular perturbation problem. Method of 
matched asymptotic expansion is adopted in the present study to provide an approximate 
analytical solution to the singular perturbation method. The procedures are given as 
follows.  

 

3.1 The Outer Solution 

Assuming that the outer solution takes the form of a series 

1 3

2 2
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and 
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where the coefficients i  will be determined by matching the outer solutions with the 

inner solutions. 

Substituting Eq. (16) into Eq. (15), after equating the same power of the coefficient ε, one 
arrives at: 
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With the boundary conditions 
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It can easily be shown that the solutions of Eqs. (18a-d) using the above boundary 
conditions in Eq. (18) are 
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Substituting Eq. (19) into Eq. (15) shows that the outer solution of Eq. (15) is given as 
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The above outer solution given in Eq. (21) is only valid in the region between the edge of 
the boundary layer and the center distance between the plates 

3.2 The Inner Solution 

The inner solution can be developed by applying a stretching transformation 

 
1

21  


   , which implies that  

1

21    
(22) 

Substituting Eq. (22) into Eq. (15), gives 

      
3 1 1 3

2 22 2 2 22 1 2Re z z z Re z z zz z Re                   (23) 

Consequently, the inner boundary conditions are given as 

   0 0, 0 0z z   (24) 

where  

3

2 2
1

M
Da

 
 

  
 

and  the “dot” shows that the derivative is with respect to τ.   
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One can assume an inner solution of the form that satisfies the boundary conditions,  

 
1

2

0

1 ( )
n

n

n

f z  




   (25) 

1

02
0 0: z z





    (26a) 
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1 1 0: z z e e  

   
  

 
    
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 (26b) 
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(26c) 

The boundary conditions for these inner solutions are given as: 

0 1 2 0 1 2(0) (0) (0) ... (0) 0, (0) (0) (0) ... (0) 0n nz z z z z z z z           (27) 

The solutions of Eq. (26a), (26b) and (26c) using the boundary conditions in Eq. (27) are 
given as 

 0
0 1z e 




    (28a) 
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(28b) 
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                


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2e 



 
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(28c) 

On substituting Eqs. (28a-28c) into Eq. (25), gives the second-order inner solution which 
is valid in the boundary layer region as 
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(29) 

Alternatively, Eq. (29) can be expressed as 
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

 

(30) 

3.2 Matching criteria  

The final complete solution can be established by matching the outer solutions with the 
inner solutions at the edge of the boundary layer i.e. by imposing continuity between the 

solutions at different scales. This is done to determine the constants or the coefficients i  

in the outer solution. Expressing the outer solution in terms of the inner variable τ and 
matching it with the inner solution as    gives 

0 1 2 2

1 1
1, , 1  

 
     (31) 

Therefore, the outer solution can be written as 

 
1

2
0 2

1 1
1 ...f     

 

  
      

  

 (32) 

The complete solution is given by Eqs. (30) and (32). It should be noted the inner solution 
given by Eq. (30) is valid even outside the boundary layer region i.e. it is uniformly valid 
throughout the region of 0 < η <1. 

Another physical quantity of interest in this analysis is the skin friction coefficient, which 
can be expressed as 
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Using the dimensionless variables in Eq. (8), the dimensionless form of Eq. (33) is given as 

 
   

2
2.5

2

1
1 1 1

1
f
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 (34) 

It should be noted that developed ordinary non-linear differential equation in Eq. (9b) 
together with the boundary conditions in Eq. (10) was also solved using shooting method 
coupled with Runge-Kutta-Fehlberg method. The Runge–Kutta–Fehlberg method is an 
embedded method from the Runge-Kutta family. In the method, the identical function 
evaluations are used in conjunction with each other to create methods of varying order 
and similar error constants. By performing one extra calculation, the error in the solution 
can be estimated and controlled by using the higher-order embedded method that allows 
for an adaptive step-size to be determined automatically. The Runge-Kutta-Fehlberg is 
currently the default method in GNU Octave's ode45 solver. 

4. Results and Discussion 

For the purpose of demonstrating the accuracy of MMAE and RPM, Tables 1-3 show the 
comparisons of results of the perturbation methods with the results of the numerical 
methods for different values of permeation Reynolds and Hartmann numbers. In the 
perturbation methods, it could be established that there is no additional computational 
cost in the determination of the coefficients or constants of the outer solution. This shows 
that the cost of computation of approximate analytical solution using the perturbation 
methods is lower than using the other approximate analytical methods. Although, the 
solutions of perturbation methods depend on small parameters, its high accuracy within 
the vicinity of the small perturbation parameters is well established. 

https://en.wikipedia.org/wiki/Runge-Kutta_methods
https://en.wikipedia.org/wiki/Adaptive_Stepsize
https://en.wikipedia.org/wiki/GNU_Octave
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Table 2: Comparison of results of flow for large squeezing number in the absence of magnetic 
field 

f Squeezing S= 101 M=0, 1/Da=0 

η NM MMAE Residue 

0.0 0.00000 0.00000 0.00000 

0.1 0.16377 0.16414 0.00037 

0.2 0.32193 0.32254 0.00061 

0.3 0.46995 0.47078 0.00083 

0.4 0.60424 0.60523 0.00099 

0.5 0.72190 0.72292 0.00102 

0.6 0.82063 0.82154 0.00091 

0.7 0.89871 0.89938 0.00067 

0.8 0.95498 0.95535 0.00037 

0.9 0.98878 0.98890 0.00012 

1.0 1.00000 1.00000 0.00000 

 

Table 3: Comparison of results for small squeezing number in the absence of magnetic field 

f     Squeezing S = 0.5,  M=0, 1/Da=0                          Squeezing   S = 1.5, M=0, 1/Da=0 

η NM MMAE Residue NM MMAE Residue 

0.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

0.2 0.31707 0.29170 0.02537 0.31609 0.29880 0.01720 

0.4 0.59972 0.57140 0.02832 0.59818 0.57410 0.02408 

0.6 0.81886 0.79940 0.01946 0.81747 0.80190 0.01557 

0.8 0.95526 0.95690 0.01640 0.95430 0.95800 0.00370 

1.0 1.00000 1.00000 0.00000 1.00000 1.00000 0.00000 

The results for small and large values of squeezing number are shown in Tables. It could 
be depicted from the Tables that for small value of squeezing number, the difference 
between the results of the numerical method (NM) and that of regular perturbation 
method (RPM) decreases as the squeezing number decreases. Additionally, it is found that 
the approximate analytical solutions using RPM are practically equivalent to the exact 
solution for sufficiently small │S│. However, regular perturbation solution becomes less 
reliable and breaks down when the perturbation parameter, S becomes large i.e. the 
asymptotic error increases as value of the squeezing number increases. This therefore 
shows that the accuracy of the RPM is commensurate with the smallness of squeezing 
number.  From the analysis, it is established that the solution of the RPM is a fair 
approximation to the solution of the NM for -5 ≤ S ≤ 5. It should be pointed out that the 
asymptotic solutions deteriorate when the preceding term is of the same order as 
proceeding term. i.e. the perturbation solution breaks downs when second term in the 
asymptotic solution is of the same magnitude with the first term or when the third term in 
the solution is quantitatively the same as the second term.  Although, the method of 
matched asymptotic expansion gives accurate results for the large values of the 
permeation squeezing number, it was found that its analytical solution breaks down when 
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the perturbation parameter, S, is no longer large. Consequently, the error between the NM 
and MMAE becomes increasing large when S is not large enough for the singular 
perturbation solutions.  

  

Figure 2a Variation of f(η) with the flow 
length 

Figure 2b Variation of f’(η) with the flow 
length 

For the value of nanoparticle parameter value, ϕ = 0.15, Figs. 2 and 3 depict the pattern of 
the flow behavior of the fluid. The figures show that the decrease in the axial velocity of the 
fluid near the wall region causes an increase in velocity gradient at the wall region. Also, 
because of the conservativeness of the mass flow rate, the decrease in the fluid velocity 
near the wall region is compensated by the increasing fluid velocity near the central region.  

 
 

Figure 3 Effects of magnetic number on the 
velocity of the fluid 

Figure 4 Effects of Darcy number on the 
velocity 
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Figure 5 Effects of Squeezing number on the 
velocity 

Figure 6 Effects of nanoparticle fraction on 
the velocity 

 

Figure 7 Effects of Casson fluid parameter on the velocity         

Fig. 3 which shows the effect of increasing magnetic number or Hartmann parameter (M) 
on the flow characteristics of the fluid. It is observed that at increasing values of M, the 
velocity decreases in the range of 0 ≤ η ≤ 0.5 and then increases in the range 0.5 < η  ≤ 1.  
The flow response to the presence of magnetic field is due to the Lorentz force created by 
the magnetic field which retards the fluid motion at boundary layer during the squeezing 
flow i.e. when the plates are coming together. It should be noted that during the squeezing 
flow, especially when the plates are very close to each other, then the flow together with 
retarding Lorentz force creates adverse pressure gradient. Whenever such forces act over 
a long time then there might be a point of separation and back flow occurs.  The flow 
velocity of the nanofluids further decreases as the magnetic field parameter increases 
when the plates move apart. The flow behaviour when the plates move apart are depicted 
in the figure. This behaviour is as a result of a vacant space occurs and in order not to 
violate the law of conservation of mass, the fluid in that region moves with high velocity 
and consequently, an accelerated flow is observed.  

Effects of Darcy number on the flow pattern of the Casson nanofluid between the two 
parallel plates is portrayed in Fig. 4. The figure displays an opposite trend to that of the 
squeezing number effects on the flow. It could be seen from the figure that as the Darcy 
number increases, the velocity increases in the range of 0 ≤ η ≤ 0.5 and then decreases in 
the range 0.5 < η  ≤ 1.  
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Fig. 5 displays the effects of squeezing number on the flow behavior of the fluid. It is clear 
from the figure that as the squeezing number increases, the velocity decreases in the range 
of 0 ≤ η ≤ 0.5 and then increases in the range 0.5 < η  ≤ 1.  Effect of nanoparticle fraction on 
the fluid velocity is depicted in Fig. 6. The result shows that as the solid volume fraction of 
the fluid increases the velocity decreases in the range of 0 ≤ η ≤ 0.5 and then increases in 
the range 0.5 < η  ≤ 1. This is because as the nanoparticle volume increases, more collision 
occurs between nanoparticle and particles with the boundary surface of the plates and 
consequently the resulting flow retardation which decreases the fluid velocity near the 
boundary layer. The flow behaviour of the Casson nanofluid to increasing Casson fluid 
parameter is shown in Fig. 7. The figure depicts the effects of Casson fluid parameter on 
velocity profile of Casson nanofluid. It is obvious from the figure that Casson the parameter 
has influence on axial velocity.  From the figure, it is clear that the magnitude of velocity of 
the fluid decreases in the range of 0 ≤ η ≤ 0.5 and then increases in the range 0.5 < η  ≤ 1 as 
the Casson fluid parameter increases. 

5. Conclusion 

In this work, magnetohydrodynamic squeezing flow of Casson nanofluid between two 
plates has been analyzed using method of matched asymptotic expansion. The obtained 
analytical solutions were used to investigate the squeezing phenomena of the nanofluid 
between the moving plates. Also, the effects of the pertinent flow parameters on the flow 
process were investigated and discussed. The results of the analytical solutions as 
developed in this study are good agreement with the results of the numerical method using 
fourth-fifth order Runge-Kutta-Fehlberg method. The results in this work can be used to 
further the study of squeezing flow in applications such as power transmission, polymer 
processing and hydraulic lifts. 
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Nomenclature 

B(t) Magnetic field strength 
 Hartmann parameter 

P Pressure 

py Yield stress of the fluid 
 Squeeze Parameter 

u Velocity in x direction 

v Velocity in y Direction 
 Dimensionless velocity in y direction 

x Horizontal axis of flow 

y Perpendicular axis to the flow 

 Effective thermal conductivity 

Greek Symbol 

 Effective dynamic viscosity 

 Effective density 

 Dimensionless similarity variable 

τ Hear stress 

τo Casson yield stress  

μ Dynamic viscosity  

  Shear rate 

eij   (i,j)th component of the deformation rate,  

π  Product of the component of deformation rate with 

itself,  

πc critical value of this product based on the non-

Newtonian model,  

μB plastic dynamic viscosity of the non-Newtonian fluid  
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