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 Finite element (FE) simplified micro-modeling techniques are commonly used to 
investigate and predict the mechanical behavior of masonry structures because 
they provide a good compromise between accuracy and computational cost. 
These FE techniques generally discretize masonry structural elements into 
expanded masonry units and zero-thickness interface joints of assumed known 
locations. These joints correspond to actual masonry joints and to preferential 
cracking surfaces, which are often placed vertically in the middle of the expanded 
masonry units to simulate the cracking mechanisms that are typically observed 
in masonry bricks and blocks. Three different versions of simplified micro-
models (SMMs) are widely used in the literature to model the response of 
masonry walls and assemblies: SMMs with rigid, elastic, and elasto-plastic 
constitutive models for the expanded masonry units. All SMMs are based on the 
hypothesis that the masonry inelastic behavior and cracking are concentrated 
along the pre-defined zero-thickness interface joints. The hypothesis is often 
satisfied for ordinary masonry, in which masonry units are generally stronger 
than the masonry joints, i.e., mortar and unit-mortar interface. However, this 
hypothesis is not always satisfied for historical masonry with units of irregular 
shapes or for earth block masonry, in which masonry units and masonry joint 
can have similar mechanical properties. This paper highlights the capabilities 
and limitations of SMM techniques by comparing the experimentally-measured 
and numerically-simulated response of ordinary and earth block masonry walls, 
for which well-documented experimental results are available in the literature. 
It is found that SMMs can properly reproduce the mechanical behavior of 
masonry when the masonry units are significantly stronger than the masonry 
joints; however, SMMs produce poor estimates of the mechanical response when 
this hypothesis is not satisfied. This finding highlights the need to develop more 
general FE models to investigate the mechanical behavior of different masonry 
materials and construction techniques, as well as to identify the parameters 
controlling the cracking patterns and the conditions under which SMM 
techniques can be accurately use. 
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1. Introduction 

Over the last three decades, finite element (FE) simplified micro-modeling techniques have 
been commonly employed to investigate the local and global mechanical response of 
masonry structures [1-12]. Simplified micro-models (SMMs) have been used as a 
computationally efficient alternative to detailed micro-models, which require the FE 
discretization of all masonry constituents, i.e., masonry units (bricks or blocks), mortar 
layers, and unit-mortar interfaces, and have been used only for small masonry components 
due to their high computational cost [13–19]. In SMMs, the mortar joint and the two 
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adjacent unit-mortar interfaces (referred to as masonry joints hereinafter) are lumped into 
zero-thickness interfaces (referred to as masonry joint interfaces hereinafter), which 
connect expanded masonry units (with dimensions equal to those of the masonry unit and 
half of the mortar thickness) [20]. In addition, a zero-thickness interface (referred to as 
potential crack interface hereinafter), is vertically placed in the middle of the expanded 
masonry units to simulate the potential cracking mechanism that is often experimentally 
observed in masonry units [20]. Based on the different constitutive models adopted for the 
expanded masonry units, three SMMs are commonly found in the literature, i.e., SMMs with 
rigid (referred to SMM-I hereinafter), elastic (referred to SMM-II hereinafter), and inelastic 
(referred to SMM-III hereinafter) constitutive models for the expanded masonry units.  

Early uses of SMMs did not include potential-crack elements [16,21], which were 
introduced only later to better describe the experimental behavior of unreinforced 
masonry [22,23]. Lourenço and Rots [6] proposed an SMM-II approach in which the 
response of the interface elements was described by a three-surface interface constitutive 
model based on softening plasticity. This constitutive model could simulate shear sliding, 
tensile cracking, and compressive crushing, and was later extended, based on plasticity 
theory, to simulate the cyclic response of masonry structures [10] in many different 
applications [24–31]. Macorini and Izzuddin [4] proposed a three-dimensional two-
surface interface constitutive model that used a co-rotational approach to account for 
geometric nonlinearity. This model has also been widely used for numerical modeling of 
masonry structures [32–34], and has been extended based on a damage-plasticity 
framework to simulate the cyclic behavior of masonry [35]. More recently, Kumar and 
Barbato [5] proposed a new three-dimensional two-surface interface constitutive model 
with improved computational efficiency and robustness. Other SMM-II approaches 
available in literature are based on different interface constitutive models based on 
damage and friction [36–39], elasto-plasticity [2,3,12], damage-plasticity [35,40], 
softening fracture [41], and viscoplasticity [42]. More recently, SMM-I [31] and SMM-III 
approaches [43–46] have been developed to simulate the cyclic behavior of masonry 
systems. Bolhassani et al. [47] also used an SMM-III approach to investigate the nonlinear 
behavior of hollow and partially grouted concrete block masonry walls using a damage-
plasticity traction–separation law for the masonry joint interfaces, and a damage-plasticity 
continuum constitutive model for expanded masonry units. The SMM-I was originally 
introduced to reduce the number of models’ degrees-of-freedom and the corresponding 
computational time; however, subsequent developments of the SMM-I lead to its most 
common use within a discrete element method framework [48–52].  

The major assumption of existing SMMs is that most of the inelastic behavior of a masonry 
wall is concentrated at known locations that can be modeled using interface elements, i.e., 
at the masonry joint and potential crack interfaces [6]. This basic assumption is valid only 
when (1) the geometry of masonry units and mortar joints is regular (i.e., the masonry 
units have a uniform cuboid shape and the mortar layers have uniform thickness), and (2) 
the masonry units are significantly stronger in compression and shear than the masonry 
joints (i.e., for masonry built with fired clay bricks, concrete blocks, or regularly shaped 
stones [11]). However, specific instances exist in which the compressive and shear 
strengths of masonry units is similar to or smaller than those of the masonry joints, e.g., in 
earth block masonry, for which significant cracking through the earth blocks has been 
experimentally observed [53]. To the authors’ knowledge, the only study available in the 
literature that employed SMMs to reproduce the mechanical response of earth block 
masonry did not achieve an accurate match between experimental and numerical results 
when using the experimentally-measured modeling parameters [25]. The same study was 
able to numerically reproduce the experimental results only after modifying the modeling 
parameter values through a numerical parametric study.  
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This paper investigates the capabilities and limitations of different SMMs by comparing 
their relative performance for two different types of masonry, i.e., fired-clay brick (FCB) 
and compressed and stabilized earth block (CSEB) masonry. After describing the different 
SMMs, this paper provides recommendations on constitutive models, FE solvers, and 
discretization requirements for FE SMMs of unreinforced masonry. Appropriate error 
measures are suggested to facilitate this comparison. Two benchmark examples are 
investigated, which correspond to FCB walls and CSEB panels for which well-documented 
experimental results are available in the literature. The FE responses of the different SMMs 
considered in this study are compared with experimental results in terms of predicted 
load-displacement response, strength, initial stiffness, collapse mechanism, computational 
efficiency, and output information. 

2. Research Novelty and Significance 

This paper fills several gaps in knowledge with regard to the use of SMMs to model the 
inelastic response behavior of unreinforced masonry walls. In particular, this study 
investigates the FE modeling of unreinforced masonry walls that do not satisfy the basic 
hypothesis of inelastic behavior concentrated at known locations by providing useful 
information for: (1) selecting constitutive models, FE solvers, and mesh discretization; (2) 
identifying under which conditions different SMMs can be used; and (3) suggesting 
potential development directions for more accurate, robust, and computationally efficient 
FE models of unreinforced masonry walls. To the authors’ knowledge, this paper also 
represents the first rigorous investigation of the performance (in terms of accuracy and 
computational cost) of different SMMs in modeling the inelastic response of earth block 
masonry, which also acknowledges and identifies the inherent limitations of SMM 
approaches applied to earth block construction. 

The present study aims to advance the FE modeling of unreinforced masonry with 
masonry units and masonry joints of similar mechanical properties, e.g., earth block 
masonry. Although this type of masonry is currently uncommon among new constructions, 
it is representative of many constructions with important historical value [54] and has the 
potential to expand into a significant portion of new low-rise buildings because of its 
sustainability, affordability, and safety advantages over other ordinary industrial 
construction materials [55–57]. 

3. Existing Simplified Micro-Modeling Techniques 

The typical FE discretization of an unreinforced masonry wall using SMMs is shown in Fig. 
1. In general, the masonry joint and potential crack interfaces are represented by zero-
thickness interface elements, the response of which is described by a relation between the 

traction vector,  , ,
T

s t
  =σ , and the relative displacement vector,  , ,

T

n s t
u u u=u , in 

which   is the normal stress, s
  is the in-plane shear stress, t

  is the out-of-plane shear 

stresses, nu  is the normal displacement, su  is the in-plane relative shear displacement, and 

t
u  is the out-of-plane relative shear displacement [5]. By contrast, the expanded masonry 

units are modeled using continuum FE elements, the mechanical behavior of which can be 
described by different material constitutive models, i.e., rigid, elastic, and inelastic 
constitutive models, corresponding to SMM-I, SMM-II, and SMM-III, respectively.  

In order to accurately model the masonry’s local and global mechanical behavior, SMMs 
need to account for all major failure mechanisms of masonry under multi-axial stress 
conditions [58–66], i.e.: (a) masonry crushing, (b) diagonal tension cracking of masonry 
units, (c) cracking of masonry joints, (d) failure of masonry joints due to sliding under 
combined normal and shear stress, and (e) cracking of masonry units in direct tension. In 
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SMM-I and SMM-II, all failure mechanisms are modeled through the constitutive model of 
the interface elements used to describe the masonry joint and potential crack interfaces. 
In particular, failure mechanisms (a) through (d), i.e., crushing, unit diagonal cracking, joint 
cracking, and joint sliding, are modeled via the masonry joint interface elements, and 
failure mechanism (e), i.e., unit tensile cracking, is modeled via the potential crack interface 
elements. In SMM-III, failure mechanism (a), i.e., crushing, is modeled via the expanded 
masonry unit elements, failure mechanisms (b) through (d), i.e., unit diagonal cracking, 
joint cracking, and joint sliding, are modeled via the masonry joint interface elements, and 
failure mechanism (e), i.e., unit tensile cracking, is modeled via the potential crack interface 
elements. SMM-I also requires the addition of an auxiliary interface element between the 
rigid expanded masonry units and the interface elements to ensure compatibility under 
large relative displacements among the rigid components [31]. 

 

Fig. 1 Simplified micro-modeling techniques for unreinforced masonry: (a) masonry 
wall, (b) representative volume element of masonry, and (c) SMM representation. 

In this paper, the capabilities and limitations of different SMMs were investigated using 
two benchmark examples representative of FCB and CSEB masonry, for which the SMMs 
were built using ABAQUS 6.14 [67], which is a general-purpose multi-physics commercial 
FE software widely used for unreinforced masonry modeling and simulation 
[3,5,12,31,46]. The accuracy, robustness, and computational efficiency of the different 
SMMs in simulating the structural response of masonry rely upon: (1) the material 
constitutive models used for the interface and expanded masonry unit element; (2) the FE 
solver; and (3) the FE mesh discretization. The selection of material constitutive models, 
FE solvers, and FE mesh discretization is discussed in the following sections. 

3.1. Nonlinear Material Constitutive Models 

SMMs employ nonlinear constitutive models for the interface elements corresponding to 
the masonry joint and potential crack interfaces in all SMMs and for the expanded masonry 
units in SMM-III. For SMM-I and SMM-II, rigid and elastic constitutive model, respectively, 
are used for the expanded masonry units. In this study, the recently developed coupled 
tension-shear interface model (CTSIM) [5] is employed for the interface elements, whereas 
the concrete damaged plasticity model (CDPM) [68,69] is used for the expanded masonry 
units in SMM-III. 

The CTSIM is based on a convex composite failure surface comprising a tension-shear and 
a compression cap failure criterion [5], and requires the following input parameters: 

tensile strength ( )t
f ; initial cohesion ( )0

C ; apparent initial cohesion ( )Q0
C ; initial friction 

angle ( )0
 ; residual friction angle ( )r

 ; initial dilatancy angle ( )0
 ; residual dilatancy 

angle ( )r
 ; mode-I fracture energy ( )I

f
G ; mode-II fracture energy ( )II

f
G ; compressive 
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stress at proportional limit ( )0
 ; peak compressive stress ( )p

 ; intermediate compressive 

stress corresponding to the inflection point in the softening branch ( )m
 ; residual 

compressive yield stresses ( )r
 ; plastic strain at peak compressive stress ( )p

 ; total 

plastic strain at intermediate compressive stress ( )m
 ; and parameter that controls the 

width of the compression cap failure surface in the shear stress axis ( )ss
C . These input 

parameters are derived from the experimental testing of: (1) masonry couplet specimens 

under uniaxial tensile loading, which provide t
f  and I

f
G  [53,70]; (2) masonry triplet 

specimens subjected to direct shear test with different pre-compression loads, which 

provide 0
C , 

Q0
C , 0

 , r
 , 0

 , r
  and II

f
G  [53,58–60]; (3) masonry prism or wallette 

specimens subjected to compression load, which provide 0
 , 

p
 , m

 , r
 , 

p
 , and m

  

[53,71,73]; and (4) masonry wallettes subjected to biaxial compression loads, which 
provide ss

C  [62,63]. The compression cap failure criterion in the CTSIM can be easily 

disabled to better simulate the behavior of the potential crack interfaces, which cannot fail 
in compression in SMMs. Thus, when used in potential crack interfaces, the CSTIM requires 

only the following input parameters: t
f , 0

C , 
Q0

C , 0
 , r

 , 0
 , r

 , I

f
G , and II

f
G . Of these 

parameters, t
f  and I

f
G  are obtained from a tensile test of masonry units [72]; 0

tan , r
tan ,  

0
tan  and r

tan  are assumed equal to 1; and other parameters ( 0
C , 

Q0
C , and II

f
G ) are 

defined as function of t
f  and/or I

f
G [4,5]. 

The CDPM is a continuum, plasticity-based, damage model for concrete and other quasi-
brittle materials such as rocks, mortar, bricks, and ceramics [68,69]. This model requires 
the following input parameters: compressive stress-plastic strain curve, tensile stress-

plastic strain curve, dilation angle ( )c
 , eccentricity ( )c

e , ratio of bi-axial compressive 

strength and uniaxial compressive strength ( )bc
 , ratio of the second stress invariant on 

the tensile meridian and on the compressive meridian ( )c
K , and viscosity parameter ( ) . 

These input parameters are derived from the experimental testing of: (1) masonry unit 
specimens under uniaxial tensile loading [72], which provide the tensile stress-plastic 
strain curve; (2) masonry prism or wallette subjected to compression load [53,71,73], 
which provide the compressive stress-plastic strain curve; and (3) masonry wallettes 
subjected to biaxial loads, which provide c

 , c
e , bc

 , and c
K  [62,63,74]. Typically, the 

parameter   is obtained from calibration of the constitutive model to the experimental 

results used to obtain the other parameters [75]. 

3.2. FE Solver 

The FE solver represents the set of algorithms used to solve the system on nonlinear 
equilibrium equations corresponding to a given FE model [67,76,77]. Three different 
families of FE solvers have been commonly used to simulate the nonlinear structural 
response of masonry structures: (1) implicit static FE solvers [6,28], (2) implicit dynamic 
FE solvers [78,79], and (3) explicit dynamic FE solvers [4,31,43]. The implicit static FE 
solvers are based on an iterative method (e.g., the Newton-Raphson method [76,80]) to 
solve the system of nonlinear equilibrium equations corresponding to a quasi-static 
loading (i.e., without inertial effects) applied incrementally. The implicit dynamic FE 
solvers use the same type of iterative algorithms for the system of nonlinear equilibrium 
equations as the implicit static FE solvers in conjunction with a time-stepping scheme that 
accounts for inertial forces, e.g., the Newmark-beta family of algorithms [76,81]. The 
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explicit dynamic FE solvers are based on an explicit integration algorithm (e.g., a central 
difference time integration or a predictor-corrector algorithm [82]) to extrapolate the 
nonlinear response of the structural model under consideration by using sufficiently small 
time increments to avoid instability (i.e., without using the equation of motion of the 
current time step to determine the current time step displacement) [67,77]. Implicit 
methods can be conditionally or unconditionally stable [67,76], whereas explicit methods 

are always conditionally stable with a maximum critical time step ( )min
crit e d

t L C =  

[67,77], in which eL  denotes the characteristic length of any FE within the model, and d
C  

denotes the dilatational wave speed of the material in the given FE. In addition, static 
solvers can be used only for problems in which inertial effects can be neglected, whereas 
dynamic solvers can be used for problems in which inertial effects are significant or 
negligible. In fact, implicit static FE solvers used to simulate the mechanical behavior of 
masonry with SMMs could be affected by convergence issues due to the sudden release of 
elastic energy when cracks spread along the masonry joint interfaces and potential crack 
interface [4]. For these problems, dynamic FE solvers have been adopted to balance this 
sudden release of elastic energy through changes in the kinetic and viscous energy [4].  All 
three types of FE solvers are available in the FE software ABAQUS [67]. 

3.3. FE Discretization 

A general SMM requires the full three-dimensional discretization of expanded masonry 
units and interface elements, which in general is very computationally demanding. The 
computational cost of three-dimensional SMMs can be reduced when the loads are applied 
in the plane of a wall by assuming a two-dimensional plane stress condition [20,28]. This 
assumption can provide accurate results for structures with single-wythe masonry walls 
and moderate levels of compressions [28,83]. When this assumption is not satisfied, a 
generalized or kinematic-enriched plane state can be used with good approximation for 
nonlinear analysis of masonry subjected to high levels of compressions [83,84].   

A mesh sensitivity analysis must also be performed to ensure a good compromise between 
accuracy (i.e., convergence of FE response to a unique solution) and computational cost for 
a given SMM. For unconditionally stable implicit (static and dynamic) FE solvers, the mesh 
sensitivity analysis alone is sufficient to determine an acceptable FE mesh size [67]. 
However, for explicit dynamic FE solvers that are only conditionally stable, the maximum 
stable time step depends on both the mesh size and the material properties of the FE 
model. Therefore, the mesh sensitivity and the determination of the stable time step must 
be performed simultaneously for SMMs developed using explicit dynamic FE solvers. The 
identification of the coarser converged mesh and the corresponding maximum stable time 
step is needed to ensure the best compromise between accuracy, computational costs, and 
stability of the FE model. 

In the investigation presented in this paper, plane stress conditions were assumed for all 
the SMMs because the two benchmark examples considered in this study (i.e., FCB and 
CSEB masonry walls) were single-wythe walls and these walls were not subjected to 
extreme compression stress. Therefore, the two-dimensional plane stress assumption can 
provide reasonably accurate results while considerably reducing the computational cost 
[28]. 

4. Performance Comparison of FE Response Analyses Using SMMs 

The performance of different SMMs can be expressed in terms of the comparison between 
the experimentally-measured and numerically-estimated force-displacement responses, 
deformed shapes, stress distributions, and strain distributions. Often, a few global 
response parameters such as peak strength and initial stiffness are sufficient for design 
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purposes; however, these parameters need to be integrated at least with the information 
regarding the failure mode identified by the FE model. In this study, the FE response are 
compared with the experimental results by estimating the following point-wise relative 

error in the peak load ( )max
P , initial stiffness ( )k , and displacement at failure ( )f

 : 

FE exp

exp

X

X X

X


−
=                                                                                                                                                (1) 

where FE
X  = max

P , k , or f
  obtained from a FE analysis. When multiple nominally-

identical replicas are experimentally tested, 
exp

X is taken as the average of the 

corresponding experimentally-measured values. In this study, the initial stiffness is 
defined as the secant stiffness evaluated at 1/10 of the average experimentally-measured 
peak load. Furthermore, the accuracy of the different FE models in estimating the force-
displacement response curve is evaluated using three different global relative errors, i.e., 

the mean error ( )mean
,  root mean squared error ( )RMS

 , and mean absolute error ( )abs
 , 

which are defined as follows: 

( )( ) ( )

FE exp,

mean ( )
1 1 exp,

1 1 js
i inn

j

i
j is j j

P P

n n P


= =

 −
 =
  

                                                                                                      (2) 

2
( ) ( )

FE exp,

RMS ( )
1 1 exp,

1 1 js
i inn

j

i
j is j j

P P

n n P


= =

 
 − =  

     

                                                                                                 (3) 

( ) ( )

FE exp,

( )
1 1 e

abs

xp,

1 1 js
i inn

j

i
j is j j

P P

n n P


= =

 −
 =
  

                                                                                                          (4) 

in which ( )
exp,

i

j
P  and ( )

FE

i
P  denote the experimentally-measured and numerically-simulated 

values, respectively, of the reaction force for a given masonry wall measured at a given 

level of displacement, ( )i
 ; 

j
n  denotes the number of recorded displacement levels for the 

j-th experimental sample, in which the maximum displacement level corresponding to the 
experimental displacement at failure; and sn  denotes the number of experimental 

specimens. 

Another comparison criterion is provided by the computational efficiency of FE models 
with similar accuracy in reproducing the experimental behavior of masonry. The 
computational efficiency of different SMMs is expressed hereinafter in terms of 
computational time ratio (CTR), which is defined as the ratio of the computational CPU 
time corresponding to two different models and obtained using the same computer for a 
given FE response simulation.  

5. Benchmark Example #1: Fired-Clay Brick (FCB) Masonry 

The first benchmark example considered in this study consists of a series of FCB masonry 
shear walls, tested by Vermeltfoort and Raijmakers [85,86], in which the masonry units 
are considerably stronger than the mortar and the unit-mortar interfaces. For this type of 
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masonry, most of the inelastic behavior is expected to be concentrated at the masonry 
joints.  

5.1. Description of Experimental Tests 

The masonry shear walls considered in this example had a width-to-height ratio 
approximately equal to one, with dimensions 990 mm (length) × 1000 mm (height) × 100 
mm (thickness). The walls were single-wythe walls consisting of 18 courses, with the 
bottom and top courses clamped to steel beams, as shown in Fig. 2(a). The masonry shear 
walls comprised wire-cut solid clay bricks with dimensions of 210 mm × 52 mm × 100 mm, 
and mortar layers of thickness equal to 10 mm. The experimental test involved a uniformly 

distributed normal pressure ( )p  applied vertically at the top of the walls, followed by a 

monotonically increasing horizontal displacement H
( )  applied to the top steel beam, 

while the bottom boundary was fixed. 

 

Fig. 2 FCB masonry: (a) shear walls and (b) SMM discretization of the shear wall. 

 

 

Fig. 3 Experimental crack patterns of the different FCB unreinforced masonry shear 
walls. 

The FCB unreinforced masonry shear walls were experimentally tested for three different 
vertical pressures, i.e., wall SW030 (with two specimens SW030a and SW030b) was 
subjected to a constant pressure equal to 0.30 MPa, wall SW121 to a constant pressure 
equal to 1.21 MPa, and wall SW212 to a constant pressure equal to 2.12 MPa. The 
experimental failure patterns for the different walls are shown in Fig. 3. All the walls 
exhibited very similar experimental failure mechanisms and as expected, most of the 
cracking and inelastic behavior was concentrated at the masonry joints. During the 
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application of the monotonically increasing horizontal displacement, horizontal tensile 
cracks developed first at the bottom and top of the wall in the bed joints at earlier loading 
stages and were followed by diagonal stepped cracks. Finally, the crushing of the toes of 
the masonry and the tensile cracking in the middle of some masonry units led to the overall 
failure of each shear wall. 

5.2. Description of SMMs Developed for the FCB Unreinforced Masonry 

Fig. 2 (b) shows the SMM discretization of the FCB unreinforced masonry shear walls. The 
FE models were constructed using two-dimensional elements under the assumption of 
plane stress. The masonry joints and potential cracks interface were modeled by using a 4-
node two-dimensional cohesive element, i.e., the COH2D4 element in ABAQUS 6.14 [67], 
and the expanded masonry units (having dimensions 220 mm × 62 mm) were modeled 
using a 4-node bilinear plane stress quadrilateral element with reduced integration and 
hourglass control, i.e., the CPS4R element in ABAQUS 6.14 [67]. Auxiliary interface 
elements were not needed in the SMM-I because the shear deformations in the masonry 
joints and potential crack interfaces were sufficiently small [31].  

The material properties used for developing different SMMs were obtained from existing 
experimental results on tension, shear, and compression tests available in the literature 
[85,86]. An elastic modulus b

E  =16,700 MPa and a Poisson ratio b
  = 0.15 were used for 

the expanded masonry units in SMM-II and SMM-III. The elastic and inelastic properties of 

the masonry joint interface for the different SMMs are given in Table 1, where b

n
k  and b

s
k  

denote the normal and shear stiffness, respectively, of the masonry joint interfaces 

corresponding to the bed masonry joints; and h

n
k  and h

s
k  denote the normal and shear 

stiffness, respectively, of the masonry joint interfaces corresponding to the head masonry 
joints. The compressive input parameters given in the Table 1, i.e., 0

 , 
p

 , m
 , r

 , 
p

  and 

m
 , were used to describe the stress-strain curve for the expanded masonry units in SMM-

III based on a hardening/softening constitutive law used for the compression cap failure 
criterion of the CTSIM [5]. The values of the other parameters needed to fully define the 
CDPM for the expanded masonry units in the SMM-III were taken from the literature 

[74,75,87] and are: . c
 .= 38°, c

e = 0.1, bc
 = 1.16, c

K  = 0.67, 5
8.5 10 . −

=   The properties 

of potential crack interfaces used in the different SMMs are given in Table 2, where n
k  and 

s
k  are the normal and shear stiffness, respectively, of the potential crack interfaces. 

5.3. Selection of FE Solver and Mesh Size 

The implicit static, implicit dynamic, and explicit dynamic FE solvers, which are available 
in the FE software ABAQUS [67], were compared in terms of accuracy and computational 
effort for the SMM-IIs of the FCB masonry shear wall SW030. In the FE model based on the 
implicit static solver, all the degrees of freedoms were restrained at all the nodes at the top 
edge of the model, and a monotonically increasing horizontal displacement was applied on 
the side of the top course of the FE model while keeping the top edge of the FE model 
vertically fixed. A general procedure for static loading based on an incremental-iterative 
globally convergent Newton-Raphson method with the line search technique was used in 
ABAQUS [67]. In addition, an automatic load step increment technique was adopted for 
efficient and robust simulation of the response of the different FE models with initial, 
minimum, and maximum normalized increment sizes equal to 1×10-4, 1×10-9, 5×10-4, 
respectively. In the FE model based on the implicit dynamic and explicit dynamic FE 
solvers, all the degrees of freedoms were restrained at the bottom edge of the model, and 
a fixed value of velocity V = 0.1 mm/s was applied at all nodes of the top edge of the wall. 
In addition, zero acceleration was assigned to the top edge of the model during the analysis 
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to ensure a linear variation with time of the top wall displacements. A density b
  = 1.9×103 

kg/m3 and mass-proportional damping, corresponding to a damping ratio  = 5%, were 
used for the solid elements to represent inertia and damping effects. For the implicit 
dynamic FE solver, a general implicit dynamic procedure was used, which was based on an 
incremental-iterative version of the globally convergent Newton-Raphson method [67] 
and an automatic load step increment having minimum normalized increment sizes equal 
to 5×10-4. For the explicit dynamic FE solver, an explicit dynamic procedure based on the 
central-difference time integration was employed, with the critical time step equal to 3.3 × 
10-6 s. The FE simulations were performed by increasing the applied displacement until 
the FE models became numerically unstable (i.e., due to collapse of the shear wall) or 
reached a 5.0 mm displacement at the top of the wall. 

Table 1. Properties of masonry joint interfaces (SMM-I, SMM-II, and SMM-III) and inelastic 
compressive properties for the expanded masonry units (SMM-III) of the FCB unreinforced 
masonry shear walls. 

Fig. 4 shows the experimental and numerical load-displacement responses and the CTR of 
the SMM-II corresponding to the different FE solvers and same mesh discretization. The 
CPU time for the explicit dynamic solver is used as reference (i.e., CTR = 1.0). Table 3 
reports the different error estimates. All the FE solvers were able to simulate the behavior 
of the FCB masonry shear wall SW030 up to failure, and the FE load-displacement 
responses corresponding to the different solvers are similar. The value of RMS

  and abs
  for 

the different FE solvers are almost identical, varying between 8.22% and 8.61% 

Properties 
SMM-I  SMM-II  SMM-III 

SW030 SW121 SW212  SW030 SW121 SW212  SW030 SW121 SW212 
b

n
k  (N/mm3) 62.9 78.1 62.9  82 110 82  82 110 82 

b

s
k  (N/mm3) 27.6 35.5 27.6  36 50 110  36 50 110 

h

n
k  (N/mm3) 39.4 63.8 39.4  82 110 82  82 110 82 

h

s
k  (N/mm3) 17.3 29.0 17.3  36 50 110  36 50 110 

t
f  (MPa) 0.250 0.160 0.160  0.250 0.160 0.160  0.250 0.160 0.160 

0
C  (MPa) 0.362 0.232 0.232  0.362 0.232 0.232  0.362 0.232 0.232 

Q0
C  (MPa) 18.125 11.6 11.6  18.125 11.6 11.6  18.125 11.6 11.6 

0
tan  (-) 0.75 0.75 0.75  0.75 0.75 0.75  0.75 0.75 0.75 

r
tan  (-) 0.75 0.75 0.75  0.75 0.75 0.75  0.75 0.75 0.75 

0
tan  (-) 0.001 0.001 0.001  0.001 0.001 0.001  0.001 0.001 0.001 

r
tan  (-) 0.0001 0.0001 0.0001  0.0001 0.0001 0.0001  0.0001 0.0001 0.0001 

I

f
G  (N/mm) 0.018 0.012 0.012  0.018 0.012 0.012  0.018 0.012 0.012 

II

f
G  (N/mm) 0.125 0.050 0.050  0.125 0.050 0.050  0.125 0.050 0.050 

0
  (MPa) 3.50 3.83 3.83  3.50 3.83 3.83  3.50 3.83 3.83 

p
  (MPa) 10.50 11.50 11.50  10.50 11.50 11.50  10.50 11.50 11.50 

m
  (MPa) 5.25 5.75 5.75  5.25 5.75 5.75  5.25 5.75 5.75 

r
  (MPa) 1.50 1.64 1.64  1.50 1.64 1.64  1.50 1.64 1.64 

p
  (-) 0.090 0.090 0.090  0.090 0.090 0.090  0.007 0.007 0.007 

m
  (-) 0.490 0.490 0.490  0.490 0.490 0.490  0.033 0.033 0.033 

ssC  (-) 9.0 9.0 9.0  9.0 9.0 9.0  - - - 

Note: underlined values are for expanded masonry units of SMM-III. 
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(approximately a 5.0% variation) and between 6.19% and 6.79% (approximately a 9.0% 
variation), respectively. The mean

  values indicate that all solvers have a similar level of 

accuracy and slightly underestimate the FE response of the masonry wall, i.e., by 1.42%, 
3.17% and 3.67% corresponding to implicit static, implicit dynamic, and explicit dynamic 
FE solvers, respectively. Also, the 

maxP
  and k  corresponding to the different FE solvers 

are small, i.e., less than 4.0% and 6.0%, respectively, showing that the different FE solvers 
can very accurately predict the peak load, max

P , and initial stiffness, k , of FBC masonry 

walls. By contrast, the 
f




 is equal to 26.66%, 10.34%, and 15.43% for implicit static, 

implicit dynamic, and explicit dynamic FE solvers, respectively, which indicates that all FE 
solvers tend to overestimate the ultimate displacement of the masonry walls. This 
observation is not surprising, as it is known that the prediction of the structural response 
of unreinforced masonry walls after the peak strength has been reached is a very complex 
problem affected by significant uncertainties [88,89]. However, this discrepancy between 
experimental and numerical estimates of the displacement at failure could also be due to 
the fact that the criterion used to terminate the physical experiments is unknown (e.g., the 
experiments may have been interrupted before the complete collapse of the walls in order 
to protect the laboratory equipment); thus, the numerical results relative to the 
displacements at failure may or may not be representative of the experimental results. In 
Fig. 4(b), the comparison of the different CTRs shows that the explicit dynamic solver is 
the most computationally efficient solver among those considered in this study, as it 
produces FE analysis results 5.62 and 34.76 times faster than the implicit static and 
implicit dynamic FE solver, respectively. Based on these results, the explicit dynamic solver 
seems to provide the best compromise between accuracy and computational cost in 
simulating the behavior of masonry among the three FE solvers considered in this study. 

Table 2. Properties of potential crack interfaces used in the SMMs of the FCB unreinforced 
masonry shear walls. 

Table 3. FE results of the FCB unreinforced masonry shear walls in term of errors between 
the experimental and FE load-displacement curve corresponding to different FE solvers. 

A mesh sensitivity analysis of the FE SMM-II model of masonry shear wall SW030 was 
performed. The FE models were analyzed by using the explicit dynamic FE solver and a 
maximum time increment equal to the critical time step. It was found that the critical time 
step of the SMMs depends only on the thickness of the interface elements, and the mesh 
size of the expanded masonry units does not affect the critical time step for any practical 
FE discretization. Thus, the thickness of the interface elements was set equal to 0.05 mm, 
giving a critical time step equal to 3.3 × 10-6 s, and the mesh sensitivity analysis was 
performed by developing SMM-IIs with four different mesh sizes for the expanded 

FE Model n
k  s

k  t
f  0 Q0

/C C  
0

tan / tan r   0 r
tan / tan   I II

f f
/G G  

(-) (N/mm3) (N/mm3) (MPa) (MPa) (-) (-) (N/mm) 

SMM-I 159 69 2.0 2.9/2.9 1.0/1.0 1.0/1.0 0.008/0.5 

SMM-II 16700 7260 2.0 2.9/2.9 1.0/1.0 1.0/1.0 0.008/0.5 

SMM-III 16700 7260 2.0 2.9/2.9 1.0/1.0 1.0/1.0 0.008/0.5 

FE Solver 
(-) 

maxP
  

(%) 

k  

(%) 
f




 

(%) 

mean
  

(%) 

RMS
  

(%) 

abs
  

(%) 

Implicit Static 1.89 3.05 26.66 -1.42 8.48 6.45 

Implicit Dynamic 3.82 5.99 10.34 -3.17 8.22 6.19 

Explicit Dynamic 0.31 4.01 15.43 -3.67 8.61 6.79 
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masonry units of the FCB masonry shear wall SW030. These meshes are identified by two 
numbers representing the number of elements used along the length and height of the 
expanded masonry units, respectively. The mesh sensitivity analysis was performed 
starting from a coarse 6×2 mesh, and progressively increasing the number of elements in 
each direction in a proportional manner until convergence was achieved. Convergence was 

verified by calculating the point-wise changes in peak load ( )
maxP

 , initial stiffness ( )k
 , and 

displacement at failure ( )
f


 , defined as: 

m2 m1

m1

X

X X

X


−
=                                                                                                                                    (5) 

in which 
1m

X  and 
2m

X = max
P , k , or f

  obtained from the FE analysis corresponding to 

the two mesh discretization being compared; as well as the global relative difference ( )abs


, which is defined as: 

2 1

1

( ) ( )

m m

abs ( )
1 m

1 m
i in

i
im

P P

n P


=

−
=                                                                                                                          (6) 

in which 
1

( )

m

i
P  and 

2

( )

m

i
P  denote the reaction forces at displacement ( )i

  obtained from the 

FE analysis corresponding to the two mesh discretization being compared; and mn  denotes 

the minimum of the number of displacement levels before failure for the two meshes being 
compared. In particular, it was assumed the convergence was achieved when the four 
convergence measures reached an absolute value smaller than 1%. The following meshes 
were developed: 6×2, 12×4, 18×6, and 24×8. The horizontal load-displacement responses 
of the considered SMM-IIs are shown in Fig. 5(a), and the corresponding CTRs are 
compared in Fig. 5(b), in which mesh 18×6 is used as reference. It is observed that the FE 
load-displacement curves corresponding to meshes 18×6 and 24×8 are almost overlapped, 
whereas the other meshes provide significantly different response results. In addition, it is 
observed that the computational cost increases by a factor approximately equal to 3 going 
from one mesh size to the next finer mesh. 

 

Fig. 4 FE results corresponding to different FE solvers: (a) comparison of experimental 
and FE load-displacement curves, and (b) comparison of CTR for different FE solvers. 
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The values of the convergence measures are reported in Table 4. As expected, the 
convergence measures rapidly decrease in absolute value when refining the mesh, and 
they are all smaller than 1% in absolute value going from mesh 18×6 to mesh 24×8, which 
indicates that convergence has been achieved. Based on the results obtained in this mesh 
convergence analysis, mesh 18×6 was used for SMM-II and SMM-III hereinafter in 
conjunction with the FE explicit dynamic solver and a maximum time increment equal to 
3.3 × 10-6 s. 

Table 4 FE response of the SMM-IIs corresponding to the four different meshes in term of 
relative difference among the FE load-displacement curve. 

5.4. Comparison of the FE Results Obtained Using Different SMMs 

The FE results corresponding to the different SMMs of the FCB unreinforced masonry 
shear wall having different initial pressure, i.e., SW030, SW121, and SW212 are presented 
in Fig. 6(a-c) compares the experimentally-measured horizontal force-horizontal 
displacement response of the shear walls with the corresponding numerically-estimated 
FE responses of the different SMMs considered in this investigation. The sudden load drops 

in the FE force-displacement responses are due to cracking of expanded masonry units at the 

potential crack locations. The FE results show that all SMMs can reproduce the complete 
load path of the FCB unreinforced masonry shear wall up to and beyond the peak strength. 
Fig. 6(d) presents the CTRs corresponding to different FE models. All the FE simulations 
for the SMMs of the FCB unreinforced masonry shear wall were run on a Microsoft 
Windows-based personal computer having an Intel(R) Core (TM) i7-8700 CPU @ 3.19 GHz 
with 16.0 GB RAM, with only one CPU core used in each simulation. The CPU time for the 
SMM-II is used as reference (i.e., CTR = 1.0) for each FCB unreinforced masonry shear wall. 
As expected, the results show that the computation demand is lowest for SMM-I and 
highest for SMM-III for all modeled shear walls. 

 

Fig. 5 Comparison of different mesh discretization for the SMM-IIs: (a) load-
displacement curves, and (b) CTRs with mesh 18x6 as reference mesh. 

Mesh 
maxP

  
k  

f



 
abs

  

m1 m2 (%) (%) (%) (%) 
6×2 12×4 -4.60 -0.39 34.15 3.27 

12×4 18×6 -1.95 -0.22 -10.30 1.54 
18×6 24×8 -0.01 -0.01 -0.68 0.21 
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The different error measures for all models are reported in Table 5. For the SW030 shear 
wall, SMM-II provides the most accurate predictions for the peak load and the initial 
stiffness, SMM-I provides the best prediction of the  displacement at failure, and SMM-III 
presents the lowest global relative errors (i.e., mean

  = 2.58%, RMS
  = 8.33%, and abs

  = 

6.42%), although these errors are very similar to those for SMM-II ( mean
  = -3.67%, RMS

  = 

8.61%, and abs
  = 6.79%), whereas they are significantly (approximately two to four times) 

higher for SMM-I. For the SW121 shear wall, SMM-I provides the most accurate estimate 
of max

P , SMM-II provides the most accurate estimate of k  and f
 , and SMM-III has the 

lowest value for mean
 , RMS

 , and abs
 , i.e., 1.32%, 4.15%, and 3.36%, respectively. For the 

SM212 shear wall, The SMM-II always provides the lowest errors between the 
experimental and numerical estimates, with the exception of 

max
,

P
  for which SMM-I gives 

the lowest value, i.e., 
maxP

  = 8.18%. SMM-I generally underestimate all response quantities 

for all walls considered in this study, with the exception of the peak strength of the SW212 
wall, for which 

maxP
  = 8.18%. The SMM-I also presents the largest k , mean

 , RMS
 , and abs



among all the SMMs, these errors increase in magnitude for increasing values of the initial 
vertical pressure applied to the shear wall. SMM-II always slightly overestimates the peak 
load (with 0.31% ≤ 

maxP
  ≤ 15.20%) and initial stiffness (with 1.59% ≤ k  ≤ 5.34%), with 

errors 
maxP

 , mean
 , RMS

 , and abs
  increasing in magnitude for increasing values of the initial 

vertical pressure applied to the shear wall. SMM-III presents largest error in f
  for all the 

shear walls (with 24.43% ≤ 
f




 ≤ 26.71%), always overestimating the displacement at 

failure. However, SMM-III has also the lowest global relative errors for the SW030 and 
SW121 walls.  

It is noted that the numerical value of 
maxP

  for all SMMs increases for increasing levels of 

initial vertical pressure, whereas this phenomenon is not observed for k  or  
f




, for which 

no simple pattern can be identified. The magnitude of 
maxP

  also increasing for increasing 

initial vertical pressure for SMM-II and SMM-III, whereas it achieves a minimum value in 
correspondence to SW121 for SMM-I. This phenomenon is likely due to the use of a single 
vertical potential crack interface at a prescribed location, which provides a proper 
representation of the cracking pattern observed for walls with lower initial vertical 
pressure. However, for higher values of initial vertical pressure, the experimental cracking 
pattern show diagonal cracks in the masonry units, which cannot be properly represented 
by the vertical potential crack interfaces in the expanded masonry units of the SMMs.  

The FE crack patterns and the distribution of the in-plane minimum principal stress for the 
SMMs of the FCB unreinforced masonry shear walls are presented in Fig. 7(a-c) for SMM-I, 
Fig. 7(d-f) for SMM-II, and Fig. 7(g-i) are for SMM-III. In order to make the cracks visible, 
the deformed shape in Fig. 7 is magnified by a factor 10. The numerically-simulated 
inelastic behavior of the shear wall is similar to the actual behavior observed in the 
experimental tests: horizontal tensile cracks start developing first at the bottom and top of 
the shear walls at approximately 1.0 mm of horizontal displacement, followed by a 
diagonal stepped crack in the shear wall. After approximately 2.5 mm of horizontal 
displacement, a combined shear and crushing mechanism develops at the toe of the shear 
wall, which leads to the failure of the model. All the different SMMs reproduce almost the 
same crack patterns for each of the walls, and these patterns are very similar to those 
observed experimentally. The distribution of the in-plane minimum principal stress in the 
SMM-II and SMM-III shows that small diagonal compressive struts, which pass through the 
center of the bricks, form in all SMMs when horizontal cracks develop at the bottom and 
top of the shear wall. With further increase in the displacement, the formation of additional 
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compressive struts is averted by the initiation of the diagonal crack in the SMMs. Finally, when 

the diagonal crack is fully open, two distinct struts are formed on each side of the diagonal 
crack, as shown in the Fig. 7. The compressive stress in the struts increases with increasing 
levels of initial vertical pressure, i.e., the compressive stress is lowest in the SW030 walls 
and highest in the SW212 walls. The maximum compressive stress values in the SMM-II for 
the SW030 and SW121 shear walls remain below 8.0 and 9.9 MPa, respectively, which 
indicates that the assumption of linear elastic behavior in the expanded masonry units is 
reasonable. In fact, the compressive strength of the masonry units is not available [6,46]; 
however, it can be estimated as approximately equal to 20 MPa. This estimate is based on 
the tensile strength, which is equal to 2.0 MPa, and the reasonable assumption of a ratio of 
compressive to tensile strength equal to 10 [46,90]. In SMM-III, the compressive stress 
values for the SW030 and SW121 shear walls are found to be slightly lower, i.e., 
approximately 7.5 and 9.4 MPa, respectively, than the corresponding compressive stress 
values in the SMM-II (i.e., 8.0 and 9.9 MPa, respectively), with a negligible plastic strain in 
the expanded masonry units, i.e., less than 1.0×10-4. The maximum compressive stress in 
the SMM-II for the SW212 wall reaches approximately 13.9 MPa, which is closer to the 
compressive strength of the masonry units when compared to the maximum compressive 
stress values in the SMM-II for the SW030 and SW121 shear walls. In the SMM-III of the 
SW212 wall, the compressive stress is approximately equal to 12.5 MPa (which is achieved 
at a horizontal displacement of approximately 2.9 mm, when a drop in horizontal force is 

observed), and the plastic strain is approximately equal to 9.8×10-3, indicating a significant 
plasticization of the expanded masonry units.  

 

Fig. 6 Comparison of the experimentally-measured and numerically-simulated force-
displacement response for the SMMs of the FCB unreinforced masonry shear walls: (a) 

SW030, (b) SW121, (c) SW212, and (d) CTR corresponding to different FE models. 
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Table 5. FE Simulation results for the SMMs of the FCB unreinforced masonry shear walls 
in term of errors between the experimental and FE load-displacement curve.  

 

Fig. 7 FE crack patterns and distribution of in-plane minimum principal stress for the 
SMMs of the FCB unreinforced masonry shear walls: (a-c) SW030, SW121 and SW212 
for SMM-I; (d-f) SW030, SW121 and SW212 for SMM-II; and (g-i) SW030, SW121 and 

SW212 for SMM-III. 

Shear Wall 
(-) 

FE Modal 
(-) 

maxP
  

(%) 

k  

(%) 
f




 

(%) 

mean
  

(%) 
RMS

  

(%) 
abs
  

(%) 

SW030 

SMM-I -4.08 -10.01 -3.24 -12.78 21.53 12.82 

SMM-II 0.31 4.01 15.43 -3.67 8.61 6.79 

SMM-III 14.95 5.13 27.71 2.58 8.33 6.42 
        

SW121 

SMM-I -0.59 -10.56 -13.22 -17.02 35.31 19.48 

SMM-II 4.40 5.34 -2.27 -6.02 14.71 8.28 

SMM-III 6.70 6.29 24.43 1.32 4.15 3.36 
        

SW212 

SMM-I 8.18 -11.40 -11.49 -17.37 36.11 20.85 

SMM-II 15.20 1.59 -0.61 11.48 18.33 13.09 

SMM-III 15.26 1.80 26.86 16.70 28.23 18.96 
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The level of information provided by the different models increases with the 
computational cost: SMM-I are associated with the lowest computational cost but also with 
the lowest level of information, which is limited to the global load and deformation level 
and the cracking pattern; SMM-III is the most computationally expensive models but 
provide information on stresses and strains in both elastic and plastic ranges within the 
expanded masonry units.  

It is concluded that all three SMMs considered in this study can properly simulate the 
global horizontal load-displacement behavior of the FCB unreinforced masonry shear 
walls and can capture the experimentally observed failure mechanism of these walls, for 
which the inelastic behavior is concentrated along the mortar-unit interfaces and in 
potential cracks of known locations. However, the SMMs may not be able to properly 
predict the experimental displacement at failure, although this result may also depend on 
the lack of knowledge for the termination criterion used in the experimental tests. SMM-II 
and SMM-III present similar levels of accuracy and perform better than SMM-I in capturing 
the experimental behavior of the shear walls. However, their accuracy slightly degrades 
for increasing levels of initial vertical pressure applied to the walls. 

6. Benchmark Example #2: Compressed and Stabilized Earth Block (CSEB) Masonry 

The second application example considered in this study is a CSEB unreinforced masonry 
wallette, in which cracking and inelastic behavior is spread across the different 
components (i.e., masonry units, mortar, and unit-mortar interfaces) of the masonry walls. 

6.1. Description of Experimental Tests 

A diagonal compression test performed on three replicate CSEB masonry wallettes (Wall-
1, Wall-2 and Wall-3), reported in [53], was selected for this investigation. Each specimen 
consisted of a single-leaf, eight-course CSEB masonry wallette having dimensions of 864 
mm (length) × 787 mm (height) × 178 mm (thickness), as shown in Fig. 8(a). The 
specimens were built using: (1) CSEBs with dimensions equal to 254 mm × 178 mm × 89 
mm and fabricated using silty loam soil and 6% cement; and (2) earthen mortar layers of 
thickness equal to 13 mm and fabricated using a cement:soil:sand proportion by weight 
equal to 1:1:6 and water-to-cement ratio equal to 2.4. The CSEB masonry wallettes were 
tested under diagonal compression force that was imparted through steel shoes that were 
placed at the top and bottom corner of each specimen, as illustrated in Fig. 8(a). The 
experimental test involved a monotonically increasing vertical displacement on the steel 
shoe at the top of the masonry wallettes, while keeping the boundaries of the steel shoe at 
bottom of the masonry wallette fixed. The horizontal extension and vertical contraction 
were recorded using two displacement transducers, which are labeled as “A” and “B”, 
respectively, in Fig. 8(a). 

Fig. 9 shows the experimental crack patterns of the three wallettes at the end of the 
diagonal compression test. The specimens exhibited consistent failure modes with 
diagonal cracks parallel to the direction of the load and inclined by approximately 45° with 
respect to the bed joints. As shown in Fig. 9, the cracks at failure were observed mainly 
through the CSEBs and to a lesser extent along the head and bed joints and affected in a 
minor manner the mortar joints. This behavior is common for CSEB masonry and is 
fundamentally different from that of ordinary masonry, in which specimens typically fail 
mostly along the bed and head joints. 

6.2. Description of the SMMs for the CSEB Masonry Wallette 

Fig. 8(b) presents a schematic of the FE models that were developed to simulate the 
response of the CSEB masonry wallettes. The models were constructed using the two-
dimensional elements under the assumption of plane stress as those used for the FCB 
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masonry walls, i.e., the CPS4R and COH2D4 elements in ABAQUS 6.14 [67]. Also in this case, 
auxiliary interface elements were not used in SMM-I. All FE models were analyzed using 
the explicit dynamic FE solver with time step equal to the critical time step of 2.5 × 10-6 s. 
All degrees of freedoms at the bottom edge of the bottom steel shoe were fixed in the FE 
models, and a constant vertical velocity of V = 0.1 mm/s (i.e., with zero acceleration) was 
applied downward to the top edge of the top steel shoe. A density b  = 1.8×103 kg/m3 and 

mass-proportional damping corresponding to a damping ratio  = 5% were used for the 
solid elements of the wall to model inertia and damping effects. Based on a mesh sensitivity 
analysis performed as described for the previous benchmark example, the mesh used for 
the SMMs of the CSEB masonry wallettes consisted of 12 interface elements employed for 
each bed joints (i.e., six interface elements for the bed joint of each half masonry unit), five 
interface elements for each head joint and for the potential vertical cracks, and 30 elements 
for each half of the expanded masonry units (having dimensions 267 mm × 102 mm). Each 
half of the expanded masonry units was represented by a rigid element for the SMM-I.  

The steel shoes were modeled as linear elastic for all the SMMs, with a surface-based tie 
constraint [67] imposed between the masonry and the steel shoes. The steel shoes were 
modeled also using CPS4R elements [67], with elastic modulus steel

E  = 21,000 MPa, Poisson 

ratio steel
  = 0.30, density steel

  = 7.85 × 103 kg/m3, and damping ratio steel
  = 5%. The mesh 

of the steel shoes was extruded from the masonry wallettes in order to obtain a continuous 
mesh. The steel shoes were discretized using two elements in the direction orthogonal to 
that of the extrusion. 

 

Fig. 8 CSEB masonry wallette: (a) test setup and (b) SMM discretization. 

 

Fig. 9 Experimental crack patterns of the CSEB masonry wallettes: (a) Wall-1, (b) Wall-2, 
and (c) Wall-3. 
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The material properties of the different components used in the SMMs were obtained from 
existing experimental results on tension, shear, and compression tests available in 
[53,91,92]. These experimental tests were performed on the same batch of CSEBs, and 
mortar used to build the CSEB masonry wallettes analyzed in this study. An elastic modulus 

bE  = 2550 MPa and a Poisson ratio b  = 0.17 were used for the expanded masonry units 

in SMMs-II and SMM-III. The properties of the masonry joint and potential crack interface 

used in the different SMMs are given in Table 6, where b

n
k  and b

s
k  denote the normal and 

shear stiffness, respectively, of the masonry joint interfaces corresponding to the bed 

masonry joints; and h

n
k  and h

s
k  denote the normal and shear stiffness, respectively, of the 

masonry joint interfaces corresponding to the head masonry joints. For the potential crack 

interfaces, b

n
k  = n

k  denote the normal stiffness, and b

s
k  = s

k  denote the shear stiffness of 

the interface. Similar to the FCB unreinforced masonry shear wall, the input parameters 
given in the Table 6 were used to describe the stress-strain curve for the expanded 
masonry units in SMM-III based on a hardening/softening constitutive law used for the 
compression cap failure criterion of the CTSIM [5]. The other CDPM parameters used in 
the SMM-III are: c

 = 38°, c
e = 0.1, bc

 = 1.16, c
K  = 0.67,   = 8.5×10-5 [91,92].  

Table 6. Properties of masonry joint/potential crack interfaces (SMM-I, SMM-II, and SMM-
III) and inelastic compressive properties for the expanded masonry units (SMM-III) of the 
CSEB masonry wallettes. 

Properties 
Masonry joint interface  Potential crack interface 

SMM-I SMM-II SMM-III  SMM-I SMM-II SMM-III 
b

n
k  (N/mm3) 24.38 907.10 907.10  159.00 2555.00 2555.00 

b

s
k  (N/mm3) 10.44 429.67 429.67  69 1091.45 1091.45 

h

n
k  (N/mm3) 17.89 907.10 907.10  - - - 

h

s
k  (N/mm3) 7.66 429.67 429.67  - - - 

t
f  (MPa) 0.146 0.146 0.146  0.510 0.510 0.510 

0
C  (MPa) 0.290 0.290 0.290  0.714 0.714 0.714 

Q0
C  (MPa) 29.000 29.000 29.000  0.714 0.714 0.714 

0
tan  (-) 1.51 1.51 1.51  1.00 1.00 1.00 

r
tan  (-) 1.51 1.51 1.51  1.00 1.00 1.00 

0
tan  (-) 0.440 0.440 0.440  1.00 1.00 1.00 

r
tan  (-) 0.044 0.044 0.044  1.00 1.00 1.00 

I

f
G  (N/mm) 0.00212 0.00212 0.00212  0.0090 0.0090 0.0090 

II

f
G  (N/mm) 0.02120 0.02120 0.02120  0.0495 0.0495 0.0495 

0
  (MPa) 1.29 1.29 1.29  - - - 

p
  (MPa) 3.88 3.88 3.88  - - - 

m
  (MPa) 1.94 1.94 1.94  - - - 

r
  (MPa) 0.55 0.55 0.55  - - - 

p
  (-) 0.011 0.011 0.011  - - - 

m
   (-) 0.044 0.044 0.044  - - - 

ss
C  (-) 9.0 9.0 -  - - - 

Note: underlined values are for expanded masonry units of SMM-III 
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6.3. FE Results 

Fig. 10(a) compares the FE force-displacement responses obtained using the different 
SMMs considered in this investigation with the corresponding experimentally-measured 
response obtained from the diagonal compression test. Positive and negative 
displacements correspond to horizontal extension and vertical contraction, respectively, 
which were experimentally recorded using the displacement transducers A and B, as 
shown in the Fig. 10(a). Fig. 10(b) presents the CTRs corresponding to the different FE 
models, which shows that SMM-I is the least computationally demanding model, whereas 
SMM-III is the most computationally expensive one. The six error measures considered in 
this study and corresponding to the different SMMs are reported in Table 7. All SMMs 
significantly overestimate the peak axial force, max

P , of the CSEB masonry wallettes, with 

errors 
maxP

 = 129.85%, 68.44%, and 53.96% for SMM-I, SMM-II, and SMM-III, respectively. 

In addition, all FE models underestimate the initial stiffness, k , both in the horizontal 

direction,  with k  varying between  -44.20% (SMM-I) and -31.04% (SMM-II and SMM-III), 

and in the vertical direction, with k  varying between -25.71% (SMM-II and SMM-III) and 

-10.63% (SMM-I). SMM-I and SMM-III highly overestimate the displacements at failure in 
both horizontal (

f

 = 507.53% and 49.95%, respectively) and vertical (

f

 = 44.50% and 

39.55%, respectively) directions. The errors are significantly smaller for the SMM-II, with 

f

  = 1.80% and -6.96% in the horizontal and vertical directions, respectively. The 

discrepancies between the force-displacement responses are also larger than for the FCB 
masonry walls, as reported in Table 5. It is noteworthy that, given the definition of j

n  in 

Eqs. (2) through (4), the global relative errors mean
 , RMS

 , and abs
  are less meaningful 

when large discrepancies are observed between the experimental and numerical estimates 
of the displacement at failure, as it is the case here.   

Table 7. Comparison of the FE simulation results for the CSEB masonry wallettes in term 
of errors between experimental and FE load-displacement curves. 

The crack patterns and distribution of in-plane minimum principal stress observed at 
0.25mm displacement and the displacement at failure for the SMMs of the CSEB masonry 
wallettes are presented in Fig. 11(a) and (d) for SMM-I, Fig. 11(b) and (e) for SMM-II, and 
Fig. 11(c) and (f) for SMM-III. In order to make the cracks visible, the deformed shape in 
Fig. 11 is magnified by a factor 10. The FE crack patterns of the SMMs do not match the 
experimental crack patterns of the CSEB masonry wallettes shown in Fig. 11. In fact, the 
cracks simulated in all SMMs are mostly concentrated at the bottom two masonry bed 
joints and at the head joints and potential crack interfaces of the bottom two courses of the 
masonry wallette. As expected, the SMMs are unable to simulate the diagonal cracks 
observed experimentally in the earthen blocks and, thus, cannot capture the experimental 
failure mode of the CSEB masonry wallettes. 

Displacements 
(-) 

FE Model 
(-) 

maxP
  

(%) 

k  

(%) 
f


  

(%) 

mean
  

(%) 

RMS
  

(%) 

abs
  

(%) 

Horizontal 
extension 

SMM-I 129.85 -44.20 507.53 -11.59 22.95 18.35 

SMM-II 68.44 -31.04 1.80 10.01 27.62 22.39 

SMM-III 53.96 -31.04 49.95 4.51 20.54 17.45 
        

Vertical 
contraction  

SMM-I - -10.63 44.50 53.09 59.24 54.45 

SMM-II - -25.71 -6.96 16.49 47.32 39.87 

SMM-III - -25.71 39.55 20.97 26.84 24.77 
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It is concluded that the SMMs are unable to simulate the behavior of the CSEB masonry 
wallettes subjected to a diagonal compression test. This result is due to the fact that CSEB 
masonry does not satisfy the hypothesis that mortar and unit-mortar interfaces are 
significantly weaker than the masonry units, which is at the basis of the SMMs. In fact, the 
assumption that the inelastic behavior is concentrated along the masonry joints and the 
middle plane of the masonry units is not valid for CSEB masonry, where the experimental 
evidence shows cracking patterns that are similarly distributed across joints and masonry 
units. It is also concluded that a modeling approach different than SMM is needed to 

 
Fig. 10 FE results for the CSEB masonry wallettes: (a) comparison of the experimental 
and FE load-displacement responses, and (b) CTRs corresponding to different FE models. 

 

Fig. 11 FE crack patterns and distribution of in-plane minimum principal stress for the 
SMMs of the CSEB masonry wallettes: (a-c) SMM-I, SMM-II and SMM-III, respectively, at 

0.25 mm displacement; and (d-f) SMM-I, SMM-II and SMM-III, respectively, at failure 
displacement. 



Kumar et al. / Research on Engineering Structures & Materials 8(3) (2022) 463-490 

 

484 

properly describe the mechanical behavior of CSEB masonry walls with masonry units of 
similar strength and stiffness as the mortar and the unit-mortar interfaces. Such new 
modeling approach needs to be able to model the propagation of cracks with any 
inclination within the masonry units and the mortar. 

5. Conclusions 

In this study, the capabilities and limitations of FE simplified micro-modeling techniques 
were investigated through a comparative analysis of their simulation capabilities with 
respect to two different types of masonry, i.e., fired-clay brick (FCB) and compressed and 
stabilized earth block (CSEB) masonry. In the simplified micro-modeling technique, mortar 
and adjacent unit-mortar interfaces in the masonry are represented by zero-thickness 
interface elements between expanded masonry units, with a vertical potential crack 
interface placed in the middle of the expanded masonry units. Different simplified micro-
models (SMMs) can be developed based on the different material constitutive models used 
for the masonry units. This study considered rigid (SMM-I), elastic (SMM-II), and elasto-
plastic (SMM-III) constitutive models. The comparative analysis was made between 
experimentally-measured and numerically-simulated responses of benchmark 
unreinforced masonry walls that are representative of the two masonry types and for 
which well-documented experimental data are available in the literature.  

This paper also provides recommendations on the use of different FE solvers and on the 
mesh and time step discretization for developing accurate and robust SMMs within the FE 
framework. In particular, it is shown that implicit static, implicit dynamic, and explicit 
dynamic solvers produce similar mechanical responses when used to simulate the 
nonlinear inelastic behavior of unreinforced masonry walls; however, the explicit dynamic 
solver is significantly more efficient than the other solvers from a computational point of 
view. 

The FCB unreinforced masonry shear walls showed experimental inelastic behavior and 
cracks concentrated in the masonry joints (i.e., mortar and unit-mortar interfaces) and in 
potential crack zones corresponding to the vertical middle plane of the masonry units, 
whereas CSEB masonry had an experimental inelastic behavior and cracks spread across 
all masonry constituents. This different behavior is likely because, in the FCB masonry 
walls, the masonry units are significantly stronger and have higher stiffness than the 
mortar and the unit-mortar interfaces, whereas the different masonry components have 
similar strength and stiffness in the CSEB masonry walls. 

The FE simulation results indicate that simplified micro-modeling techniques can properly 
simulate the FE behavior for the FCB masonry shear walls. In fact, all three SMM 
approaches (i.e., SMM-I, SMM-II, and SMM-III) appear to provide similarly accurate results 
in terms of global load-displacement responses, peak loads (with errors contained 
between -4.08 and 15.26%), and initial stiffnesses (with errors contained between -11.40 
and 6.29%). The models are less accurate in estimating the displacements at failure (with 
errors contained between -13.22% and 27.71%); however, this result may also be due to 
the lack of knowledge on the specific criterion used to terminate the experimental tests.  It 
is observed that: (1) the computational costs increase from SMM-I to SMM-II and from 
SMM-II to SMM-III, (2) the accuracy in predicting the mechanical response of FCB masonry 
walls is similar for SMM-II and SMM-III and slightly better than SMM-I, and (3) the accuracy 
slightly degrades for increasing axial compression applied on the walls. 

By contrast, these simplified micro-modeling techniques are in general not suitable for 
modeling the mechanical response of CSEB masonry walls, because they are unable to 
reproduce the failure mechanisms produced by cracks propagating across all masonry 
components. Therefore, a different modeling approach is needed to describe the 
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mechanical behavior of masonry walls and systems in which the different masonry 
components have similar strength and stiffness, as for CSEB masonry systems. A possible 
alternative that should be investigated in future studies is the use of a FE detailed micro-
modeling approach, in which each component of a masonry system is modeled separately 
from the others through an appropriate nonlinear constitutive model. 

Conflict of interest 

The authors declare that they have no known competing financial interests or personal 
relationships that could have influenced or appeared to influence the work reported in this 
paper.  

Acknowledgments 

Partial support for this research by the Louisiana Board of Regents through the Economic 
Development Assistantship Program, by the National Science Foundation through awards 
CMMI #1537078, #1537776 and #1850777, and by the University of California Office of 
the President (UCOP) Lab Fees program through award LFR-20-651032, is gratefully 
acknowledged. Any opinions, findings, conclusions, or recommendations expressed in this 
publication are those of the writers and do not necessarily reflect the views of the sponsors. 

The authors thank the anonymous reviewers for their insightful comments, which helped 
us further improve the clarity of this paper. 

 
References 

[1] Giambanco G, Di Gati L. A cohesive interface model for the structural mechanics of 
block masonry, Mechanics Research Communications, 1997; 24: 503–512. 
https://doi.org/10.1016/S0093-6413(97)00055-4. 

[2] Giambanco G, Rizzo S, Spallino R. Numerical analysis of masonry structures via 
interface models, Computer Methods in Applied Mechanics and Engineering, 2001; 
190: 6493–6511. https://doi.org/10.1016/S0045-7825(01)00225-0. 

[3] Citto C. (2008). Two-dimensional interface model applied to masonry structures, MS 
thesis, University of Colorado, Denver, Colorado. 

[4] Macorini L, Izzuddin BA. A non-linear interface element for 3d mesoscale analysis of 
brick-masonry structures, International Journal for Numerical Methods in 
Engineering, 2011; 85: 1584–1608. https://doi.org/10.1002/nme.3046. 

[5] Kumar N, Barbato M. New constitutive model for interface elements in finite-element 
modeling of masonry, Journal of Engineering Mechanics, 2019; 145: 04019022. 
https://doi.org/10.1061/(ASCE)EM.1943-7889.0001592. 

[6] Lourenço PB, Rots JG. Multisurface interface model for analysis of masonry structures, 
Journal of Engineering Mechanics, 1997; 123: 660–668. 
https://doi.org/10.1061/(ASCE)0733-9399(1997)123:7(660). 

[7] Abdulla KF, Cunningham LS, Gillie M. Simulating masonry wall behaviour using a 
simplified micro-model approach, Engineering Structures, 2017; 151: 349–365. 
https://doi.org/10.1016/j.engstruct.2017.08.021. 

[8] Pulatsu B, Erdogmus E, Lourenço PB, Lemos J V, Hazzard J. Discontinuum analysis of 
the fracture mechanism in masonry prisms and wallettes via discrete element method, 
Meccanica, 2020; 55: 505–523. https://doi.org/10.1007/s11012-020-01133-1 . 

[9] Baraldi D, Cecchi A. A full 3d rigid block model for the collapse behaviour of masonry 
walls, European Journal of Mechanics - A/Solids, 2017; 64: 11–28. 
https://doi.org/10.1016/j.euromechsol.2017.01.012. 

https://doi.org/10.1016/S0093-6413(97)00055-4
https://doi.org/10.1016/S0045-7825(01)00225-0
https://doi.org/10.1002/nme.3046
https://doi.org/10.1061/(ASCE)EM.1943-7889.0001592
https://doi.org/10.1061/(ASCE)0733-9399(1997)123:7(660)
https://doi.org/10.1016/j.engstruct.2017.08.021
https://doi.org/10.1007/s11012-020-01133-1
https://doi.org/10.1016/j.euromechsol.2017.01.012


Kumar et al. / Research on Engineering Structures & Materials 8(3) (2022) 463-490 

 

486 

[10] Oliveira DV, Lourenço PB. Implementation and validation of a constitutive model for 
the cyclic behaviour of interface elements, Computers & Structures, 2004; 82: 1451–
1461. https://doi.org/10.1016/j.compstruc.2004.03.041. 

[11] D’Altri AM, Sarhosis V, Milani G, Rots J, Cattari S, Lagomarsino S, Sacco E, Tralli A, 
Castellazzi G, de Miranda S. Modeling strategies for the computational analysis of 
unreinforced masonry structures: review and classification, Archives of 
Computational Methods in Engineering, 2019; 1: 1–33. 
https://doi.org/10.1007/s11831-019-09351-x. 

[12] Kumar N, Amirtham R, Pandey M. Plasticity based approach for failure modelling of 
unreinforced masonry, Engineering Structures, 2014; 80. 
https://doi.org/10.1016/j.engstruct.2014.08.021. 

[13] Drougkas A, Roca P, Molins C. Experimental analysis and detailed micro-modeling of 
masonry walls subjected to in-plane shear, Engineering Failure Analysis, 2019; 95: 
82–95. https://doi.org/10.1016/j.engfailanal.2018.08.030. 

[14] Calderón S, Sandoval C, Arnau O. Shear response of partially-grouted reinforced 
masonry walls with a central opening: testing and detailed micro-modelling, Materials 
& Design, 2017; 118: 122–137. https://doi.org/10.1016/j.matdes.2017.01.019. 

[15] Pourfalah S, Cotsovos DM, Suryanto B. Modelling the out-of-plane behaviour of 
masonry walls retrofitted with engineered cementitious composites, Computers & 
Structures, 2018; 201: 58–79. https://doi.org/10.1016/j.compstruc.2018.02.004. 

[16] Page AWAW. Finite element model for masonry, Journal of the Structural Division, 
1978; 104: 1267–1285. https://doi.org/10.1061/JSDEAG.0004969. 

[17] Andreotti G, Graziotti F, Magenes G. Detailed micro-modelling of the direct shear tests 
of brick masonry specimens: the role of dilatancy, Engineering Structures, 2018; 168: 
929–949. https://doi.org/10.1016/j.engstruct.2018.05.019. 

[18] Sacco E, Toti J. Interface elements for the analysis of masonry structures, International 
Journal for Computational Methods in Engineering Science and Mechanics, 2010; 11: 
354–373. https://doi.org/10.1080/15502287.2010.516793. 

[19] Arnau O, Sandoval C, Murià-Vila D. Determination and validation of input parameters 
for detailed micro-modelling of partially grouted reinforced masonry walls, 10th 
Pacific Conference on Earthquake Engineering, vol. 68, 2015. 

[20] Lourenço PB. (1996). Computational strategies for masonry structures, PhD 
Dissertation, Technische Universiteit Delft, Delft, Netherlands. 

[21] Arya SK, Hegemier GA. On nonlinear response prediction of concrete masonry 
assemblies, Proceedings of the North American Masonry Conference, The Masonry 
Society, Boulder, Colorado, 1978, 11–19. 

[22] Rots JG. Structural masonry, CRC Press, London, UK, 2021. 
https://doi.org/10.1201/9781003077961. 

[23] Rots JG. Numerical simulation of cracking in structural masonry, Heron, 1991; 36: 49–
63. 

[24] Senthivel R, Lourenço PB. Finite element modelling of deformation characteristics of 
historical stone masonry shear walls, Engineering Structures, 2009; 31: 1930–1943. 
https://doi.org/10.1016/j.engstruct.2009.02.046. 

[25] Miccoli L, Garofano A, Fontana P, Müller U. Experimental testing and finite element 
modelling of earth block masonry, Engineering Structures, 2015; 104: 80–94. 
https://doi.org/10.1016/j.engstruct.2015.09.020. 

[26] Furukawa A, Spence R, Ohta Y, So E. Analytical study on vulnerability functions for 
casualty estimation in the collapse of adobe buildings induced by earthquake, Bulletin 
of Earthquake Engineering, 2010; 8: 451–479. https://doi.org/10.1007/s10518-009-
9156-z. 

[27] Tarque N. (2011). Numerical modelling of the seismic behaviour of adobe buildings, 
PhD Dissertation, Università Degli Studi Di Pavia, and Istituto Universitario Di Studi 
Superiori. 

https://doi.org/10.1016/j.compstruc.2004.03.041
https://doi.org/10.1007/s11831-019-09351-x
https://doi.org/10.1016/j.engstruct.2014.08.021
https://doi.org/10.1016/j.engfailanal.2018.08.030
https://doi.org/10.1016/j.matdes.2017.01.019
https://doi.org/10.1016/j.compstruc.2018.02.004
https://doi.org/10.1061/JSDEAG.0004969
https://doi.org/10.1016/j.engstruct.2018.05.019
https://doi.org/10.1080/15502287.2010.516793
https://doi.org/10.1201/9781003077961
https://doi.org/10.1016/j.engstruct.2009.02.046
https://doi.org/10.1016/j.engstruct.2015.09.020
https://doi.org/10.1007/s10518-009-9156-z
https://doi.org/10.1007/s10518-009-9156-z


Kumar et al. / Research on Engineering Structures & Materials 8(3) (2022) 463-490 

 

487 

[28] Petracca M, Pelà L, Rossi R, Zaghi S, Camata G, Spacone E. Micro-scale continuous and 
discrete numerical models for nonlinear analysis of masonry shear walls, Construction 
and Building Materials, 2017; 149: 296–314. 
https://doi.org/10.1016/j.conbuildmat.2017.05.130. 

[29] Vemuri J, Ehteshamuddin S, Kolluru S. Numerical simulation of soft brick unreinforced 
masonry walls subjected to lateral loads, Cogent Engineering, 2018; 5: 1–21. 
https:/doi.org/10.1080/23311916.2018.1551503. 

[30] van Zijl GPAG. Modeling masonry shear-compression: role of dilatancy highlighted, 
Journal of Engineering Mechanics, 2004; 130: 1289–1296. 
https://doi.org/10.1061/(ASCE)0733-9399(2004)130:11(1289). 

[31] Dolatshahi KM, Aref AJ. Two-dimensional computational framework of meso-scale 
rigid and line interface elements for masonry structures, Engineering Structures, 
2011; 33: 3657–3667. https://doi.org/10.1016/j.engstruct.2011.07.030. 

[32] Chisari C, Macorini L, Amadio C, Izzuddin BA. An inverse analysis procedure for 
material parameter identification of mortar joints in unreinforced masonry, 
Computers & Structures, 2015; 155: 97–105. 
https://doi.org/10.1016/j.compstruc.2015.02.008. 

[33] Zhang Y, Macorini L, Izzuddin BA. Mesoscale partitioned analysis of brick-masonry 
arches, Engineering Structures, 2016; 124: 142–166. 
https://doi.org/10.1016/j.engstruct.2016.05.046. 

[34] Chisari C, Macorini L, Amadio C, Izzuddin BA. Identification of mesoscale model 
parameters for brick-masonry, International Journal of Solids and Structures, 2018; 
146: 224–240. https://doi.org/10.1016/j.ijsolstr.2018.04.003. 

[35] Minga E, Macorini L, Izzuddin BA. A 3d mesoscale damage-plasticity approach for 
masonry structures under cyclic loading, Meccanica, 2018; 53: 1591–1611. 
https://doi.org/10.1007/s11012-017-0793-z. 

[36] Alfano G, Sacco E. Combining interface damage and friction in a cohesive-zone model, 
International Journal for Numerical Methods in Engineering, 2006; 68: 542–582. 
https://doi.org/10.1002/nme.1728. 

[37] Parrinello F, Failla B, Borino G. Cohesive–frictional interface constitutive model, 
International Journal of Solids and Structures, 2009; 46: 2680–2692. 
https://doi.org/10.1016/j.ijsolstr.2009.02.016. 

[38] Formica G, Sansalone V, Casciaro R. A mixed solution strategy for the nonlinear 
analysis of brick masonry walls, Computer Methods in Applied Mechanics and 
Engineering, 2002; 191: 5847–5876. https://doi.org/10.1016/S0045-
7825(02)00501-7. 

[39] Gambarotta L, Lagomarsino S. Damage models for the seismic response of brick 
masonry shear walls. part i: the mortar joint model and its applications, Earthquake 
Engineering & Structural Dynamics, 1997; 26: 423–439. 
https:/doi.org/10.1002/(SICI)1096-9845(199704)26:4%3C423::AID-
EQE650%3E3.0.CO;2-%23. 

[40] Greco F, Leonetti L, Luciano R, Trovalusci P. Multiscale failure analysis of periodic 
masonry structures with traditional and fiber-reinforced mortar joints, Composites 
Part B: Engineering, 2017; 118: 75–95. 
https://doi.org/10.1016/j.compositesb.2017.03.004. 

[41] Chaimoon K, Attard MM. Modeling of unreinforced masonry walls under shear and 
compression, Engineering Structures, 2007; 29: 2056–2068. 
https://doi.org/10.1016/j.engstruct.2006.10.019. 

[42] Shing PB, Manzouri T. Analysis of unreinforced masonry structures using 
elastic/viscoplastic models, Sísmica 2004–6° Congresso Nacional de Sismologia e 
Engenharia Sísmica Livro de Actas, Universidade Do Minho, Guimaraes, Portugal, 
2004, 137–150. 

https://doi.org/10.1016/j.conbuildmat.2017.05.130
https://doi.org/10.1080/23311916.2018.1551503
https://doi.org/10.1016/j.engstruct.2011.07.030
https://doi.org/10.1016/j.compstruc.2015.02.008
https://doi.org/10.1016/j.ijsolstr.2018.04.003
https://doi.org/10.1007/s11012-017-0793-z
https://doi.org/10.1002/nme.1728
https://doi.org/10.1016/j.ijsolstr.2009.02.016
https://doi.org/10.1016/S0045-7825(02)00501-7
https://doi.org/10.1016/S0045-7825(02)00501-7
https://doi.org/10.1002/(SICI)1096-9845(199704)26:4%3C423::AID-EQE650%3E3.0.CO;2-%23
https://doi.org/10.1002/(SICI)1096-9845(199704)26:4%3C423::AID-EQE650%3E3.0.CO;2-%23
https://doi.org/10.1016/j.compositesb.2017.03.004
https://doi.org/10.1016/j.engstruct.2006.10.019


Kumar et al. / Research on Engineering Structures & Materials 8(3) (2022) 463-490 

 

488 

[43] Dolatshahi KM, Nikoukalam MT, Beyer K. Numerical study on factors that influence 
the in-plane drift capacity of unreinforced masonry walls, Earthquake Engineering & 
Structural Dynamics, 2018; 47: 1440–1459. https://doi.org/10.1002/eqe.3024. 

[44] Dolatshahi KM, Yekrangnia M. Out-of-plane strength reduction of unreinforced 
masonry walls because of in-plane damages, Earthquake Engineering & Structural 
Dynamics, 2015; 44: 2157–2176. https://doi.org/10.1002/eqe.2574. 

[45] Dolatshahi KM, Aref AJ. Multi-directional response of unreinforced masonry walls: 
experimental and computational investigations, Earthquake Engineering & Structural 
Dynamics, 2016; 45: 1427–1449. https://doi.org/10.1002/eqe.2714. 

[46] Aref AJ, Dolatshahi KM. A three-dimensional cyclic meso-scale numerical procedure 
for simulation of unreinforced masonry structures, Computers & Structures, 2013; 
120: 9–23. https://doi.org/10.1016/j.compstruc.2013.01.012. 

[47] Bolhassani M, Hamid AA, Lau ACW, Moon F. Simplified micro modeling of partially 
grouted masonry assemblages, Construction and Building Materials, 2015; 83: 159–
173. https://doi.org/10.1016/j.conbuildmat.2015.03.021. 

[48] Tang C, Shi B, Gao W, Chen F, Cai Y. Strength and mechanical behavior of short 
polypropylene fiber reinforced and cement stabilized clayey soil, Geotextiles and 
Geomembranes, 2007; 25: 194–202. 
https://doi.org/10.1016/j.geotexmem.2006.11.002. 

[49] Aghababaie Mobarake A, Khanmohammadi M, Mirghaderi SR. A new discrete macro-
element in an analytical platform for seismic assessment of unreinforced masonry 
buildings, Engineering Structures, 2017; 152: 381–396. 
https://doi.org/10.1016/j.engstruct.2017.09.013. 

[50] Caliò I, Marletta M, Pantò B. A new discrete element model for the evaluation of the 
seismic behaviour of unreinforced masonry buildings, Engineering Structures, 2012; 
40: 327–338. https://doi.org/10.1016/j.engstruct.2012.02.039. 

[51] Baraldi D, Cecchi A. Discrete approaches for the nonlinear analysis of in plane loaded 
masonry walls: molecular dynamic and static algorithm solutions, European Journal 
of Mechanics - A/Solids, 2016; 57: 165–177. 
https://doi.org/10.1016/j.euromechsol.2015.12.008. 

[52] Bui T-T, Limam A, Sarhosis V. Failure analysis of masonry wall panels subjected to in-
plane and out-of-plane loading using the discrete element method, European Journal 
of Environmental and Civil Engineering, 2019; 1: 1–17. 
https://doi.org/10.1080/19648189.2018.1552897. 

[53] Cuellar-Azcarate MC. (2016). Engineered earthen masonry structures for extreme 
wind loads, PhD Dissertation, University of South Carolina, Columbia, South Carolina. 

[54] Jaquin P. History of earth building techniques, Modern Earth Buildings: Materials, 
Engineering, Constructions and Applications, 2012, 307–323. 
https://doi.org/10.1533/9780857096166.3.307. 

[55] Kumar N, Barbato M, Holton R. Feasibility study of affordable earth masonry housing 
in the U.S. Gulf Coast region, Journal of Architectural Engineering, 2018; 24. 
https://doi.org/10.1061/(ASCE)AE.1943-5568.0000311. 

[56] Ben-Alon L, Loftness V, Harries KA, Hameen EC, Bridges M. Integrating earthen 
building materials and methods into mainstream construction, Journal of Green 
Building, 2020; 15: 87–106. https://doi.org/10.3992/1943-4618.15.1.87. 

[57] Matta F, Cuellar-Azcarate MC, Garbin E, Cuéllar-Azcárate MC, Garbin E. Earthen 
masonry dwelling structures for extreme wind loads, Engineering Structures, 2015; 
83: 163–175. https://doi.org/10.1016/j.engstruct.2014.10.043. 

[58] Atkinson RH, Amadei BP, Saeb S, Sture S. Response of masonry bed joints in direct 
shear, Journal of Structural Engineering, 1989; 115: 2276–2296. 
https://doi.org/10.1061/(ASCE)0733-9445(1989)115:9(2276). 

[59] Hofmann P, Stockl S. Tests on the shear-bond behaviour in the bed-joints of masonry, 
Masonry Int, 1986; 9: 1–15. 

https://doi.org/10.1002/eqe.3024
https://doi.org/10.1002/eqe.2574
https://doi.org/10.1002/eqe.2714
https://doi.org/10.1016/j.compstruc.2013.01.012
https://doi.org/10.1016/j.conbuildmat.2015.03.021
https://doi.org/10.1016/j.geotexmem.2006.11.002
https://doi.org/10.1016/j.engstruct.2017.09.013
https://doi.org/10.1016/j.engstruct.2012.02.039
https://doi.org/10.1016/j.euromechsol.2015.12.008
https://doi.org/10.1080/19648189.2018.1552897
https://doi.org/10.1533/9780857096166.3.307
https://doi.org/10.1061/(ASCE)AE.1943-5568.0000311
https://doi.org/10.3992/1943-4618.15.1.87
https://doi.org/10.1016/j.engstruct.2014.10.043
https://doi.org/10.1061/(ASCE)0733-9445(1989)115:9(2276)


Kumar et al. / Research on Engineering Structures & Materials 8(3) (2022) 463-490 

 

489 

[60] Van der Pluijm R. Shear behaviour of bed joints, Proceedings of 6th North American 
Masonry Conference, The Masonry Society, Boulder, Colorado, 1993, 125–136. 

[61] Van der Pluijm R. Overview of deformation controlled combined tensile and shear 
tests, Eindhoven University of Technology, Eindhoven, The Netherlands, 1998, vol. 
Technical. 

[62] Page AW. The biaxial compressive strength of brick masonry, Proceedings of the 
Institution of Civil Engineers, 1981; 71: 893–906. 
https://doi.org/10.1680/iicep.1981.1825. 

[63] Page AW. The strength of brick masonry under biaxial tension-compression, 
International Journal of Masonry Construction, 1983; 3: 26–31. 

[64] Andreaus U. Failure criteria for masonry panels under in-plane loading, Journal of 
Structural Engineering, 1996; 122: 37–46. https://doi.org/10.1061/(ASCE)0733-
9445(1996)122:1(37). 

[65] Roberts JJ, Edgel GJ, Rathbone AJ. BS 5628:1985: British standard code of practice for 
use of masonry part 2: structural use of reinforced and prestressed masonry, Palladian 
Publications Limited, London, UK, 2018. https://doi.org/10.1201/9781482275636. 

[66] Pelà L. (2009). Continuum damage model for nonlinear analysis of masonry 
structures, PhD Dissertation, Universitat Politècnica de Catalunya, Catalonia, Spain, & 
Università Degli Studi Di Ferrara, Italy. 

[67] Dassault Systèmes. Abaqus 6.13 documentation, Dassault Systèmes, Providence, RI, 
2013. 

[68] Lubliner J, Oliver J, Oller S, Oñate E. A plastic-damage model for concrete, International 
Journal of Solids and Structures, 1989; 25: 299–326. https://doi.org/10.1016/0020-
7683(89)90050-4. 

[69] Lee J, Fenves GL. Plastic-damage model for cyclic loading of concrete structures, 
Journal of Engineering Mechanics, 1998; 124: 892–900. 
https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892). 

[70] ASTM International. ASTM C952-12 (withdrawn 2018) standard test method for bond 
strength of mortar to masonry units, ASTM Standards, ASTM International, West 
Conshohocken, PA, 2012. https://doi.org/10.1520/C0952-12. 

[71] ASTM International. ASTM C1314-21 standard test method for compressive strength 
of masonry prisms, ASTM Standards, ASTM International, West Conshohocken, PA, 
2021. https:/doi.org/10.1520/C1314-21. 

[72] Lourenço PB, Almeida JC, Barros JAO. Experimental investigation of bricks under 
uniaxial tensile testing, Journal of British Masonry Society Masonry International, 
2005; 18: 11–20. 

[73] Masonry Standards Joint Committee. TMS 402/602-16 Building code requirements 
and specification for masonry structures, The Masonry Society, Boulder, Colorado, 
2016. ISBN: 978-1-929081-52-3. 

[74] Jankowiak T, Lodygowski T. Identification of parameters of concrete damage plasticity 
constitutive model, Foundations of Civil and Environmental Engineering, 2005; 6: 53–
69. 

[75] Michał S, Andrzej W. Calibration of the CDP model parameters in ABAQUS, The 2015 
World Congress on Advances in Structural Engineering and Mechanics (ASEM15), 
2015. 

[76] Hughes TJR. The finite element method: linear static and dynamic finite element 
analysis, Courier Corporation, 2012. ISBN:0486135020. 

[77] Wu SR, Gu L. Introduction to the explicit finite element method for nonlinear transient 
dynamics, Wiley, 2012. https://doi.org/10.1002/9781118382011. 

[78] Ferrante A, Clementi F, Milani G. Dynamic behavior of an inclined existing masonry 
tower in Italy, Frontiers in Built Environment, 2019; 5: 33. 
https://doi.org/10.3389/fbuil.2019.00033. 

https://doi.org/10.1680/iicep.1981.1825
https://doi.org/10.1061/(ASCE)0733-9445(1996)122:1(37)
https://doi.org/10.1061/(ASCE)0733-9445(1996)122:1(37)
https://doi.org/10.1201/9781482275636
https://doi.org/10.1016/0020-7683(89)90050-4
https://doi.org/10.1016/0020-7683(89)90050-4
https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
https://doi.org/10.1520/C0952-12
https://doi.org/10.1520/C1314-21
https://doi.org/10.1002/9781118382011
https://doi.org/10.3389/fbuil.2019.00033


Kumar et al. / Research on Engineering Structures & Materials 8(3) (2022) 463-490 

 

490 

[79] Silva LC, Lourenço PB, Milani G. Numerical homogenization‐based seismic assessment 
of an english‐bond masonry prototype: structural level application, Earthquake 
Engineering & Structural Dynamics, 2020; 49: 841–862. 
https://doi.org/10.1002/eqe.3267. 

[80] Simo JC, Hughes TJR. Computational inelasticity, Springer-Verlag, New York, USA, 
1998, vol. 7. https://doi.org/10.1007/b98904. 

[81] Newmark NM. A method of computation for structural dynamics, Journal of the 
Engineering Mechanics Division, 1959; 85: 67–94. 
https://doi.org/10.1061/JMCEA3.0000098. 

[82] Chopra AKCA. Dynamics of structures : theory and applications to earthquake 
engineering, Pearson, Boston, Massachusetts, USA, 2014, 4th ed. ISBN:0273774247. 

[83] Anthoine A. Homogenization of periodic masonry: plane stress, generalized plane 
strain or 3d modelling?, Communications in Numerical Methods in Engineering, 1997; 
13: 319–326. https://doi.org/10.1002/(SICI)1099-0887(199705)13:5<319::AID-
CNM55>3.0.CO;2-S. 

[84] Addessi D, Sacco E. Nonlinear analysis of masonry panels using a kinematic enriched 
plane state formulation, International Journal of Solids and Structures, 2016; 90: 194–
214. https://doi.org/10.1016/j.ijsolstr.2016.03.002. 

[85] Vermeltfoort AT, Raijmakers TMJ. Deformation controlled tests in masonry shear 
walls, part 2 (in Dutch), Technische Universiteit Delft, Eindhoven, The Netherlands, 
1993. 

[86] Raijmakers TMJ, Vermeltfoort AT. Deformation controlled tests in masonry shear 
walls (in dutch), Technische Universiteit Delft, Eindhoven, The Netherlands, 1992. 

[87] Kupfer HB, Gerstle KH. Behavior of concrete under biaxial stresses, Journal of the 
Engineering Mechanics Division, 1973; 99: 853–866. 
https://doi.org/10.1061/JMCEA3.0001789. 

[88] Hendry AW. Structural masonry, Scholium International, London, UK, 1998, 2nd ed. 
ISBN:134914827X. 

[89] D’Altri AM, Sarhosis V, Milani G, Rots J, Cattari S, Lagomarsino S, Sacco E, Tralli A, 
Castellazzi G, de Miranda S. A review of numerical models for masonry structures, 
Numerical Modeling of Masonry and Historical Structures, Elsevier, 2019, 3–53. 
https://doi.org/10.1016/B978-0-08-102439-3.00001-4. 

[90] Danso H, Akwaboah M. Assessment of the quality of burnt bricks produce in Ghana: 
the case of Ashanti region, Case Studies in Construction Materials, 2021; 15: e00708. 

[91] Rengifo-López EL, Kumar N, Matta F, Barbato M. Experimental and numerical study of 
uniaxial compression behavior of compressed and stabilized earth blocks, 
Proceedings of the 13th North American Masonry Conference, The Masonry Society, 
Longmont, Colorado, 2019, 925–936. ISBN:1053-2366. 

[92] Rengifo-López EL, Kumar N, Matta F, Barbato M. Experimental characterization and 
numerical simulation of compressive behavior of compressed and stabilized earth 
block specimens, Proceedings for the Tenth International Earthbuilding Conference 
(Earth USA 2019), Adobe in Action, La Madera, New Mexico, 2019, 314–320. 

 

 

 

https://doi.org/10.1002/eqe.3267
https://doi.org/10.1007/b98904
https://doi.org/10.1061/JMCEA3.0000098
https://doi.org/10.1002/(SICI)1099-0887(199705)13:5%3c319::AID-CNM55%3e3.0.CO;2-S
https://doi.org/10.1002/(SICI)1099-0887(199705)13:5%3c319::AID-CNM55%3e3.0.CO;2-S
https://doi.org/10.1016/j.ijsolstr.2016.03.002
https://doi.org/10.1061/JMCEA3.0001789
https://doi.org/10.1016/B978-0-08-102439-3.00001-4

	resm2021.328en0805c
	resm2022.408st0226m

