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 Fe thin films and micro-dots were deposited onto Si (001) and GaAs (100) 
substrates by a combinatorial approach of lithography and e-beam deposition 
techniques. The base pressure in the evaporation chamber was 1x10-6 mbar. 
50nm and 5 nm of Fe was deposited with a deposition rate of 0.1 nm/sec onto Si 
and GaAs, respectively. Continuous films and microdots were covered with 5 nm 
Cr to prevent oxidation. In-plane interfacial uniaxial magnetic anisotropy has 
been observed in micro-dots. Room temperature coercivity of 925 Oe has been 
observed in out-of-plane direction. Effects of strain and interfacial phases on in-
plane uniaxial anisotropy are discussed. Synthesized micro-dots could be the 
building blocks for next-generation magnetoelectronic devices.  
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1. Introduction 

Since the first observation  of epitaxy in Fe films deposited on GaAs substrate, the system 
attracted quite a bit of attention from the research community. [1] This is due to the 
system’s suitability to be used in spin-based magneto-electric device applications 
(spintronic). [2] Among the many hybrid Ferromagnetic/Semiconductor (FM/SC) systems, 
Fe and GaAs have special status not only due to their low lattice mismatch (η=1.4%) [3,4] 
but also due to the high curie temperature of Fe and widely known III-V SC substrate; GaAs. 
Some other possible SC substrate candidates are ZnSe, InAs, AlAs, Ge, etc. 

Even though the spin injection efficiencies are reasonably lower compared to other SC 
devices [5], it has been shown that interface engineering could improve the spin injection 
efficiency of the Fe/GaAs system considerably. [6–8] 

Several difficulties relating to the Fe/GaAs interface are known in the literature. A high-
temperature deposition is necessary to increase the surface mobility but also causes the 
out-diffusion of substrate atoms into the thin film. Ergo, a wide range of deposition 
temperatures from -150 oC (9] to RT [1,10] and even to 580 oC [11] have been applied.  It 
is widely known that out-diffusion of As (Even Ga) into the Fe film is a big problem since 
Fe atoms prefer bonding to As over Ga. [12] Even segregation of As has been observed on 
the surface of the Fe films. [13] Besides, it has been observed that the As segregation 
(surface diffusion) is possible at all temperatures (-15 oC to 175 oC) [10,14–16]  

Filipe et al. [17] showed that the out-diffused As atoms form Fe-Ga-As (ferromagnetic, 
Hc:50 Oe, has a fraction of Fe’s magnetic moment) and Fe2As (antiferromagnetic) at the 
interface, thus leading to an epitaxial Fe/Reacted-phases/GaAs hybrid structure. Several 
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groups tried to experiment with surface temperature, surface termination, and preventive 
buffer layers (Ag [18], Al [9], S [19] and Oxide [20]) to prevent the out-diffusion, but either 
the buffer layer did not prevent the diffusion or caused other problems such as shunting 
the magnetoelectric device or distorting epitaxy.  

The main interest of this work and the subject of ongoing scientific speculations is the 
observed interplay between four-fold bulk like in-plane magnetic anisotropy and two-fold 
uniaxial in-plane magnetic anisotropy. While the latter is dominant in ultrathin Fe films, 
the former is governing the thicker and bulk dimensions. [2] In-plane uniaxial anisotropy 
is believed to be caused by the interfacial phases and/or magnetoelastic strain. Magnetic 
anisotropy will be discussed in detail later on.  

In this study, 5 nm thick Fe micro-dots have been successfully deposited onto the GaAs 
substrate by using the combination of lithography and e-beam evaporation techniques and 
magnetic properties have been discussed. Such microdots could be used in future 
magnetoelectric devices and MEMS. 

2. Experimental  

Fe micro-dots were synthesized by the lift-off process. GaAs (100) and Si (001) wafers 
were used as substrates. Substrates were spin-coated at a speed of 4000 rpm for 45 sec. 
with Az5214e photoresist. The coated resist was baked to harden at 105 oC for 1 min.  Next, 
substrates were subjected to a UV-light (4.5 sec.) through the prefabricated mask with a 
pattern of 100 µm diameter circles decorated 100 µm apart. (Midas/MDA-60MS Mask 
Aligner 4’) UV lights weaken the links of the exposed parts of the resist coating, which was 
later removed by 726 MIF developer. The prepared array of circular holes was filled by 
depositing (Torr E-beam and Thermal Evaporator) 50 nm Fe (deposition rate:0.1 nm/sec) 
(5 nm on GaAs) and 5 nm Cr cover layer (to prevent oxidation). The base pressure in the 
evaporation chamber was 1x10-6 mbar. (Scheme 1) 

2.1 Characterization: 

Morphology analyses of the samples were performed using Jeol JSM 6010. Magnetic 
measurements at room temperature were made with a Quantum Design VSM-SQUID. 
Structural characterizations were performed using Bruker D8 X-ray diffractometer (XRD) 
using a monochromatic Cu Kα X-ray source. 

 

Scheme. 1 Schematic of the experimental process. 
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3. Results and Discussion 

In order to have a base data for the films deposited on GaAs, Fe continuous thin film and 
microdots (100 nm in diameter) with a thickness of 50 nm have been deposited onto Si 
wafers. Indexing of Fe continuous thin film’s on Si and microdots on GaAs XRD scan 
confirmed the presence of ⍺-Fe BCC phase (ICSD 44863; space group I m3m)[21]. (Figure 
1)  

  

Fig. 1 XRD data of Fe continuous thin film on Si (left) and microdots GaAs (right). 

Room temperature hysteresis loops (in-plane) of the Fe continuous films and microdots 
revealed a soft magnetic behaviour (as expected [22]). (Figure 2) Loops have a square 
shape, corresponding to the easy axis of the film.  Minor room temperature coercivities of 
85 Oe and 65 Oe were also observed for Fe continuous films and microdots, respectively. 
Large Mr/Ms ratio of 0.9 and 0.8 has been observed for Fe continuous films and microdots, 
respectively, which is quite important for high-density recording media applications. [23] 

 

Fig. 2 Room temperature hysteresis loops (in-plane) of Fe (a) continuous film, (b) 
microdots deposited on Si wafer. 

After confirming the data for the continuous and micro-dot Fe films on Si wafers, Fe 
microdots were synthesized on GaAs substrates. To reduce the mismatch between Fe and 
GaAs films and increase the quality of epitaxy, the thickness of the micro-dots was limited 
to 5 nm. [1] Scanning electron microscopy (SEM) image of the Fe micro-dots shows that 
the structures were successfully synthesized. (Figure 3) 
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Fig. 3 SEM image of Fe micro-dots. 

As it was stated earlier, the main focus of this work was toward seeing the effect of in-plane 
anisotropy in micro-dots. Ergo, both in-plane and out-of-plane hysteresis loops were taken 
at room temperature. While the loop taken in-plane has the characteristic of two-
phase/magnetic anisotropies behaviour with soft and hard ferromagnetic contributions 
(RT HC=300 Oe), the out-of-plane loop corresponds to the classical hard direction loop with 
a room temperature coercivity of 925 Oe. (Figure 4) The reason behind the shape of the in-
plane loop is the interplay between the two types of magnetic anisotropies; magnetoelastic 
and magneto-crystalline interface anisotropy. Whilst the latter is of interfacial origin thus 
due to the bonding of the Fe atoms with As atoms and reconfiguration according to the 
uniaxial symmetry of the substrate surface (surface anisotropy, [24–26]), the former is due 
to the anisotropic strain relaxation throughout the volume (anisotropic in-plane strain)  of 
the thin film starting from compressive stress on the interface due to mismatch and later 
transforms to tensile due to the interfacial phase formation (Fe-Ga-As). These two different 
anisotropy effects form the basis of the term uniaxial in-plane magnetic anisotropy, ergo 
the reason behind the behaviour observed in the in-plane hysteresis loop of the Fe 
microdots deposited on GaAs substrate. [2] 

On contrary, the out-of-plane loop is due solely to cubic anisotropy. It should be noted that 
thin-film shape anisotropy forces the magnetization to lie in-plane thus out-of-plane 
direction is hard. [2] It should also be noted that MR/MS ratio lower than 0.5 on in-plane 
and out-of-plane loops could be an indication for uniaxial anisotropy contribution 
produced by internal strains. [27,28] 
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Fig. 4 Room temperature hysteresis loops of Fe microdots deposited on GaAs 
substrate. 

5. Conclusions 

Fe/GaAs hybrid micro-structures were successfully synthesized by a combinatorial 
approach of lithography and e-beam deposition techniques. 50 nm and 5 nm of Fe was 
deposited onto Si (001) and GaAs (100) substrates, respectively. Continuous films and 
microdots were covered with 5 nm Cr to prevent oxidation. XRD scan confirmed the 
presence of ⍺-Fe BCC phase (ICSD 44863; space group I m3m) on Fe continuous films and 
microdots deposited on Si and GaAs substrates, respectively. SEM image showed that the 
microdots (100 µm diameter) were decorated throughout the wafer (100 µm in between 
the microdot disks). Large Mr/Ms ratio of 0.9 and 0.8 has been observed for Fe continuous 
films and microdots deposited on Si substrate, respectively, which is quite important for 
high-density recording media applications. Moreover, minor room temperature 
coercivities of 85 Oe and 65 Oe were also observed for Fe continuous films and microdots 
deposited on Si substrate, respectively. While the loop taken in-plane has the characteristic 
of two-phase/magnetic anisotropies behaviour with soft and hard ferromagnetic 
contributions (room temperature Hc=300 Oe), the out-of-plane loop corresponds to the 
classical hard direction loop with a room temperature coercivity of 925 Oe. In-plane 
uniaxial magnetic anisotropy was observed similar to the a priori observed effects on 
continuous films. The underlying reason for the in-plane uniaxial magnetic anisotropy is 
postulated to be interfacial origin due to the interfacial mixing of Fe atoms and out-diffused 
GaAs substrate atoms (mainly As). In addition to the interfacial effects, anisotropic strain 
distribution causes a uniaxial magnetoelastic anisotropy in-plane. Furthermore, MR/MS 
ratio lower than 0.5 on in-plane and out-of-plane loops could be an indication for uniaxial 
anisotropy contribution produced by internal strains. Fabricated semi epitaxial Fe micro-
dots could be used in magnetoelectronic devices and micro electro mechanic systems by 
further improving the interface quality, thus increasing the spin incision efficiency.    
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