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 The developing countries share similar attributes at all the regions. Still 43% of 
urban population did not escape from slums live hoods. As many developing 
countries focuses on the infrastructural development and try to improve people 
living standards. This infrastructural built-up activity consumes lots of concrete 
and other construction materials. These construction materials possess different 
properties from place to place. Cementitious composites undergo 
transformations in their fundamental properties due to regional variations in 
environmental conditions. Therefore, their mechanical strength computing tools 
plays crucial role. When topic touches with concrete, one of the most important 
characteristics is the compressive strength. Predicting the strength of concrete 
has traditionally been done with using mechanical means, but in recent years few 
soft computing methods have become important tools. In this research, we apply 
two methods to compute the Compressive strength of fly ash concrete based on 
the results of our own experimental findings. To anticipate concrete strength., 
this study investigated the properties of all the materials involved. The ensemble 
methodology and the decision tree were two of the success-forecasting 
methodologies that were investigated, and comparative assessments were made 
on them. The R2 value for the ensemble methodology was determined to be 0.96, 
which was much higher than the DT method's 0.76. In addition to k-fold Cross 
Validation, the findings of the trials are further supported by assessments of root 
mean square error (RMSE) and root mean error (RME). Ensemble approaches 
are good for minimizing model variance, improving prediction accuracy. 
Combining many models to make a single forecast from all their potential 
predictions eliminates variation. 

 

© 2023 MIM Research Group. All rights reserved. 
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1. Introduction 

Concrete's strength, durability, resilience, and adaptability make it a go-to material for a 
broad range of building projects. This remarkable substance is put to use in the production 
of a broad variety of buildings, roads, and walkways. During building, concrete is employed 
for its strength, longevity, and adaptability. These superior qualities have made concrete 
the material of choice for both commercial and residential building projects because to its 
dependability and widespread application in the building trade. Standard concrete 
consists primarily of cement, water, and rocks and gravel of varying sizes [1-3]. 
Greenhouse gases (GHG) are mostly caused by the cement manufacturing process and huge 
incorporation in concrete infrastructure [4]. When it comes to CO2 emissions, the cement 
industry is among the worst offenders [5]. If four billion tonnes of cement are produced 
per year, the same quantity of CO2 pollutant is also discharged into the environment [6]. 
Making use of waste or repurposed materials is suggested to lessen this effect [7]. Reduced 
concrete use has further environmental benefits [8]. Many types of industrial waste 

mailto:loms786@gmail.com
http://dx.doi.org/10.17515/resm2023.632me0103


Mahajan and Bhagat / Research on Engineering Structures & Materials 9(3) (2023) 1039-1060 

 

1040 

products (e.g. G G B S, Granite Powder, Fly Ash (F) [9]) can be used as a cement substitute. 
Hardened concrete will benefit from these additional raw materials and, simultaneously, 
lower its carbon footprint by as much as 80 percent without sacrificing quality. 

In the process of mix design, the compressive strength (C.S) is regarded as one of the most 
important qualities and study of concrete structures. Additives, such as chemical or 
mineral admixtures, can be added to concrete either before or after it sets to improve its 
basic components. The quality of concrete can be affected by the cementitious mixes used 
[10]. Lab tests of concrete's strength are necessary for every project [11]. Concrete 
factories have a hard time with strength prediction because of this. In ancient times [12], 
the strength became an important criterion for heterogeneous building. Due to worldwide 
standards and sustainable development, the mineral additives used for making concrete 
found key role in the environment [13].  Fly ash, a sustainable substance, can be used as a 
dependable substitute for cement in renovations, alterations, and major building projects. 
Concrete's mechanical and rheological properties are enhanced [14]. 

It is not easy to strike a balance between cost and quality when considering the quantity of 
each suitable concrete material to use, as determining the C.S of concrete takes a lot of time 
and work. Scientists have spent the better part of a decade creating artificial methods for 
picking the most effective strength prediction techniques [15] to help them save time and 
money in the lab. Complex concrete mixtures are difficult to locate and predict. The C.S of 
concrete is determined in the laboratory by breaking cylinders and conventional cubes 
after they have been cast for a specified period of time [16]. This method's application has 
reached a plateau of near-universal acceptance. However, laboratory testing will certainly 
be expensive and time-consuming. It takes a lot of time and money to set up apparatus and 
conduct tests on specimens using the conventional, established laboratory methods.  

Recently, researchers have been putting a lot of effort into developing prediction scenarios 
for a variety of mechanical features in concrete with the use of tearing technologies like 
artificial intelligence (AI) and machine learning (ML) [15,17]. Using methods such as 
supervised learning, it is possible to estimate a great many parameters (W/C, SCBA%, FA, 
CC, CA ), although with varying degrees of accuracy in the regression, classification, 
clustering, and reinforcement learning [22]. 

2. Machine Learning [ML] Overview 

The primary focus should be placed on the development of prediction algorithms for 
machine learning, the most sophisticated kind of AI. This is due to the fact that several 
patterns in large datasets can be objectively recognized in order to carry out a certain task. 
This artificial zone, labelled Intelligence, is what gives computers the ability to perform the 
intricate and laborious activities that would otherwise be impossible for them to do. Tasks 
that tested the robots' precision and difficulty. Through a series of computational 
procedures, we were able to create a programme that, rather than having to be explicitly 
programmed to recognize patterns, could infer them automatically from the available data. 
These algorithms outperform human-written code because they have independently 
learned logics from the data at hand. These algorithms are the product of computational 
learning theory, which permits the acquisition of data-point-specific properties necessary 
for the interpretation of knowledge and the rapid generation of solutions from any number 
of publicly available datasets. It is possible to employ extra image data in conjunction with 
an algorithm that has been trained to distinguish between benign and malignant lesions 
on imaging. 

As can be seen in Fig. 1, the AI subfields are structured in a hierarchical fashion. A few 
broad classifications for ML models are provided below. The ML phylogenetic trees can be 
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broken down into several distinct groups. The ML are known as Supervised Learning, 
Unsupervised Learning, and Reinforcement Learning. 

 

 

Fig. 1 AI's subfields 

Popular and widely used approaches to supervised machine learning include the decision 
tree, boosting, S V M, AdaBoost, bagging, ANNs, and gene expression modulation. For 
unsupervised learning, the available datasets are often quite limited for the output labels 
are scant or nonexistent in several cases. The purpose of these models is rather to 
determine the interrelationship and/or expose the dormant parameters based on the 
findings.   

3. Literature Review 

Ensemble techniques are a kind of statistical and numerical learning approach that mimics 
the human interpersonal learning behavior of polling a group of experts before reaching a 
major decision.  To improve the accuracy and reliability of their recommendations in 
supervised and unsupervised learning situations, ensembles integrate the judgements, 
learning algorithms, perspectives on the data, and other features of several learning 
machines.  A N N, G E P, and deep learning are now popular developments technology 
utilized for predicting a wide range of scientific issues [23, 24]. Specifically, S V M is more 
robust in nonlinear regression settings than other approaches [25]. It has high 
generalizability and may provide better global optimal solutions. Despite having a tree-like 
form and using nodes and roots to distribute data, the results of the prediction [26] differ 
from the Decision tree (D-T) and Random Forest (R-F). While R-F relies on a randomized 
sampling of unique particulars among the elements that build the trees used for projection, 
DT makes use of an extensive database that includes the variable of interest to it. The next 
step is to prove that the mean prediction is right by tying it to as many votes as feasible. 
Using inspiration from Darwinian evolution, GEP, a cutting-edge M-L computer algorithm, 
was created [27]. It achieves this by using an expression tree to depict the connection's 
non-linearity. Machine learning (ML) techniques are often used to glean previously 
unknown patterns, data points, and connections from a massive repository of information. 
Despite this, the process employs databases, machine learning, and statistical analysis. 
There are two unique techniques that may be used for both modelling and prediction. For 
one, there is the time-honored, single-model approach; for the other, there is the ensemble-
algorithm technique [28]. Evidence from the first studies of these methods shows that, 
relative to solo ML models, ensemble procedures improve accuracy [29]. With the use of 
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the training data, ensemble learning models first perfect the weaker/slower learners, and 
then merge them with the stronger/faster learners to create a perfect learner [30]. 

Several machine learning techniques have been utilized for performance prediction over a 
wide range of criteria for quite some time. However, throughout the course of the last 
several years, a clear trend toward a larger usage of them in engineering field has emerged. 
Because of the high accuracy with which they predict property values (mechanical). Since 
nonlinear behavior is more accurate than linear behavior, the underlying theory of ML is 
identical to that of conventional algorithms. Statistical methods such as A N N, the decision 
tree algorithm D-T, support vector machines S V M, R-F, G E P, and D-L, and others are 
extensively used in the evaluation of perceptible mechanical qualities [31]. To compute the 
shear strength of concrete beams, the study by [32] used 11 distinct methods. Study [33] 
used ANN in tandem with the multi-objective grey wolves optimizer to forecast the 
mechanical properties of silica fume concrete with high precision. C.S estimates for 
concrete were calculated using D-T, A N N, and S V M by the researcher [34]. 

Utilizing an ANN system, researcher [35] determined the C.S and tensile strength of 
discarded concrete. Concrete C.S was estimated [36] using SVM, and outcomes were 
contrasted to those obtained using ANN and DT models in coastal situations. To foretell 
the durability of lightweight foamed concrete, Researcher [37] used a number of machine 
learning techniques. One study [38] used a machine learning technique to identify a 
reinforced concrete durability feature. Suguru. [39] used machine learning to create a 
robotic system for detecting cracks in concrete. Images of the concrete were utilized for 
data collection, and deep learning was put to use to spot the cracks. Accuracy of machine 
learning models is evaluated by researchers [40,41] . 

There is a lot of variability in the testing model, and one way to deal with it is via an A N N 
[42]. The broad use of A N N in C.S prognosis has received support from many academics. 
The feed forward ANN classification (multilayer perception), consists of 03 layers: Input, 
hidden, and output (M L P). For the power prediction model, these more traditional neural 
nodes are more convenient to operate with [43, 44]. For the objective of foretelling the C.S 
of fly ash concrete mixes, this research makes use of a variety of categorical criteria. The 
goal is to make it easier to create a universal M-L model that can capture a broad range of 
mixture characteristics. In furthermore, the models will use a wide range of Fly Ash 
concrete mixtures rather than only using the results of earlier studies. Since a cement 
composite's primary function as a construction material is compression, its mechanical 
strength is prized above all others. Studies have shown that ordinary compressive 
strengths are within the range of 25 to 115 MPa [45-49, 72]. Generative ensemble 
approaches, on the other hand, produce groups of base learners that manipulate the base 
supervised learning or the data frame structure to enhance the base learners' variety and 
performance. In this situation, the fundamental problem with the ensemble method is not 
the mixing approach, but rather the manner in which various base learners are generated. 
Methods such as resampling, which divide the input space and train base learners on 
bootstrap samples reproduces of the data; random subspace algorithms, which produce 
diversified base learners by using varying random selection sub-sets of features; and 
combination of experts methods, which divide the input space and train an ensemble of 
neural networks to conduct an impactful estimation at each assigned territory separately, 
are all examples. 
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Table 1. Trends of adopting soft computing techniques for the prediction of various terms 

Sr No Reference and Year 
Algorithm and Method adopted 

by Researchers 
Dataset 

Used 
Output (Prediction 

Parameter) 

alternative 
mineral 

admixture 
used) 

1 Researcher [50] 
Convolutional Neural Network 
Regression (CNN), Ensemble 

Regression models 
345 

Compressive 
Strength (C-S) 

sludge-cement 

2 
Researcher [51] A N N, G E P, and Gradient 

boosting tree (GBT) models 
232 C-S demolition 

waste 
3 Researcher [52] support vector regression (SVR), 

grid search (GS) optimization 
algorithm, 

559 C-S Not Used 

4 Researcher [53] ensemble deep neural network 
models 

270 C-S Fly ash 

5 Researcher [54] (BPNN), (MARS), (RVM) 629 C-S Not Used 

6 Researcher [55] ensemble algorithm  
(GEP, DT and Bagging) 

270  (C-S) Fly ash 

7 Researcher [21] Individual and ensemble 
modelling (A N N, bagging and 

boosting) 

1030 C-S Fly ash 

8 Researcher [18] Individual algorithm (A N N, GEP, 
D-T) 

642 Chloride 
Concentration 

Fly ash 

9  Researcher [56] Data Envelopment (DEA) 114 C-S Fly ash 

10 Researcher [57] Multivariate (MV) 21 C-S Crumb Rubber 

11 Researcher [58] Support vector machine (S V M) 25 C-S Fly Ash 

12 Researcher [59] SVM 115 Slump Value, 
L-box  

Fly Ash 

13 Researcher [60] Adaptive neuro fuzzy inference 
system (ANFIS-ANN) 

7 C-S POFA 

14 Researcher [20] Gene expression programming 
(GEP) 

277 Axial Capacity Not Used 

15 Researcher [61] G E P 357 C-S Not Used 

16 Researcher [62] R-F and G E P 357 C-S Not Used 

  17 Researcher [63] A N N 205 C-S Fly Ash, 
GGBFS, SF, 

RHA 
18 Researcher [64] Intelligent rule enhanced 

multiclass SVM and fuzzy rules 
(IREMSVM-FR) 

114 C-S Fly Ash 

19 Researcher [65] R-F 131 C-S Fly ash, GGBFS 

20 Researcher [66] M A R S 114 C-S, Slump value Fly ash 

21 Researcher [67] Random Kitchen Sink Algorithm 
(RKSA) 

40 C-S, Slump value, V-
funnel 

Fly Ash 

22 Researcher [68] Adaptive neuro fuzzy inference 
system (ANFIS) 

55 C-S Not Used 

23 Researcher [69] A N N 114 C-S Fly Ash 

24 Researcher [70] A N N 69 C-S Fly Ash 

25 Researcher [71] ANN, DT, GEP 100 C-S Fly Ash 
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4. Research Significance 

Since the turn of the century, computer technologies have become more efficient, reducing 
the need for laborious manual labor. There are fewer validations at civil engineers' 
disposal in this burgeoning sector of transdisciplinary domain utilization. The little 
literature on ANN strategies and their application to C.S. prediction. Through the use of 
cutting-edge ML techniques, costly manual labor in the lab and expensive raw materials 
may be avoided. This study's significance and novelty stem from (a) its novelty and (b) its 
applicability to current issues, such as the ASTM's experimental works for fly ash concrete 
(FAC) (c) using ML methods for FAC model development. 

This research focuses on ML (discrete-event neural network) and boosting techniques for 
making predictions of strength. The use of concrete that contains fly ash was explored 
during the whole experimental procedure. Actual results were predicted and compared 
using ML. Quality of these findings provided by various ML algorithms and their 
applicability. This research also gives a means of comparing and evaluating the results of 
experiments conducted using individual and ensemble ML approaches. Both statistical 
tests and k-fold performance models were evaluated for cross-validation [71]. The 
purpose of this analysis is to look at how different inputs affect the reliability of the 
expected output. Such applications were utilized to evaluate the predictive efficacy of 
different approaches. 

5. Experimental Program 

The fundamental components of concrete have been thoroughly analyzed in accordance 
with IS Code and ASTM standards. Experiments were conducted using Type-1; 53Grade 
cement (Ordinary Portland). For both the cement utilized and the studies conducted, the 
standard specifications indicated by ASTM C150 were taken into account. Cement bags had 
airtight polythene coverings placed on top of them to prevent the bags from absorbing 
moisture from the air. Table 2 and Table 3 provide the chemical and physical 
characteristics of fly ash and cement, respectively. 
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Fig. 2 shows a glimpse of experimental work that were subjected to compressive 
testing 

The fine aggregate's quality was determined by testing that met the requirements of the 
ASTM standard. Coarse aggregates with a standard thickness of less than 20 mm were 
sourced locally and used into the fresh concrete that was formulated to meet ASTM 
standards. Coarse Aggregate (CA) and Fine Aggregate (FA) physicochemical parameters 
are listed in Table 4. (Fa). 

Table 2. Physical Analysis of cement ( C )and fly ash (F) 

Sr No Material Property Measured 
Unit 

Obtained 
Value 

1 C Specific surface area Cm2/gm 8299 
2 C Specific Gravity gm/cm2 3.1 
3 C Insoluble residue Percent 0.5 
4 C Particle Size µm 1.65 
5 C Loss of Ignition Percent 2.29 
6 F Retention on 45-micron Sieve Percent 33 

7 F Lime Reactivity N/mm2 7 

8 
F Soundness test using 

Autoclave Expansion 
Percent 0.06 

9 F Drying Shrinkage Percent 0.05 

10 
F C.S compare to cement 

mortar cube 
Percent 81 

 

Table 5 summarizes the results of the tests performed on the different mix proportions (a, 
b, c). Specimens with a diameter of 100mm and a height of 200mm were cast with a w/c 
of 0.4 - 0.6. the specimens were cured at 27 degrees Celsius for 3, 7, 14, 28, and 90 days. 
The C.S. performed to ASTM C39 standards after curing properly. To achieve the desired 
mix workability attribute, the hit-and-trial approach was examined with the 
superplasticizer dosage. Fig. 2 is a view inside laboratory procedures. 
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Table 3. Chemical Analysis of fly ash (F) and cement ( C ) 

Sr No Chemical Compound C F 

1 Calcium Oxide-(CaO) 65.82 2.35 
2 Iron Oxide-(Fe2O3) 3.63 26.87 

3 Silica-(SiO2) 18.99 50.9 

4 Alumina-(Al2O3) 6.94 4.27 

5 Magnesium Oxide -(MgO) 1.98 1.52 

6 Sodium Oxide-(Na2O) 0.10 0.11 

7 Potassium Oxide- (K2O) 0.45 1.47 

Table 4. Physical Analysis of Coarse Aggregate (C-a) and Fine Aggregate (F-a) 

Sr No Aggregate Type Property Measured 
Unit 

Result Standards 
Followed 

1 C-a Bulk Sp. Gr. No Unit 2.75 ASTM C128, C127 
2 F-a Bulk Sp. Gr. No Unit 2.65 ASTM C128, C127 

3 C-a Moisture Content Percent 0.75 ASTM C566 

4 F-a Moisture Content Percent 1.10 ASTM C566 

5 C-a Moisture Absorption Percent 1.40 ASTM C128/ C127 

6 F-a Moisture Absorption Percent 1.10 ASTM C128/ C127 

7 C-a Fineness Modulus No Unit - ASTM C136 

8 F-a Fineness Modulus No Unit 2.45 ASTM C136 

9 C-a Nominal Maximum Size Mm 20 - 

10 F-a Nominal Maximum Size Mm 4.70 - 

11 C-a Rodded Unit Weight kg/m3 1580 ASTM C29 
12 F-a Rodded Unit Weight kg/m3 - - 

 

Table 5a. Mix proportions conducted of specimens (sr. no 1 to 33) 

Sample 
no 

Cement 
(kg/m3.) 

Fly Ash 
(kg /m3.) 

Water 
(kg/m3.) 

Superplasti
cizer 

(Kg/m3.) 

Coarse 
aggregate 
(kg/m3.) 

Fine  
aggregate 
(kg /m3.)  

Curing 
Period 
(days) 

CS  
(N/mm2) 

1 185.5 102 166.6 7.7 1009.5 908.5 90 39.4 

2 170.5 127.9 161.5 8 1093.1 801.6 3 18.23 

3 180.5 127.9 165.8 8 1093.1 801.7 14 24.46 

4 160.5 127.9 161.8 8 1093.1 807.1 28 28.53 

5 241.9 126.1 184 5.9 1060.7 782.4 14 23.03 

6 211.9 126.1 183.9 5.9 1060.7 782.4 28 22.93 

7 211.9 125.1 183.9 5.9 1060.7 782.4 56 34.33 

8 239.8 118.8 191.6 4.8 1032.5 761.7 90 33.43 

9 195.1 124.7 160.5 10.1 1091.2 805.7 3 10.61 

10 190.5 124.7 161.6 10.1 1091.2 805.7 14 24.22 

11 167.9 168.8 172.1 4.7 1061.7 783.2 3 12.9 

12 135.9 163.8 176.2 4.7 1061.7 783.2 14 28.61 

13 165 161.8 172.1 4.7 1061.7 783.2 28 26.32 

14 230.4 118.7 194.9 6.3 1031.2 760.7 3 16.59 
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15 228.5 119.7 191 6.3 1031.2 760.7 14 22.43 

16 229.5 118.7 194.9 6.3 1031.2 760.7 90 43.49 

17 247.9 94.6 186.4 7.2 953 850.1 3 22.55 

18 237.9 92.6 188.4 7.2 953 850.1 14 27.72 

19 247.9 92.6 186.4 7.2 953 850.1 90 48.95 

20 250.3 96.2 187.1 5.7 960 864.3 3 13.9 

21 250.8 96.2 186.2 5.7 960 864.3 14 28.52 

22 212.3 125.4 158.7 8 1088.5 802.6 3 19.54 

23 212.4 125.2 181.6 6 1031.5 760.8 14 32.04 

24 251.6 124.7 188.2 6.6 1031.5 813.8 56 36.02 

25 251.7 123.3 181.3 6.6 1031.5 760.8 90 46.32 

26 181.6 123.3 169.3 7.8 1058.7 813.8 3 15.73 

27 181.6 123.3 170.3 7.8 1058.7 813.8 14 24.05 

28 181.6 123.3 169.3 7.8 1058.7 780.9 28 29.91 

29 182.3 124.9 170.3 7.8 1058.7 780.9 56 38.89 

30 181.2 122.3 169.3 7.8 1058.7 780.9 90 47.89 

31 249.9 125.3 168 9.6 964.3 868.1 90 47.11 

32 229.9 125.3 160.3 12 977 878.7 3 23.23 

33 220.6 125.3 145.8 12.6 1009.1 902.9 28 32.86 

34 210.6 125.3 143 12.2 1089.9 804 56 63.67 

35 220.6 125.2 140.8 12.2 1089.9 804 90 63.44 

36 213.5 125.2 154.5 10.4 1056.6 779.5 28 44.27 

37 213.5 125.3 154.7 10.4 1056.6 779.5 56 48.26 

38 213.5 125.3 154.5 10.4 1056.6 779.5 90 55.21 

39 213.3 125.3 155.3 11.9 1055.4 778.6 3 20.76 

40 213.3 125.3 154.3 11.9 1055.4 803.1 14 38.1 

Table 5b. Mix proportions conducted of specimens (sr. no 34 to 66) 

 

Sample  
no 

Cement 
(kg/m3.) 

Fly Ash 
(kg /m3.) 

Water 
(kg/m3.) 

Superplasti
cizer 

(Kg/m3.) 

Coarse 
aggregate 
(kg/m3.) 

Fine  
aggregate 
(kg /m3.)  

Curing 
Period 
(days) 

CS  
(N/mm2) 

41 213.3 125.3 155.4 11.9 1055.4 803.1 28 43.56 

42 213.3 125.3 154.3 11.9 1055.4 803.6 56 50.55 

43 213.3 125.3 155.2 11.9 1055.4 803.1 90 59.52 

44 218.7 125.3 158.2 11.5 1081.8 798 56 41.33 

45 218.7 125.3 159.8 11.5 1081.8 798 90 46.37 

46 375.8 125.3 216.4 0 1006.6 765.5 3 20.1 

47 190.1 125.3 165.3 10.1 1082.1 802 14 21.34 

48 164.8 125.3 163.5 0 1008.7 904 28 27.23 

49 190.1 125.3 165 10.1 1082.1 802 28 27.79 

50 249.8 125.3 192.5 5.5 952 860.3 28 29.33 

51 213.3 125.3 158.9 11.9 1046.7 775 28 45.73 

52 194.5 125.3 171.2 7.7 1001.1 904.9 28 40.39 

53 251.2 125.3 192.6 6 1046.7 757.4 28 38.11 

54 309.8 125.3 189.6 0 939.3 715.3 28 42.06 

55 279.8 125.3 189.6 0 939.3 703.1 7 37.69 
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Table 5c. Mix proportions conducted of specimens (sr. no 34 to 66) 

56 290 125.3 183.3 0 1072.3 757.4 7 24.3 

57 252.3 125.3 186.4 0 1114.7 787.4 7 14.23 

58 338.8 125.3 196.7 0 971.1 803.1 3 19.36 

59 256.8 125.3 192.5 0 971.1 859.6 90 28.66 

60 253.8 125.3 192.4 0 971.1 802.8 90 29.78 

61 306.8 125.3 193.2 0 971.1 802.6 28 30.45 

62 306.8 125.3 190.9 0 971.1 802.6 90 37.04 

63 289.8 125.3 191.9 0 939.1 758.1 28 47.41 

64 296.8 125.3 191 0 939.1 758.1 90 52.3 

65 298.8 125.3 187 0 969.1 766.1 3 18.23 

66 287.8 125.3 188.3 0 969.1 761.1 7 22.33 

67 288.8 125.3 188.3 0 969.1 762.1 14 30.34 

68 291.8 125.3 187 0 969.1 766.1 28 34.67 

69 330.8 125.3 191.9 0 981.1 804.1 90 41.22 

70 348.8 125.3 191.9 0 1050.1 809.1 3 17.71 

71 294.8 125.3 185 0 1072.1 772.5 28 28.31 

72 237.8 125.3 184.9 0 1121.1 792.1 28 17.96 

73 295.8 125.2 191 0 1088.1 768.6 7 17.95 

74 322.3 125.3 203.1 0 977.1 843.1 14 25.23 

75 321.8 124.9 201.2 0 977.1 803.3 28 27.27 

76 321.8 125.2 202.4 0 977.1 823.1 90 31.69 

77 301.8 125.3 202.4 0 977.1 820.1 28 27.23 

78 312.3 125.1 182.1 0 1043.1 737.1 28 41.2 

79 316.8 125.3 192.2 0 939.1 724.1 3 27.41 

80 209.8 125.3 142.2 0 899.1 899.1 7 50.53 
 

Sample no 
Cement 
(kg/m3.) 

Fly Ash 
(kg /m3.) 

Water 
(kg/m3.) 

Superplastic
izer 

(Kg/m3.) 

Coarse 
aggregate 
(kg/m3.) 

Fine  
aggregate 
(kg /m3.)  

Curing 
Period 
(days) 

CS  
(N/mm2) 

81 220.7 125.3 142.2 0 899.1 899.1 28 73.23 

82 143.8 125.3 157.9 18.2 946.1 847.1 28 18.54 

83 147.8 125.3 158.1 16.2 1005.1 833.1 28 21.07 

84 325.8 125.1 198.8 11.2 804.1 795.1 28 40.9 

85 289.8 125.3 220.2 11.2 901.1 716.1 28 10.71 

86 299.6 125.3 211.2 10.1 881.3 730.7 28 26.93 

87 147.9 125.1 158.9 16.3 1004.9 833.2 28 20.1 

88 326.3 125.3 193 11 804.2 795.6 28 36.73 

89 276.2 125.3 217.1 11.2 900.8 716 28 10.67 

90 150.5 125.3 164.3 15.8 1077.6 690.1 28 16.56 

91 190.6 125.3 184.8 11.3 982.6 814.1 28 16.33 

92 190.7 125.3 167.9 11.8 994.3 787.1 28 19.78 

93 188.5 125.3 182.1 11.9 1026.4 735.1 28 21.13 

94 297.9 125.1 189.1 6.3 882.1 818.1 28 42.76 

95 318.7 125.3 212.4 5.9 863.6 728.1 28 37.21 

96 355.7 125 196 11.2 804.5 772.1 28 37.39 

97 199.6 125.3 185.1 12.8 852.4 859.6 28 19.13 
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  The modelling was carried out using a total of seven inputs and one result (i.e. C.S). Table 
6 lists the individual variables that make up this input dataset. Table 6 presents the 
frequency distribution information, while Table 7 describes the statistical distribution. 
Using a histogram, figure 4 depicts the intensity that was included into the C-S calculation. 

Table 6. Dataset properties for Input- output variables 

Parameter Min value Max value 
C  (kg/m3) 135.9 375.8 

Water content  (kg/m3) 141.4 220.9 

F (kg/m3) 92.6 168.8 

Superplasticizer (% by mass) 0 18.2 

Aggregate F-a (kg/m3) 690.1 908.5 

Curing period (days) 3 90 

Aggregate C-a  (kg/m3) 804.1 1121.1 

C.S (MPa) 10.6 73.23 

  

There are a number of techniques that may be used to calculate C.S., some of which are 
listed below: i) boosting algorithm; ii) Decision tree (D-T). Fig.3 shows a simplified 
schematic flowchart of the algorithms for the D-T . The anaconda software was used to run 
the models. schematic flowchart of the algorithms for the D-T . The anaconda software was 
used to run the models. 

Table 7. Details of parameters study 

98 278.5 125.3 170 10.3 928.4 785.1 28 42.28 

99 305.5 125 217 10.6 942.2 796.3 28 42.89 

100 318.5 125.3 196 11.2 856.3 736.5 28 43.6 

Sr. 
No. 

Parameters 
Cement 
kg/m3 

Fly Ash 
kg/m3 

Water 
kg/m3 

Super 
Plasticizer 

kg/m3 
1 Mean or Avg 241.2 123.8 178.7 6.4 

3 Median 230.35 124.8 184.2 7 

2 Std. Deviation 55.62 10.13 18.01 4.9 

2 Std. Error 5.62 1.02 1.82 0.5 

4 Mode 213.5 124.8 191.3 0 

6 Sample Variance 3093.8 102.65 324.33 24.4 

7 Kurtosis -0.8 9.8 -0.6 -1.1 

8 Skewness 0.27 0.55 -0.08 -0.02 

9 Maximum 376 168.3 220.5 18 

10 Minimum 136.1 92.1 141.1 0 

11 Range 239.9 76.2 79.4 18 

12 Sum 24120 12385.4 17877.1 642.6 
13 Count 100 100 100 100 
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Table 7(Con.). Details of parameters study 

Sr. 
No. 

Parameters 
Coarse 

Aggregate 
kg/m3 

Fine 
Aggregate 

kg/m3 
Days  

Comp. 
Strength 

MPa 
1 Mean or Avg 1001.3 793.27 33.67 30.49 
3 Median 1006.2 794.9 28 27.52 
2 Std. Deviation 71.36 48.00 28.81 13.00 
2 Std. Error 7.21 4.85 2.91 1.31 
4 Mode 1055.6 800 28 17.11 
6 Sample Variance 5092.88 2304.07 830.20 169.06 
7 Kurtosis 0.3 0.7 -0.1 0.2 
8 Skewness -0.77 0.17 1.06 0.67 
9 Maximum 1118 905.4 90 72.11 

10 Minimum 801 650 3 9.49 
11 Range 317 255.4 87 62.62 
12 Sum 100130 79327.3 3367.0 3049.3 
13 Count 100 100 100 100 

 

The decision tree is well-known as an efficient and straightforward approach to 
categorization. It's a model that looks like a tree and uses a set of specified criteria to sort 
data into several classifications. D-T oversees the classification process using criteria 
determined from the nature of the incoming data. The decision tree's behavior is planned 
such that the classification and regression trees share no characteristics at all. 

 

(a) 

Fig .3 Flow Chart of Decision Tree Technique (D-T)  

In contrast to artificial neural networks (ANNs), the usage of a structure that is based 
on decision trees gives explicitness. Because the process of decision tree clustering 
imitates the process of human thought, it is easy for even communities who are not 
technically oriented to grasp the behavior. However, in comparison to the simple 
decision tree, the majority of more sophisticated tree-based designs are relatively 
complicated. Despite this, every single tree-based model that was used in this 
investigation was a decision tree-based model. Because of this, it is very necessary to 
explain the process that a decision tree regressor goes through. 
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6. Results and Discussion 

The results of the decision tree fly ash binder concrete prediction model are shown in 
Figure 5. Figure 5(a) shows that the DT has a higher R2 = 0.76 when projecting the concrete 
C-S. The limit of the modelled error ranges from 0.001 MPa to 21.40 MPa, even with 
average error observed to be 4.22 MPa. Furthermore, the output results and model's 
performance corelated with each other’s. Two-thirds of the findings show that the data lies 
within 7 MPa, with high accuracy; one-third of the results show that the data found 
between value 7 MPa to 10 MPa, with low precision; and one result shows that space exists 
at a pressure higher than 20 MPa, with low precision. 
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(d) 

 
(e) 

 
(f) 

 
(g) 

650 700 750 800 850 900
0

5

10

15

20

 

 

F
re

q
u

e
n

c
y

Fine aggregate (kg/m3)

 Fine aggregate

0 20 40 60 80 100
0

10

20

30

40

50

 

 

F
re

q
u

e
n

c
y

Curing Period (Days)

 Curing Period

90 100 110 120 130 140 150 160 170
0

20

40

60

80

100
 

 

F
re

q
u

e
n

c
y

Fly Ash (kg/m3)

 Fly Ash

0 5 10 15 20
0

10

20

30

 

 

Fr
eq

ue
nc

y

Superplasticizer (kg/m3)

 Superplasticizer



Mahajan and Bhagat / Research on Engineering Structures & Materials 9(3) (2023) 1039-1060 

 

1053 

 
(h) 

 Fig. 4 Histogram of concentration used for computing the C-S 

The effectiveness of the ensemble (boosting) algorithm often used estimate the C.S of 
concrete was substantially higher when compared here to other machine learning 
techniques employed for this study. You may get a sense of its efficiency by looking at 
Figure 5(a), which shows the relationship between the actual and ideal output. The 
estimated standard deviation is 2.0 MPa, with a range of 0.57 to 3.0 MPa, as shown in Fig. 
5(b). Furthermore, the fact that all error data found less than 4 MPa demonstrates the 
reliability. 

 
(a) 

 
(b) 

Fig. 5 (a) Performance of DT algorithm  (b) Boosting Regressor algorithm  
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6.1 K-fold Cross validation 

Multiple tasks may benefit from the use of the J. knife test and the K-fold cross validation 
algorithm test, including reducing the impact of bias in a random training data selection, 
excluding less-representative examples from the data collection, and reducing the severity 
of overfitting issues. The stratified 10-fold validation method has been proven reliable and 
is often used to maximize productivity with minimal hardware and software requirements. 
Similarly, this study employs a ten-fold analysis, albeit it does so by splitting the data into 
k distinct subsets.  

The collected information may be partitioned into distinct categories, of which several are 
required for the analysis. It is not feasible to validate the model by using more than one 
data subset in the verification process. separate attempts at the procedure are required to 
get a result that is representative of the norm. The statistical tests' findings were also used 
into an evaluation of the models' performance. Evidence for the model's efficacy was 
derived from the formulations that were created in accordance with the underlying study. 

The attempted approach of k-fold cross validation is employed to ascertain how much the 
bias and variance of the testing set have been reduced. But there is noticeable variation in 
the results produced by each of learning methods. The BR model has a substantially better 
R2 value and far fewer mistakes compared to decision tree models. Further, as can be 
shown in Fig. 6(a), the Decision tree (D-T) model has an average R2 value of 0.78, with 
values as high as 0.90 and as low as 0.58. Validation error rates that drop indicate that the 
models have been improved. Values of 8.08 MPa, 8.04 MPa, and 2.82 MPa may be seen in 
the decision tree shown in Figure 6(a). As can be seen in Fig. 6(b), the average R2 for the 
boosting regressor ranges from 0.82 to 0.62, with a maximum of 0.97. The lowest mean 
absolute errors (MAE), mean standard errors (MSE), and root mean squared errors 
(RMSE) for BR are shown in 6(b) as 6.714% MPa, 6.806% MPa, and 2.59% MPa, 
respectively.  

More so, statistical tests conducted on the dataset showed that the ensemble ML approach 
had lower error rates than the other methods used (D-T). The findings for the bagging 
regressor (B-R) reveal an error of 3.69 MPa (mean absolute error), 24.76 MPa (mean 
standard error), and 4.79 MPa when statistical tests are done (root mean squared error). 
Coefficient of determination (R2) is directly related to this test; higher R2 value once again 
for model corresponds to lower R2 value due to less error. 
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(b) 

Fig.6 “K-fold” cross-validation; (a) DT model and (b) Boosting regressor 

6. Conclusion 

• Ensemble approaches are good for minimizing model variance, improving prediction 
accuracy. Combining many models to make a single forecast from all their potential 
predictions eliminates variation.  

• The foundation of this research is a thorough analysis of M-L algorithms used on fly 
ash-based concrete. Decision tree (D-T), and bagging regressor (B-R) were some of 
the supervised machine learning methods analyzed for their ability to predict the C.S 
of fly ash-mixed concrete. In addition, the performances of the individual machine 
learning algorithms were compared to those of the ensemble machine learning 
method. 

• There is less discordance between observed and predicted outcomes when using 
distinct machine learning techniques. In contrast to regression, it may accommodate 
several answers and outputs at once. The field of research known as "machine 
learning" is dedicated to understanding how to duplicate and implement certain 
cognitive features of the machine learning tool in order to create technological 
products and build relevant hypotheses. 

• Nonetheless, the ensemble was found to be a fairly strong and significantly reliable 
way, as demonstrated by the value of its coefficient correlation (R2), which was equal 
to 0.96 when compared to the total accuracy of the independent ML techniques. This 
was accomplished by using a bagging regressor. There is an average R2 value 0.76 for 
the D-T. 

• Mean absolute error (3.6 MPa), mean squared error (24.6), and root mean squared 
error (4.9) are all less than they are when using other methods, further 
demonstrating the superior accuracy of the bagging regressor. 

• The model's accuracy was confirmed using the K-fold cross validation method, which 
corroborates the bagging regressor's usefulness. 

• Statistical analysis done on the dataset showed that the ensemble ML approach yields 
lower error rates than the other individual methods used (D-T). The use of statistical 
checks additionally verifies that bagging regressor shows an improvement in model 
performance by reducing the amount of error that exists between the outcomes that 
were sought and those that were predicted.  

• It has been found that ensemble machine learning methods are an effective and 
helpful tool for addressing a broad range of structural engineering issues, and it is 
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anticipated that the usage of these algorithms will rise over the duration of the 
subsequent years. 
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