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 This paper introduces an innovative methodology for predicting the maximum 
dynamic response of structures using capacity curves and artificial neural 
networks (ANNs). This novel approach offers a quick and accurate procedure for 
estimating target displacements, obviating the need for intricate supplementary 
computations. The method generates a comprehensive dataset encompassing 
the bilinear representation of a single-degree-of-freedom (SDOF) characteristic, 
with ground motion parameters as inputs and maximum inelastic displacement 
as the corresponding output. This dataset is used to train an ANN model, with 
meticulous calibration of hyperparameters to ensure optimal model 
performance and predictive precision. The findings of this study demonstrate 
that the ANN model showed operational efficacy in approximating dynamic 
displacements. It is notably revealed that the size of the dataset significantly 
influences the ANN's performance and predictive accuracy. Through 
comparative analysis with established methodologies such as the displacement 
coefficient method and the modified coefficient method adopted by the Federal 
Emergency Management Agency (FEMA), the ANN model emerges as a fast tool 
for precisely predicting the dynamic response of single-degree-of-freedom 
systems, particularly those characterized by vibration periods exceeding 0.5 
seconds. Consequently, this research culminates in the assertion that the ANN, 
owing to its inherent simplicity and impressive precision, is an alternative tool 
for estimating target displacements. 

 
© 2023 MIM Research Group. All rights reserved. 
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1. Introduction 

The seismic response of buildings represents an essential factor in evaluating existing 
buildings' performance and seismic vulnerability (1–3). This response is known by 
engineering demand parameters (EDPs) such as roof drift ratio, inter-story drift ratio, base 
shear, etc. (4,5). Usually, the analyst is interested in capturing the maximum EDPs to 
evaluate the highest damage level during an earthquake. This valuable information can be 
used to justify the need to retrofit, strengthen, or demolish the assessed building (6–8). 

The Nonlinear time history analysis is the most reliable procedure that can capture the 
response of the building in terms of displacement, velocity, acceleration, and forces (9–11). 
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This method is based on solving a complicated equation of motion using numerical 
methodologies. However, the NL-THA is known for its complexity and the consumed 
processing time, which sometimes is inconvenient for performing a fast vulnerability and 
performance assessment. Therefore, the Nonlinear static procedure (NSP) was proposed 
as an alternative to the NL-THA due to its simplicity and less time-consuming feature (12–
14). The NSP is based on finding the relationship between the base shear of the structure 
and the corresponding roof displacement, and the obtained curve is called the capacity 
curve. This curve illustrates the buildings' behavior when subjected to a static lateral 
loading that simulates the dynamic loading generated by the earthquake. It also shows the 
linear and nonlinear behavior of the building and the rupture point. The NSP is commonly 
used in performance analysis and performance-based design by calculating the 
performance point (15). It represents the intersection point between the capacity and the 
demand curves. The Federal Emergency Management Agency (FEMA) and the Applied 
Technology Council (ATC) (16) propose many procedures that allow us to estimate the 
performance point and the target displacement, which is the maximum displacement of a 
building. The Displacement coefficient method proposed by FEMA 356 (17) uses the four 
coefficients C0, C1, C2, and C3 to calculate the target displacement of a building. These 
coefficients are calculated and calibrated using empirical data. In FEMA-440 (18), they 
proposed to make some modifications to this method. C3, which considers the P-delta 
effect on displacement, was removed, and the formulas of C1 and C2 were changed. 
However, these two procedures sometimes provide a good and accurate estimation of the 
target displacement (19). 

Artificial intelligence has recently become an exciting tool used in earthquake engineering, 
especially in seismic vulnerability assessment of existing buildings and damage prediction 
(20–28). Due to the simplicity and the high performance of the machine learning (ML) 
techniques, the analysis became much faster and less complex. Therefore, this work 
proposes a fast and accurate procedure that uses the NSP and artificial neural networks 
(ANNs) to estimate the maximum inelastic response of an SDOF system. The process is 
based on transforming the pushover curve into an idealized curve (transforming a multi-
degree-of-freedom system (MDOF) into a single-degree-of-freedom system (SDOF)). Then, 
a dataset will be generated using the SDOF characteristics to perform NL-THA. The 
effective vibration period (Ti), the effective mass (M*), and the yielding force limit (fy) are 
the SDOF’s characteristics. On the other hand, 31 artificial ground motions 
(AGM)parameters were selected to characterize the accelerogram of the earthquake: Peak 
Ground Acceleration, Peak ground velocity, Peak ground displacement, Arias intensity, 
Cumulative energy, Acceleration spectrum intensity, displacement spectrum intensity, 
cumulative absolute velocity, Uniform duration, predominant period, bracket duration, 
Housner intensity, Spectral acceleration, Spectral velocity, Spectral displacement, 
significant duration dominant frequency, Bandwidth, and central frequency. The output of 
the dataset is the maximum absolute inelastic displacement of the SDOF using the NL-THA.  
Two datasets will be used to train the ANN model (50,096) and (90,000). The investigation 
will be applied to 10 SDOF systems with various vibration periods (0.1 sec – 3 sec) and 
four yielding force limit (fy) (fy={100N, 400N, 700N, 1000N}). The comparison will be 
made between the mean response of each SDOF subjected to 31 artificial ground motions 
and the NL-THA’s results. 

2. The Proposed Artificial Neural Networks Model 

The supervised ML techniques became a helpful tool in civil and earthquake engineering. 
Its ability to find the relationship between the input and output features makes it suitable 
for creating predictable models. The most used ANN technique is based on finding the best 
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weights and biases corresponding to the lowest error between the predicted and the exact 
outputs.   

The main idea of the proposed method is finding the relationship between the idealization 
parameters (equivalent SDOF) and the ground motions parameters with the maximum 
inelastic response, assuming that the dynamic response of the equivalent SDOF system is 
the same as the MDOF’s. The procedure is illustrated in Figure 1 with the following steps.  

 

Fig. 1. The followed steps of the proposed ANN-based methodology 

The ANN model needs enough datasets to be trained and to achieve high performance. The 
dataset will be generated by performing NL-THA analysis of equivalent SDOF systems and 
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artificial ground motions. The output of the dataset will be the maximum inelastic 
displacement of the equivalent SDOF systems. 

2.1. Ground Motion Selection  

Earthquakes release energy in the form of waves and vibrations of different intensities. 
The acceleration records of a ground motion (GM) are the most used characteristics that 
describe and distinguish an earthquake from another. Each GM has specific characteristics 
like duration, location, peak ground acceleration, and frequency content that affect the 
building's response.  

Table 1. The generated artificial ground motions and their parameters 

 

 
PGA  PGV PGD Ecum Ia CAV HI PP 

AGM 1 0.16 0.89 1.27 128.75 20.61 35.75 3.47 0.40 

AGM 2 0.19 0.72 0.33 84.47 13.52 28.42 3.06 0.15 

AGM 3 0.16 0.81 0.59 123.71 19.81 37.01 3.49 0.40 

AGM 4 0.19 0.88 1.08 78.82 12.62 28.95 3.10 0.15 

AGM 5 0.19 0.75 0.48 86.92 13.92 28.56 3.00 0.15 

AGM 6 0.16 0.87 0.59 120.48 19.29 36.75 3.53 0.30 

AGM 7 0.16 0.91 0.34 143.74 23.01 40.08 3.74 0.25 

AGM 8 0.18 0.73 0.47 95.91 15.36 31.91 3.26 0.15 

AGM 9 0.20 0.76 0.69 93.61 14.99 29.93 3.03 0.15 

AGM 10 0.17 0.70 0.48 83.22 13.33 29.78 3.24 0.15 

AGM 11 0.17 1.07 0.69 109.57 17.54 34.69 3.46 0.20 

AGM 12 0.19 0.74 0.66 68.98 11.05 26.99 2.87 0.25 

AGM 13 0.15 1.54 3.65 124.17 19.88 33.46 3.73 0.40 

AGM 14 0.15 0.99 0.29 107.16 17.16 30.53 3.76 0.15 

AGM 15 0.18 1.41 1.81 92.68 14.81 29.65 3.24 0.30 

AGM 16 0.19 0.78 0.74 89.12 14.27 29.09 3.16 0.15 

AGM 17 0.24 0.70 0.31 47.51 7.61 20.38 2.36 0.40 

AGM 18 0.18 0.66 0.45 80.31 12.86 25.63 3.30 0.15 

AGM 19 0.18 1.67 2.38 74.50 11.93 25.20 3.17 0.30 

AGM 20 0.20 0.99 1.21 62.50 10.01 23.51 2.87 0.40 

AGM 21 0.24 0.62 0.27 55.29 8.85 23.29 2.34 0.40 

AGM 22 0.19 0.84 0.53 54.72 8.76 21.38 2.84 0.40 

AGM 23 0.16 0.81 0.43 97.59 15.63 35.30 3.33 0.35 

AGM 24 0.17 5.98 17.29 130.20 20.85 45.11 3.05 0.30 

AGM 25 0.18 0.72 0.51 84.89 13.59 33.06 2.91 0.20 

AGM 26 0.17 0.76 0.69 101.06 16.18 36.42 3.15 0.15 

AGM 27 0.22 0.83 0.69 64.96 10.40 24.70 2.55 0.25 

AGM 28 0.15 2.22 6.03 120.99 19.37 39.59 3.57 0.20 

AGM 29 0.21 0.73 1.48 65.88 10.55 25.08 2.58 0.15 

AGM 30 0.18 0.78 0.51 104.86 16.79 31.72 3.27 0.20 

AGM 31 0.19 0.66 0.81 79.15 12.6 24.63 3.21 0.30 
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Choosing the right GMs for the seismic vulnerability assessment is crucial for a reliable 
result. However, in some cases, the number of GMs selected for the study is insufficient due 
to the unavailability of real GMs. Therefore, using artificial ground motions is adequate to 
generate ground motions with the same spectral response of a target spectrum. 

In this study, 31 artificial ground motions (AGM) have been generated and matched to a 
target response spectrum of the EuroCode-8, as shown in Figure 2. The AGMs were 
generated and matched using “SeismoArtif” (29), and the seismic parameters of the 
generated AGMs are shown in Table 1. 

These AGMs are used in the NL-THA after scaling them using a scaling factor that increases 
and decreases the peak acceleration without changing the frequency content. The dataset 
will contain the GMs' characteristics that are illustrated as follows:  

 

Fig. 2. The target response spectrum and the mean matched spectrum of the generated 
AGMs 

• PGA: Peak Ground Acceleration • PP: predominant period 

• PGV Peak ground velocity • Bt: bracket duration 

• PGD Peak ground displacement • HI: Housner intensity 

• Ia: Arias intensity • Sa: Spectral acceleration 

• Ecum: Cumulative energy • Sv: Spectral velocity 

• ASI:  Acceleration spectrum intensity • Sd; Spectral displacement 

• VSI: velocity spectrum intensity • SD: significant duration 

• DSI: displacement spectrum intensity • Df: dominant frequency 

• CAV: cumulative absolute velocity • Bw: Bandwidth 

• Ud: Uniform duration • Fc: central frequency 

2.2. Generating The Dataset 

The performance of the ANN model depends on the size and quality of the dataset. It should 
contain enough information regarding variability and the number of input features. The 
inputs should describe the effective parameters of the problem and illuminate any 
unrelated features that may increase the training time and the complexity of the ANN 
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model. This study aims to use the SDOF characteristics and the GM parameters to estimate 
the seismic response of an equivalent system. For that reason, 90,000 NL-THA are 
performed in OpenSees (30) using 31 AGMs that characterize the earthquake. OpenSees 
model's results are compared to Nonlin's (31) results to validate them, as shown in Figure 
3. The maximum inelastic displacement of the SDOF is calculated and stored as an output 
of the dataset. This dataset contains 24 input parameters and one output. The SDOF 
characteristics are the fundamental effective vibration period (Ti), the effective mass (M*), 
and the yielding force (fy). Their variation range is represented in Table 2. The 
characteristics of the equivalent SDOF systems used to generate the dataset are selected 
randomly from a selection interval, as shown in Table 2. The random selection has to be 
uniform, i.e., the choice of each value from the SDOF characteristics ( Mass, stiffness, etc.) 
has the same probability of being selected, and that way, the number of each value will be 
almost equal, as shown in Figure 4. 

 

Fig. 3. NL-THA using OpenSees results and Nonlin software  case of an SDOF (Mass= 
200 Kg, Stiffness= 1000 N , fy= 100 N and El-Centro ground motion): a) Time versus 

dispalcement response, b) Displacement versus force response 

 

Fig. 4. the SDOF characteristics and their distribution in the generated dataset 

The material behavior is considered elastic perfectly plastic (EPP), and no stiffness or 
strength degradation is considered in this study. 
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Table 2. Selection interval of the SDOF parameters 

SDOF parameter Minimum Maximum Step 

Mass (Kg) 100 1000 100 

Period (sec) 0.1 3 0.03 

Yielding force (N) 100 1000 100 

2.3. Training The ANN Model 

The ANN is a supervised ML technique that requires inputs and outputs to find the 
relationship between them. The performance of the ANN model depends on various 
parameters and steps that will enhance its performance and reduce its complexity. Finding 
the best hyperparameters is a crucial step that decreases the training time and improves 
predictability. Activation functions, learning rate, number of epochs, number of hidden 
layers, and number of neurons are the principal hyperparameters that should be optimized 
by finding the best combination. 

The training is divided into three phases. The first phase is the forward phase, where 
weights and biases of the hidden layers are initialized with adequate values, and it ends 
with calculating the outputs in the output layer. After finding the first predicted output, an 
error should be calculated between the data's and the ANN's output. The best weights and 
biases are computed using the gradient descent and the chain rule by finding the lowest 
error. This process should be repeated for all the hidden layers backward until the network 
is updated. This process is the back-propagation algorithm, which represents the second 
phase of the training. Lastly, as explained previously, the training dataset should be passed 
through the network, where weights and bias adjustments should be made. The testing 
and the validation datasets are used to compare the prediction of the updated network to 
the exact solution by calculating the correlation coefficient and the mean squared error 
(MSE) for each iteration. These datasets are an indicator of the performance of the ANN for 
predicting unseen cases and monitoring the performance of the ANN during the training 
process. 

 

Fig. 5. Selection of best number of a) Hidden layers, b) Neurons 

Figure 5 represents the selection of several neurons and hidden layers of the ANN and the 
corresponding performance criteria. "ReLU" and "Linear" activation functions are used for 
this ANN model of the hidden and output layers. To select the best number of the hidden 
layers HL and number of neurons NN, the HL was fixed, and the NN was varied from 10 to 
90, calculating the R² and MSE each time, as shown in Figure 5 -b. The HL was also changed 
from 1 to 5; the best performance is illustrated in Figure 5 -a. It was found that four hidden 
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layers and 40 neurons are the optimum selection that corresponds to the highest 
correlation coefficient (98.65%) and the lowest mean squared error (0.0007). 

3. The Displacement Coefficient Method (FEMA-356) For Target Displacement 
Estimation 

The NL-THA is the most reliable method to estimate the seismic response of structures. 
Since it is a time-consuming process, a nonlinear static analysis was proposed as an 
alternative. FEMA-365 proposes two ways to estimate the target displacement of an 
equivalent SDOF system: the capacity spectrum method (CSM) and the displacement 
coefficient method (DCM). The CSM is based on transforming the pushover curve (base 
shear versus top displacement) and the response spectrum (spectral acceleration versus 
period) into the acceleration displacement response spectrum. Then, a performance point 
should be determined using proposed algorithms by ATC-40 (19). However, this method 
represents some instabilities where the performance point cannot be calculated due to the 
absence of an intersection between demand and capacity curves. This study compares the 
proposed method to the NL-THA, DCM, and modified coefficient method MCM proposed by 
FEMA 356 (32) and FEMA 440. (33) 

The DCM is expressed in the following equation to estimate the target displacement: 

𝛿𝑇 =  𝐶0𝐶1𝐶2𝐶3𝑆𝑎  
𝑇²

4𝜋²
 𝑔 (1) 

Where: 

• C0: is a modification factor to relate the SDOF ‘s spectral displacement to the MDOF’s 
response. 

• C1: is a modification factor that relates the inelastic expected response to the elastic 
response. 

• C2: is a modification factor representing the effect of strength and stiffness 
degradation on the maximum response. 

• C3: is a modification factor that relates the effect of the P-delta effect to the 
maximum response. 

• Sa: is the spectral acceleration of the effective fundamental period of vibration. 
• T: is the effective fundamental vibration of the building. 

However, FEMA-440 (33) recommended some changes and improvements to the 
displacement coefficient method DCM. They recommended changing the C1 and C2 
formulas and making them based on empirical data. 

C1 improved to transform the maximum elastic displacement to an estimate for inelastic 
systems. C2 was recommended for structures with significant strength and stiffness 
degradation behaviors. C3 was recommended to be eliminated from equation (1) for 
strength limit favor. 

4. A Comparative Study Between The ANN, DCM, MCM, and the NL-THA 

This section aims to calculate the seismic response of various SDOF systems subjected to 
31 unseen GMs using the ANN models and the FEMA's procedures, where the NL-THA's 
results will be used as exact solutions. Two ANN models will be used to study the effect of 
the dataset's size on the ANN's predictability. 

Three statistical criteria will be used to evaluate the performance of each method to the 
NL-THA's results. 10 SDOF systems with different vibration periods and yielding force 
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limits but fixed post-yielding ratio α=0% will be studied. These SDOFs' characteristics are 
illustrated in Table 1. The statistical criteria are shown in Table 2. 

Table 2. The used statistical criteria to estimate the performance of each approach to the 
NL-THA results 

Statistical criterion Equation 

Mean Relative Error (MRE) =
1

𝑁
∑

𝛿𝑁𝐿𝑇𝐻𝐴,𝑖−𝛿𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖

𝛿𝑁𝐿𝑇𝐻𝐴,𝑖𝑖=1
 × 100 

Mean Absolute Error (MAE) = 
1

𝑁
∑ |𝛿𝑁𝐿𝑇𝐻𝐴,𝑖 − 𝛿𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖|𝑖=1

 

Where: 

•  𝛿𝑁𝐿𝑇𝐻𝐴,𝑖  : is the maximum inelastic displacement of the mass under a ground 

motion ‘I’. 

• 𝛿𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖 : is the target displacement estimated using the ANN, DCM   or MCM. 

• N:  is the total number of the used ground motions. 

5. Results and Discussion 

This paper proposed an ANN model that can predict the maximum inelastic displacement 
of an equivalent SDOF system using the nonlinear static procedure (pushover analysis). 
The study generated a dataset to train the model containing the SDOFs' characteristics and 
the GM parameters. Two datasets were generated containing 50,096 and 90,000 analyses. 
The aim of generating two datasets is to study the effect of dataset size on the performance 
of ANN. Then, these models will be compared to existing methods that estimate the target 
displacement. The NL-THA results have been used to compare the accuracy of prediction 
and estimation of the methods. The study is applied to 10 SDOF systems (0.1 sec to 3 sec) 
with different yielding force limits (fy).  

 Figure 6 represents the predicted, estimated target displacement and the dynamic 
inelastic response of the SDOF systems using DCM, MCM, ANN, and NL-THA for four 
yielding limit forces (fy =100 N, 400 N, 700 N, 1000 N) as illustrated in Figure 6-a, Figure 
6-b, Figure 6-c and Figure 6-d respectively. The obtained results are the median response 
of each SDOF system using ANN, DCM, MCM, and NL-THA.  
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Fig. 6. Target displacement estimation using NL-THA, ANN, DCM and MCM for: a) 
fy=100 N, b) fy=400 N, c) fy=700N and d) fy= 1000N 

Figures 7 and 8 illustrate the MRE and the MAE between the exact solution (NL-THA) and 
the estimated target displacements. 

 

  

  

Fig. 7. Mean relative error of the predicted and the NL-THA seismic response of 10 
SDOF systems: a) fy=100 N, b) fy=400 N, c) fy=700N and d) fy= 1000N 
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Fig. 8. Mean absolute error between the predicted and the NL-THA seismic response of 
10 SDOF systems: a) fy=100 N, b) fy=400 N, c) fy=700N and d) fy= 1000N 

The ANN-based method using 50,096 and 90,000 analysis is the nearest to the exact 
solutions calculated by the NL-THA. DCM and MCM overestimate the maximum inelastic 
displacement, especially for periods greater than 0.5 sec. Figure 7 shows the relative error 
between the mean dynamic inelastic response of the SDOFs subjected to 31 AGMs scaled 
to PGA=0.3 g. The results showed a high overestimation of the dynamic response (>100% 
in some cases), and the lowest relative error is 16% for the DCM and the MCM for all the 
cases. On the other hand, the ANN model shows a high predictability of the SDOFs' dynamic 
response for all the selected yielding limit forces (fy). It was also observed that the size of 
the used dataset enhanced the performance of the ANN model in terms of MRE. Figure 8 
shows that the DCM and the MCM have the highest mean absolute error (>0.1) for all 
systems with vibration periods higher than 0.5 sec. These methods are promising 
approaches to estimating the target displacement of rigid and high-frequency buildings. 
On the other hand, the ANN showed a lower MAE than the DCM and MCM (0.02 was the 
highest MAE value for both the ANN models and for all the fy). 

The ANN model could precisely predict the dynamic response using the SDOF and the 
ground motion characteristics. In addition, the obtained results were more accurate than 
the existing methodologies adopted by FEMA-356 and FEMA-440. Using the NSP with the 
ML showed remarkable predictability of dynamic responses, which makes it less complex 
and faster than the NL-THA. This hybrid procedure that uses the pushover curve and the 
ANN can be transformed into software that the analyst can use to estimate the dynamic 
response of any building without using the NL-THA. However, since the proposed 
procedure uses the equivalent bilinear curve of the pushover analysis, the higher mode 
effect can change the seismic response remarkably. 
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6. Conclusion  

The seismic response estimation of structures is essential in assessing their performance 
and vulnerability. The NL-THA is considered the most reliable method to estimate the 
seismic demand.  Many alternative methods have been developed to reduce the complexity 
and the computation time of the NL-THA, like Nonlinear static pushover (NSP). FEMA-356 
and FEMA-440 proposed two equations to estimate the target displacement. However, 
their results remain inaccurate sometimes, and they overestimate or underestimate the 
seismic demand. For that reason, this study introduces a new approach that combines 
Nonlinear Static Pushover (NSP) analysis and Artificial Neural Networks (ANNs) to rapidly 
and accurately estimate the maximum inelastic displacement of an equivalent single 
degree of freedom (ESDOF) system subjected to a ground motion. This ESDOF represents 
the idealization of the pushover curve by transforming the MDOF system into an SDOF 
system, making the analysis much more effortless. The procedure is based on generating a 
dataset that contains various SDOF systems (Their characteristics: effective mass (M), 
effective stuffiness (K), and limit yielding force (fy)) and the parameters of the artificial 
ground motions (AGMs). The artificial neural networks were selected as a supervised 
machine learning algorithm to find the relationship between the ESDOF and the maximum 
inelastic displacement. 

To evaluate the predictability of the ANN-based model, ten SDOF systems with variant 
vibration periods were selected to calculate the median seismic demand using the 
displacement coefficient method (DCM) proposed by FEMA-356, the modified coefficient 
method (MCM) proposed by FEMA-440 and the NL-THA using 31 AGMs. For limit yielding 
forces were selected fy= [100 N,400 N,700 N,1000 N]. The results were quite promising, 
showing that the model can predict deformations accurately. It has also been found that 
the size of the dataset used for training the model affects how well it performs.  

This new ANN-based method shows a remarkable accuracy compared to existing 
alternative methods. The technique provides high accuracy for structures with a vibration 
period greater than 0.5 seconds, and the first mode is the predominant. 
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