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 This theoretical paper is concerned with general analysis of the strain energy 
dissipation in columns of circular cross-section. The columns are under 
longitudinal displacements that vary continuously with time. The columns 
exhibit non-linear viscoelastic behavior that is studied by mechanical models 
constructed by using non-linear springs and dashpots. Besides, the columns are 
functionally graded along the radius of the cross-sections. A simple expression 
for the dissipated strain energy in the columns under consideration is derived. 
The expression holds for columns having portions with different radius of the 
cross-section. Also, the expression derived is applicable for columns built-up by 
concentric layers. Results indicating how the dissipated strain energy is 
influenced by various factors (distribution of material properties, geometry of 
the columns and loading) are presented. These results are found by using a non-
linear viscoelastic model with one spring and one dashpot. A check-up is 
performed by determining the dissipated strain energy through subtracting the 
strain energy in the spring of viscoelastic model from the whole strain energy in 
the column. 
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1. Introduction 

Since columns are widely used in various load-carrying engineering structures, it is 
important to study in detail the response of columns to different external loads and 
influences. Deepening of the knowledge for the column’s response is an important 
condition for improving the safety and reliability of structures.  

Dissipation of the strain energy is a momentous factor that has to be considered when 
studying columns of viscoelastic behavior. For instance, the dissipation of the strain energy 
has influence on such issues like fracture behavior, structural integrity and expected 
service-life of engineering constructions and facilities (it should be noted here that when 
the strain energy dissipation takes place in a structure, the fracture behavior has to be 
analyzed by using the strain energy cumulated in the structure reduced by the dissipated 
energy). Therefore, dissipation of the strain energy has to be taken into account in the 
design and use of structural members (including columns) having viscoelastic behavior. 
This, on its side, requires analyses of the strain energy dissipation.    

The significance of the dissipation of strain energy for engineering structures with 
viscoelastic behavior is well-grounded in the scientific literature [1]. It should be 
underlined, however, that the majority of the strain energy analyses have been concerned 
with linear viscoelastic beam load-bearing structures [1 - 2]. Besides, the analyses usually 
are focused on particular problems [3 - 7]. The end-plate beam-to-column connection 
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under cyclic loading is evaluated [3]. It is shown that the neutral network model used is 
capable of characterizing pinching and stiffness degradation of the connection [3]. A 

The significance of the dissipation of strain energy for engineering structures with 
viscoelastic behavior is well-grounded in the scientific literature [1]. It should be 
underlined, however, that the majority of the strain energy analyses have been concerned 
with linear viscoelastic beam load-bearing structures [1 - 2]. Besides, the analyses usually 
are focused on particular problems [3 - 7]. The end-plate beam-to-column connection 
under cyclic loading is evaluated [3]. It is shown that the neutral network model used is 
capable of characterizing pinching and stiffness degradation of the connection [3]. A 
framework that provides an optimal distribution of energy dissipation devices for framed 
buildings is presented in [4]. It is proved that the proposed framework is superior 
compared to the conventional machine learning algorithms for obtaining optimum 
retrofitting scheme for buildings considered [4]. Energy dissipation and damping capacity 
of reinforced concrete columns under uniaxial and biaxial conditions are investigated in 
[5]. The energy dissipation is studied in terms of cumulative dissipated energy. The study 
leads to obtaining of simplified expressions for equivalent viscous damping in columns 
under biaxial loading conditions [5]. The free vibration behavior of two-directional 
functionally graded multiple nanobeam systems are analyzed by considering Winkler 
elastic medium between them in [6]. It is assumed that the material properties very along 
the length and thickness of the nanobeams. The effects of nonlocal parameter, slenderness 
ratio, functionally graded power index and boundary conditions are evaluated [6]. A 
nanobeam with a moving nanoparticle is studied in [7]. A mathematical model for the 
nanobeam-nanoparticle system is developed. The influence of various factors, including 
the nonlocal parameter, initial velocity and mass of nanoparticle are studied and discussed 
[7]. The fact that previous works deal with particular problems indicates that general 
analysis of the strain energy dissipation needs to be developed.   

Therefore, the present paper is concerned with general analysis of the dissipated strain 
energy in columns exhibiting non-linear viscoelastic behavior. The columns under 
consideration have circular cross-section. The general analysis is developed assuming that 
columns are functionally graded along the cross-section radius. This assumption is made 
in view of the fact that functionally graded materials have become very attractive for a 
variety of applications in engineering structures and facilities in recent decades [8 - 13]. 
Due to their excellent properties, the functionally graded materials have begun to replace 
the widely used up to now homogeneous engineering materials like metals, allows and 
fiber reinforced composites [14 - 19]. One of the basic advantages of the functionally 
graded materials is that their properties vary smoothly in a given structural member [20 - 
25]. In this way, the stress concentrations are avoided which considerably reduces the 
probability of loss of stiffness, degradation of strength, shortening of expected service-life 
and even premature failure of the structure due to appearance and propagations of cracks 
[26 - 28]. Other widely used structural materials in modern engineering are multilayered 
systems having a high strength-to-weight and stiffness-to-weight ratio [29]. As known, the 
multilayered constructions represent systems of adhesively bonded layers made of 
different materials [30 - 34]. In view of the increased interest towards the multilayered 
materials and structures, general analysis of the dissipated strain energy is developed in 
the present paper also for multilayered columns built-up by concentric layers. The layers 
are functionally graded through thickness and have non-linear viscoelastic behavior.  

The general analysis of the strain energy dissipation developed here uses non-linear 
viscoelastic models constructed by non-linear springs and dashpots. The analysis yielded 
a relatively simple expression for the dissipated strain energy. This expression holds for 
functionally graded (and multilayered) circular columns under longitudinal displacements 
which vary continuously with time. Besides in columns clamped at the bottom, the strain 
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energy dissipation is analyzed also in columns clamped at the bottom and the top. The 
results obtained are checked-up by determining the dissipated strain energy by 
subtracting the strain energy in the spring from the whole strain energy in the columns 
under consideration. The change of the dissipated strain energy caused by inhomogeneity 
of the material, the column geometry and the longitudinal displacements magnitude is 
studied.           

2. General Analysis  

The general analysis developed here is concerned with strain energy dissipation in the 
column which static schema is displayed in Fig. 1. The column under consideration has n  

longitudinal portions.  

 

Fig. 1. Column under longitudinal displacements, iw  

The cross-section of the column in each portion is a circle. The radius of the column cross-

section in an arbitrary portion is marked by iR . The length of the column arbitrary portion 

is marked by il  (Fig. 1). The bottom of the column is clamped. The column has non-linear 

viscoelastic mechanical behavior. In an arbitrary column portion, the viscoelastic behavior 
is described by a stress-strain-time relationship written in the form 

( )tf iii , =  (1) 

ni ...,,2,1=  (2) 

where i  is the stress, i  is the strain and t  is time. It should be underlined that if  is a 

non-linear function of the strain. The present strain energy dissipation analysis uses 
viscoelastic models built-up by non-linear springs and dashpots for describing the column 
mechanical behavior. Therefore, stress-strain-time relationships (1) are derived by 
analyzing the stresses and strains in the viscoelastic model components. It should also be 
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underlined that the mechanical properties involved in the stress-strain-time relationships 

(1) are smooth functions of the running radius, R , where iRR 0  due to the fact that 

in each column portion the material is functionally graded in radial direction.  

The column in Fig. 1 is under longitudinal displacements, iw , which vary smoothly with 

time (the law controlling this variation is given). The displacements, iw , are expressed 

through strains by formula (3), i.e. 


=

=

=
nj

ij

jji lw   
(3) 

The strains in the column portions can be easily determined from (3). Then these strains 
can be applied on the viscoelastic model to determine the stresses. The strain energy 
dissipation in the column under consideration is modeled by the dashpots in the 

viscoelastic model. Therefore, the dissipated strain energy, dseU , in the column can be 

expressed by using formula (4), i.e. 


=

=

=

=

=
)( 1

0

1
iA

pk

k

ik

ni

i

idse dAulU  (4) 

where p  is the number of dashpots in the viscoelastic model, iku0  is the unit strain energy 

in the k-th dashpot in the i-th column portion, iA  is the cross-section area of the column 

in the i-th portion. Formula (5) is applied for determining the unit strain energy. 

ikikik du
ik





=
0

0
 (5) 

ni ...,,2,1=  (6) 

pk ...,,2,1=  (7) 

where ik  is the stress in the in the k-th dashpot of the viscoelastic model in the i-th 

portion of the column. The stress, ik , is found by applying relationship (8), i.e.  

)( ikikik g  =  (8) 

where ik  is the first derivative of the strain in the dashpot under consideration with 

respect to time, ikg  is a non-linear function of ik  (the type of this function depends on 

the viscoelastic model used). 

 If the column is built-up by concentric layers (the cross-section of such a column is 
displayed in Fig. 2) the dissipated energy can be derived by formula (9), i.e. 


=

=

=

=

=

=

=
)( 1

0

11
isA

pk

k

isk

ms

s

ni

i

idse dAulU  (9) 
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Fig. 2. Cross-section of a column built-up by concentric layers 

where m  is the number of layers, isA  is the cross-section area of the s-th layer in the i-th 

portion of the column, isku0  is the unit strain energy in the k-th dashpot in the s-th layer in 

the i-th column portion. Here formula (10) can be used for deriving isku0 . 

iskiskisk du
isk





=
0

0
 (10) 

where isk  and isk  are the stress and strain, respectively.  

General analysis of the dissipated strain energy in columns in which the number of 
portions is higher than the number of given longitudinal displacements (refer to Fig. 3) can 
also be developed. For this purpose, additional equations have to be composed for 
determining the strains in the column portions (this is necessary because the number of 
equations composed by using (3) is less than the number of unknown strains). These 
additional equations consider the equilibrium of the axial forces on borders between 
column portions (for instance, for column in Fig. 3 such equations have to be composed for 

borders, iD  and nD ). These equations can be written as 

dAdA

i iA A

ii 
−

=−

)( )(

1

1

  (11) 

where 1−i  and i  are the stresses in the column cross-sections over and 

under border, iD .  

The stresses, 1−i  and i , are found by using the viscoelastic model. If the column is built-

up by concentric layers, the additional equations for determining the strains in the column 
portions have the following form: 

dAdA

si isA A

is

ms

s

si

ms

s
 
−

=

=

−

=

=

=
)( )(1

1

1
1

  (12) 
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Fig. 3. Column in which the number of portions is higher than the number of 

longitudinal displacements, iw    

analysis of the dissipated strain energy is developed also for the column that is clamped at 
the bottom and the top (the column static schema is displayed in Fig. 4). Here again the 

column is under longitudinal displacements, iw .  

The displacement of the column top is zero. Thus, we write 

0
1

1 ==
=

=

i

ni

i

iD lw   (13) 

Also, we can write (Fig. 4) 


−=

=

++=
1

11

nj

ij

jji lw   (14) 

Where; 

    1...,,2,1 −= ni  (15) 

The strains in the column portions can be derived directly from equations (13) and (14). 
After that the dissipated strain energy can be obtained by using (4). If the column is made 
of concentric layers, the dissipated strain energy can be found by applying formula (9).  

For columns in which the number of portions is higher than the number of the given 
longitudinal displacements like, for instance, column in Fig. 5, the strains can be derived 
by using additional equations of equilibrium (11) (or (12) when the column is made by 
concentric layers). After that formula (4) (or formula (9)) can be used for obtaining of 
dissipated strain energy.     
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Fig. 4. Column clamped at the bottom and 
the top 

Fig. 5. Column clamped at the bottom and 
the top in which the number of portions 

is higher than the number of longitudinal 

displacements, iw  

3. Practical Application of General Analysis 

This section of the paper describes practical applications of the general analysis of the 
dissipated strain energy. The numerical results presented here are related to the 
functionally graded viscoelastic column with three portions displayed in Fig. 6.  

The column is under longitudinal time-dependent displacements, iw , where 3,2,1=i . 

Formula (16) describes the change of these displacements. 

( )taww ibi += 0cos  (16) 

where ibw , 0a  and   are parameters.  

The strains, 1 , 2  and 3 , in the column portions, 21DD , 32DD  and 43DD , are 

determined from equation (3) with taking into account (16). The result is; 

( )taww
l

bb  +−= 021

1

1 cos)(
1

 (17) 

( )taww
l

bb  +−= 032

2

2 cos)(
1

 (18) 

( )taw
l

b  += 03

3

3 cos
1

 (19) 
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Fig. 6. Column with three portions under 

three longitudinal displacements, 1w , 

2w  and 3w  

Fig. 7. Non-linear viscoelastic model 

 

The stresses in the column portions are derived by using the non-linear viscoelastic 

mechanical model displayed in Fig. 7. This model has a non-linear elastic spring, ( )inlvc , 

and a non-linear dashpot, ( )inlec . The model is under strain, i , whose change with time 

is presented by formulas (17), (18) and (19) for column portions, 21DD , 32DD  and 

43DD , respectively. The choice of a relatively simple non-linear viscoelastic model (Fig. 

7) with one spring and one dashpot is motivated by the fact that this model is mainly for 
illustration of the way for use of the general analysis. When a practical engineering 
problem is treated, a more complex non-linear viscoelastic model with more springs and 
dashpots may be applied.    

Formula (20) defines the stress-strain relationship of the non-linear elastic spring in the 
viscoelastic model in Fig. 7 [35]. 























−−=

i

i

i
iinlec

H
Q




 11)(  (20) 

where inlec)(  is the stress in the spring, iQ , iH  and i  are material properties in the 

i-th portion of the column (here 3,2,1=i ). According to [35], iQ  is the ultimate 

strength, iH  is the strain that corresponds to the ultimate strength, i  is the ratio of the 
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initial modulus of elasticity to the secant modulus at the ultimate strength (usually, 1i  

[35]).  

The constitutive relationship of the non-linear dashpot in the model shown in Fig. 7 is 
described by formula (21) [35], i.e.  























−−=

i

i

i
iinlvc

B
L







11)(  (21) 

where inlvc)(  is the stress in the dashpots, i  is the first derivative of the strain with 

respect to time, iL , iB  and i  are material properties in the i-th portion of the column 

(here again 3,2,1=i ).   The stress, i , in the viscoelastic model is determined as (Fig. 

7) 

inlvcinleci )()(  +=  (22) 

In fact, formula (22) presents the stress-strain-time relationship of the non-linear 
viscoelastic model. Since the column is functionally graded in radial direction, the material 

properties, iQ , iH , i , iL , iB  and i ,  which are involved in (20), (21) and (22) vary 

smoothly along the radius of the column cross-section. This variation is described by the 
following formulas: 

i
i
R

R

ii eQQ


0=  
(23) 

i
i
R

R

ii eHH


0=  
(24) 

i
i
R

R

ii e


 0=  
(25) 

i
i
R

R

ii eLL


0=  
(26) 

i
i
R

R

ii eBB


0=  
(27) 

i
i
R

R

ii e


 0=  
(28) 

Where; 

iRR 0  (29) 

3,2,1=i  (30) 

In formulas (23) – (29), iQ0 , iH 0 , i0 , iL0 , iB0  and i0  are the values of iQ , iH , i , 

iL , iB  and i  in the center of the column cross-section, i , i , i , i , i  and i  are 

parameters which control the variation of the material properties.    
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Formula (22) can be used to calculate the stress in the column portions with taking into 
account the change of the material properties in the radial direction via formulas (23) – 
(28).  

 The dissipated strain energy in the column is determined by applying formula (4) (here 

3=n , 1=p ). The unit strain energy, iku0 , in the dashpot of the viscoelastic model that 

is involved in (4) is determined by replacing of ik  with inlvc)(  in formula (5). The 

MATLAB is used for integration in (4).  

The dissipated strain energy solution for the column in Fig. 6 is checked-up in the following 

way. First, the axial forces, 1F , 2F  and 3F , in column cross-sections, 1D , 2D  and 3D , 

are derived by using the following dependences: 

=
)(

11

1A

dAF   (31) 

 −=
)(

1

)(

22

12 AA

dAdAF   (32) 

 −=
)(

2

)(

33

23 AA

dAdAF   (33) 

where 1A , 2A  and 3A  are the areas of the column cross-section in portions, 21DD , 

32DD  and 43DD , respectively (Fig. 6). Substitution of (22) in (31), (32) and (33) yields 

 dAF nlvcnlec

A

1)(1)(

)(

1

1

 +=   (34) 

 dAF nlvcnlec

A

2)(2)(

)(

2

2

 +=   dAnlvcnlec

A

1)(1)(

)( 1

 +−   (35) 

 dAF nlvcnlec

A

3)(3)(

)(

3

3

 +=   dAnlvcnlec

A

2)(2)(

)( 2

 +−   (36) 

Formula (37) is applied to determine the strain energy, U , in the column. 

 ++=
321

0

332

0

21

0

1

www

dwFdwFdwFU  (37) 

The unit strain energy, iu0 , in the non-linear elastic spring of the viscoelastic model in Fig. 

7 is found by formula (38), i.e.   

iinleci du
i





=
0

)(0
 (38) 

where the stress, inlec)( , in the spring is determined by using relationship (20). Then 

iu0  is integrated in the three portions of the column (Fig. 6), i.e.  
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dAulU i

A

i

i

inlec

i

0

)(

3

1


=

=

=  (39) 

 

Finally, the dissipated strain energy, dseU , in the column is derived by subtracting of                       

nlecU from U .  

nlecdse UUU −=  (40) 

Actually, formula (40) is based on the fact that the spring in the viscoelastic model in Fig. 
7 preserves the strain energy. Therefore, by subtracting of the strain energy in the spring, 

nlecU , from the whole strain energy, U , we should derive the dissipated strain energy, 

dseU .     

  

Fig. 8. Column with three portions under 

two longitudinal displacements, 1w  and 

2w  

Fig. 9. Column clamped at the bottom and 
the top and having three portions under 

two longitudinal displacements, 2w  and 

3w  

The dissipated strain energy determined by using (40) matches that obtained by applying 
the general analysis through formula (4) (this is a check-up of the analysis).  

The dissipated strain energy is determined also for the column displayed in Fig. 8 (this 

column is under two longitudinal displacements, 1w  and 2w , which change according 

formula (16)). From equation (3) we obtain 
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)(
1

21

1

1 ww
l

−=  (41) 

33222 llw  +=  (42) 

where 2  and 3  are unknown.   

One additional equation is written by considering the equilibrium of the axial forces in 

section, 3D , of the column (Fig. 8), i.e. 

dAdA
A A

 =
)( )(

23

3 2

  (43) 

where 2  and 3  are determined by using (22). Equations (42) and (43) are solved with 

respect to 2  and 3 . Then the dissipated energy in the column is found by using formula 

(4) (the result obtained is verified by (40)). 

 Analysis of the dissipated strain energy in the column clamped at the bottom and the top 
as displayed in Fig. 9 also is performed. The column is under longitudinal displacements, 

2w  and 3w , which change according to formula (16). Equations (13) and (14) are applied 

for determining the strains, 1 , 2  and 3 , in the column portions, 21DD , 32DD  and 

43DD . The result is 

( )taw
l

b  +−= 02

1

1 cos)(
1

 (44) 

( )taww
l

bb  +−= 032

2

2 cos)(
1

 (45) 

( )taw
l

b  += 03

3

3 cos
1

 (46) 
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Fig. 10. Change of the normalized dissipated strain energy with increase of 1  for the 

column with three portions under three longitudinal displacements, 1w , 2w  and 3w  

(curve 1 – at 2.01 = , curve 2 – at 5.01 =   and curve 3 – at 8.01 =  ) 

 

 

The viscoelastic model displayed in Fig. 7 is used for treating the column in Fig. 9. The 
change of material properties along the column cross-section radius is described by 
formulas (23) – (28). Formula (4) is applied to derive the dissipated strain energy in the 
column under consideration (Fig. 9). A check-up of the dissipated strain energy solution is 
carried-out via formula (40). 

Further, we assume that the column in Fig. 9 is built-up by concentric layers. The column 
layers are inhomogeneous through their thickness. Formulas (47) – (52) are used for 
describing the smooth change of the material properties through thickness of the s-th layer 
in the i-th portion of the column.    

1

1

0
−

−

−

−

= isis
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RR

isis eQQ

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0
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−

−
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
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1

1

0
−

−

−

−

= isis
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
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(49) 

1

1

0
−

−

−

−

= isi
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is

RR

RR

isis eLL


 
(50) 

1

1

0
−

−

−

−

= isis

is
is

RR

RR

isis eBB


 
(51) 

1

1

0
−

−

−

−

= isis
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RR

RR

isis e


  
(52) 

Where; 

isis RRR −1  (53) 
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Fig. 11. Change of the normalized dissipated strain energy with increase of 1  (curve 

1- for the column with three portions under two longitudinal displacements, 1w  and 

2w , curve 2 - for the column with three portions under three longitudinal 

displacements, 1w , 2w  and 3w ) 

In formulas (47) – (52), isQ0 , isH 0 , is0 , isL0 , isB0  and is0  are the values of isQ , isH

, is , isL , isB  and is  at 1−= isRR  (here 1−isR  and isR  are the radiuses of the internal 

and external surfaces of the layer, respectively). The dissipated strain energy in the column 
built-up by concentric layers is determined by applying formula (9). A check-up is 
performed by using expression (40).   

 

Fig. 12. Change of the normalized dissipated strain energy with increase of 1  (curve 

1- for the column clamped at the bottom and having three portions under three 
longitudinal displacements, curve 2 - for the column clamped at the bottom and the 

top and having three portions under two longitudinal displacements, 2w  and 3w ) 
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Fig. 13. Change of the normalized dissipated strain energy with increase of 1  for 

column clamped at the bottom and the top and having three portions under two 

longitudinal displacements, 2w  and 3w  (curve 1 – at 003.03 =bw  m, curve 2 – at 

004.03 =bw  m and curve 3 – at  005.03 =bw  m)    

The graphs displayed in Fig. 10, Fig. 11, Fig. 12, Fig. 13 and Fig. 14 

illustrate how the dissipated strain energy in the non-linear viscoelastic 

inhomogeneous columns in Fig. 6, Fig. 8 and Fig. 9 changes under the 

influence of different factors (inhomogeneity of the material, the column 

geometry, parameters of the longitudinal displacements, etc.). 

It is assumed that 21 =l  m, 32 =l  m, 43 =l  m, 15.01 =R  m, 20.02 =R  m, 

25.03 =R  m, 18000001 =Q  kPa, 001.001 =H , 3.101 = , 140001 =L  kPa, 

0015.001 =B  1/s, 2.101 =  0003.0=  1/s and 1.00 =a .  

The influence of 1  and 1  on the dissipated strain energy (the latter is presented in 

normalized (non-dimensional) form) for the column with three portions under three 
longitudinal displacements (refer to Fig. 6) is displayed in Fig. 10. The graphs in Fig. 10 

indicate that the rise of 1  causes growth of the dissipated strain energy. The rise of 1  

generates a reduction of the dissipated strain energy (Fig. 10).  

Rise of 1  causes reduction of the dissipated strain energy as one can observe in Fig. 11. 

The graphs displayed in Fig. 11 reveal also that the dissipated strain energy in the column 
with three portions under three longitudinal displacements (refer to Fig. 6) is higher than 
that in the column with three portions under two longitudinal displacements (refer to Fig. 
7).  
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Fig. 14. Change of the normalized dissipated strain energy with increase of 11  for 

column clamped at the bottom and the top and having three portions under two 

longitudinal displacements, 2w  and 3w  (curve 1 – at 5.1/ 13 =ll  , curve 2 – at 

0.2/ 13 =ll  and curve 3 – at 5.2/ 13 =ll ) 

The effect of 1  is studied for both columns displayed in Fig. 6 and Fig. 9. The 

corresponding graphs are displayed in Fig. 12. It can be seen that rise of 1  causes smooth 

growth of the dissipated strain energy (Fig. 12). It can also be seen in Fig. 12 that the 
dissipated strain energy in the column clamped at the bottom and the top (refer to Fig. 9) 
is higher than that in the column clamped at the bottom end only (refer to Fig.6). 

One can observe in Fig. 13 how the dissipated strain energy changes with rise of 1  in the 

column clamped at the bottom and the top (refer to Fig. 9) at three values of bw3 . Graphs 

in Fig. 3 indicate growth of the dissipated strain energy with rise of 1  and bw3 .  

How the dissipated strain energy varies with increase of 11  in the column clamped at the 

bottom and the top and built-up by concentric layers (the number of layers is 3, 5 and 7 in 

column portions, 21DD , 32DD  and 43DD , respectively) can be seen in Fig. 14. The 

graphs indicate rise of the dissipated strain energy with increase of 11  at each of the 

considered 13 / ll  ratios (Fig. 14). 

4. Conclusions 

General analysis of the dissipation of the strain energy in columns under continuously 
varying with time longitudinal displacements is developed. The first step in the analysis is 
to determine the strains in the column. Then the strains are used to derive stresses. The 
analysis yields a simple expression for the dissipated strain energy in columns of circular 
cross-section. The columns are functionally graded in radial direction. Besides, the 
columns under consideration have non-linear viscoelastic behavior that is analyzed by 
viscoelastic mechanical models which are structured by using non-linear springs and 
dashpots. Actually, this is the basic assumption in the present study. This assumption 
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imposes an important limitation in sense that the approach developed here is applicable 
only when models with spring and dashpots are used (the dissipated energy is derived 
from the strain energy in the dashpots). The columns have an arbitrary number of portions 
with different radius of the cross-section. The general analysis is applicable also for 
determining of the dissipated strain energy in non-linear viscoelastic columns built-up by 
concentric layers. Each layer may have different material properties. Besides, the layers 
may be functionally graded through thickness. The expression obtained is used for 
determining the dissipated strain energy in a column clamped at the bottom. A column 
clamped at the bottom and the top also is studied. Since the columns are functionally 
graded along the radius of the cross-section, the material properties which are involved in 
the expression for the dissipated strain energy change continuously in radial direction. A 
check-up of the results obtained is performed by determining the dissipated strain energy 
by subtracting the strain energy in the spring from the whole strain energy cumulated in 

the column. It is found that increase of the value of 1  generates growth of the dissipated 

strain energy. Growth of the dissipated strain energy is observed also when 1 , 1  and 

11  rise. An opposite behavior, i.e. reduction of the dissipated strain energy is observed 

when 1  and 1  rise. The increase of 13 / ll  ratio induces rise of the dissipated strain 

energy (this finding indicates that the dissipated strain energy in longer column is higher). 

The dissipated strain energy rises also when bw3  has higher values. It can be summarized 

that the main novelty of this paper is in the fact that general analysis of the dissipated 
energy in non-linear viscoelastic columns is presented. One of the practical implications of 
the derived expressions and the results is in fracture mechanics. For example, when 
fracture is analyzed in terms of the strain energy release rate, the latter has to be derived 
from the strain energy reduced by the dissipated energy that can be determined by 
applying the expressions obtained in the present paper.   
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