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 The seismic vulnerability assessment represents an important step in 
monitoring the buildings’ capacity and checking their performance during and 
after earthquake events. The Nonlinear Time History Analysis (NL-THA) is 
considered the most reliable method that is used to calculate the exact structural 
behavior of any building. However, this sophisticated method is known for its 
complexity, the use of Finite Element (FE) software, and computational time 
consuming, especially in the case of tall buildings. For that reason, An Artificial 
Neural network (ANN) is used to develop a new model able to predict the 
essential Engineering Demand Parameters (EDPs), i.e., the Maximum Base Shear 
(MBS), the Maximum Inter-story Drift (MIDR) and the Maximum Roof Drift Ratio 
(RDR). Unsupervised algorithms such as the Principal Component Analysis PCA 
and the Autoencoder are coupled with the ANN to reduce the dimensionality, 
improve the dataset quality, and reduce the irrelevant features. More than 
192,000 buildings are analyzed using the NL-THA and eighty artificial ground 
motions (GMs) to generate the dataset. The buildings’ characteristics are 
generated randomly from the selection range. The results showed that the 
Autoencoder-ANN model represents the highest performance compared to the 
PCA-ANN and ANN models. The Autoencoder-ANN model could quickly and 
accurately predict the seismic responses of unseen ground motions using only 
the building’s characteristics and the GM parameters without using any FE 
software. 

 
© 2024 MIM Research Group. All rights reserved. 
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1. Introduction 

Earthquakes are unpredictable phenomena that may occur anywhere and anytime. Their 
energy is released as seismic vibrations affecting the buildings and infrastructure, which 
can be devastating [1]. Several earthquakes have been recorded in the last decade, 
resulting in enormous human losses and severe damage to infrastructure and strategic 
buildings [2]. Therefore, the preparedness and seismic vulnerability assessment is 
mandatory to protect lives, reduce economic losses, and maintain the functionality of 
essential structures like bridges, hospitals, and emergency offices [3-4].  

Many researchers developed methodologies and approaches to study and estimate 
structures' seismic vulnerability and fragility [5-11]. The most reliable and accurate 
approach is the Nonlinear Time History Analysis (NL-THA) [12]. This approach is based on 
solving a complicated differential equation of motion. The results of the NL-THA can be 
used to construct fragility curves by performing Incremental Dynamic Analysis (IDA) and 
probabilistic calculations. These curves represent the probability of exceeding a specific 
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Intensity Measure (IM) damage level. This process can be used to estimate the cost needed 
to rehabilitate buildings in case of an earthquake event. However, the NL-THA and the IDA 
are considered time-consuming approaches that require suitable hardware and expertise, 
making the assessment process complex and take a long time [13-14]. 

Many numerical, mechanical, and empirical approaches are proposed to estimate the 
seismic response and assess buildings' seismic vulnerability and fragility [15-18]. 
Nevertheless, these approaches may represent some substantial uncertainties and less 
accuracy than the NL-THA results. Several new techniques have been proposed, including 
using artificial intelligence and Machine Learning (ML) in this field. These techniques 
showed promising results and potential in terms of predictability and high accuracy of the 
seismic response and damageability assessment of structures [19-21]. 

Vafaei et al. [22] used the ANN to detect the seismic damage of concrete shear walls, and 
they found that the ANN model successfully predicted the damages induced by an 
earthquake. Morfidis et al. [23] proposed a rapid seismic damage prediction of RC 
buildings methodology using the ANN. They used 30 RC buildings and 65 ground motions 
to train the ANN model, and it was found that the ANN can predict the damage indices 
precisely for seen GMs and with acceptable results in the case of unseen buildings and GMs. 
Oh et al.[24] proposed an ANN-based seismic response prediction using artificial 2700 
GMs, where they proposed a new parameter related to the frequency domain and the 
resonance area. The model was validated using a 2D Multi degrees of freedom structure, 
and the method showed high accuracy in predicting the MIDR. In addition, Won et al. [25] 
developed a machine-learning approach for predicting the seismic damage of an 
equivalent Single degree of freedom considering the soil-structure interaction. The results 
of their paper were that the ANN model managed to accurately predict the damage level 
using only the idealized bilinear capacity curve parameters, soil, and earthquake 
characteristics. Furthermore, Petros and Vitor [26] used the ANN to model the seismic 
vulnerability of building portfolios, where they found a remarkable prediction of the 
structural response, economic loss, and damage level. They mentioned in their work that 
the ANN was an accurate technique to be used as a probabilistic seismic risk assessment 
method. Seo et al. [27] and Hait et al. [28] use the ML models to assess the seismic 
vulnerability of irregular structures and derive fragility curves quicker. 

Finally, Machine learning use was not only applied to buildings but on some infrastructures 
such as bridges [29-31]. 

Based on the literature review, The proposed ML models show a valuable and promising 
method for seismic response prediction as accurate as the NL-THA results. However, it is 
essential to note that the studies mentioned in the literature review have some limitations. 
They are based on a small range of building characteristics and lack generalization. 
Furthermore, in some of these works, their generalized models could have achieved higher 
accuracy. Additionally, in some other cases, the prediction process needs software 
modeling to calculate input characteristics like the center of torsion and the period 
vibration of the fundamental mode. Furthermore, this paper compared the performance of 
three ML models to investigate the impact of the use of unsupervised algorithms on the ML 
performance. 

This paper presents a ML model that can predict three Engineering Demand Parameters 
(EDPs) using only the geometric and loading characteristics of structures with the artificial 
ground motions (AGMs) parameters, without the need for additional Finite Element (FE) 
calculations. The EDPs in question are the Maximum Base Shear (MBS), the Maximum 
Inter-story Drift (MIDR), and the Maximum Roof Drift Ratio (RDR). These parameters are 
crucial in designing structures, as they help engineers estimate the MBS and control the 
structure's performance using the MIDR and MRDR.  
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The proposed method generates a dataset using OpenSees and performs over 192,000 
Non-Linear Time-History Analyses (NL-THA). The characteristics of the buildings are 
selected randomly from a range of options, including the Number of Stories (Ns), Number 
of Bays in x-x direction (Nbx), Number of Bays in y-y direction (Nby), Story Height (Hs), 
Bays' Length in x-x direction (Lbx), Bays' Length in y-y direction (Lby), Column Dimensions 
(b,h), Beam Dimensions (b1,h1), Reinforcement Area of Column (As_col), Reinforcement 
Area of Beams (As_beam), Compression Strength of Concrete (fc28), Yielding Limit Stress 
of Rebars (fy), Permanent Surface Load (G), and Live Surface Load (Q). To perform the NL-
THA and generate the dataset, the method generates eighty artificial and synthetic GMs 
and matches them to the target response spectrum (EuroCode-8). 

Three ANN models are used to establish the relationship between the inputs and outputs. 
The first model uses the original dataset as input data. In the second model, a Principal 
Component Analysis (PCA) is applied to the input data to identify the principal 
components, which are then used as inputs. The third model utilizes an Autoencoder 
technique to capture the essential features of the dataset and reduce its dimensionality. To 
evaluate the models' predictability, 80 AGMs are generated and matched to the same target 
response spectrum. These AGMs are then used to perform a NL-THA on three case study 
buildings. Finally, the accuracy of the models in fragility assessment is determined by 
generating 3D fragility surfaces using the NL-THA and the three ANN models. 

2. Methodology 

This work aims to develop an ANN model to predict the maximum seismic response of a 
3D RC frame building subjected to unseen GMs. In order to reach the objective, the first 
step is to create the dataset with OpenSees. The 3D model will be subjected to eighty AGMs, 
and NL-THA will be performed to calculate the MBS, MIDR, and MRDR. Figure 1 shows that 
the methodology is based on three main steps, which are explained in detail in the 
following sections. 

 

Fig. 1. The flowchart of the used methodology 

2.1. Ground Motion Selection  

The ground motion selection represents an essential step in performing a fragility 
assessment, mainly when we aim to construct fragility curves [32] [33]. Choosing the 
proper seismic record is challenging for analysts, especially when dealing with actual 
ground motion records [34]. In some cases, the studied area does not have the required 
ground motion records. In addition, real GMs may have a long duration, and that will affect 
the NL-THA calculation time. Therefore, using a generated ground motion is the best 
alternative to solve these problems. Artificial and synthetic ground motions are different 
algorithms used to generate unreal ground motion that satisfies some conditions. The user 
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can fix the earthquake parameters for synthetic accelerograms, e.g.: near/ far -field, 
moment magnitude, and soil parameters [35]. Only the shape envelope and the 
accelerogram duration are needed for the artificial GMs to generate a GM. For this study, 
eighty AGMs have been generated and matched to an EC8 target response spectrum. The 
target spectrum is generated using the EC8, considering the following parameters: 

• Ground acceleration (Ag): 0.2 (g) 
• Spectrum type: Type I. 
• Importance class: II. 

Figure 2 illustrates the mean-matched response spectra, the generated GMs, and the target 
response spectrum. Table A.1 represents the earthquake parameters of the generated GMs. 
Twenty-one parameters in Table 1 characterize the ground motions used in the ANN. 

 

Fig. 2. The generated ground motions and their mean response spectrum and the 
target spectrum 

Table 1. The ground motion characteristics 

 Definition Equation 

PGA Peak ground acceleration = Max |acceleration(t)| 

PGV Peak ground velocity = Max |velocity(t)| 

PGD 
Peak ground 
displacement 

= Max |displacement(t)| 

Ecum Cumulative energy = ∫ 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑡)2. 𝑑𝑡
𝑡=𝑒𝑛𝑑

0
 

Ia Arias intensity =
𝜋

2𝑔
 ∫ 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑡)2𝑑𝑡

𝑇𝑑

0

 

CAV 
Cumulative Absolute 

velocity 
=  ∫ |𝑎(𝑡)|𝑑𝑡

𝑇𝑚𝑎𝑥

0

 

Sa Spectral acceleration (T1) = (
2𝜋

𝑇1
)² × 𝑆𝑑 (𝑇1) 

Sv Spectral velocity (T1) = (
2𝜋

𝑇1
) × 𝑆𝑑 (𝑇1) 

Sd 
Spectral displacement 

(T1) 
=

1

𝑚×𝜔
max ( | ∫ 𝑝(𝜏) 𝑒−𝜁𝜔𝑛 (𝑡−𝜏) sin[𝜔𝐷 (𝑡 −

𝑡

0

𝜏)] 𝑑𝜏|) 

UT Uniform duration 
The cumulative duration of exceeding 5% of 
PGA 
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2.2. Dataset Generation with The Nonlinear Time-History Analysis  

NLTHA is a type of dynamic structural analysis used to simulate complex multiple support 
excitations at certain points on the structure. It is one of the most reliable methods used to 
calculate the exact structural behavior of any building during an earthquake event. It is 
based on solving a complicated differential equation of motion, and its results can be used 
to construct fragility curves by performing the Incremental Dynamic Analysis (IDA) and 
probabilistic calculations. However, the NL-THA is known for its complexity, the use of 
Finite Element (FE) software, and computational time-consuming, especially in the case of 
tall buildings. The outputs of this analysis can be an engineering demand parameter (EDPs) 
such as IDR, RDR or story displacement in a form of time series. OpenSees can be used to 
perform this analysis and to generate the dataset needed for this study. 

The followed process of generating the dataset using OpenSees is illustrated in Figure 3 
and explained below: 

• Start by creating a model in OpenSees. For a time, history analysis, this would 
include defining nodes and elements, assigning boundary conditions, specifying 
material properties and assembling the system into a model. 

• Create the ground motion records that represent earthquake loading on your 
structure then format and transform them such that they can be used in OpenSees 
as prescribed loading. a scale factor should be specified in this step to scale the 
ground motion, and their characteristics should be calculated and recorded (PGA, 
PGV, PGD, Ecum, Ia, CAV…etc.) 

• Specify the type of analysis, the solution algorithm (e.g.: KrylovNewton, 
SecantNewton , ModifiedNewton , RaphsonNewton ) , the integrator , and the the 
convergence test (e.g.; NormDispIncr,  RelativeEnergyIncr, EnergyIncr, 
RelativeNormUnbalance. 

BT Bracket duration 
The total duration between the first and the 
last exceedance of a 5% of PGA. 

HI Housner intensity =  ∫ 𝑃𝑆𝑉 (𝜁 = 5% , 𝑇)𝑑𝑇
2.5

0.1

 

PP predominant period 
The period corresponding to the maximum Sa 
(𝜁 = 5%) 

SD Significant duration 
The duration interval between 5% and 95% of 
the cumulative intensity arias 

ASI 
Acceleration Spectrum 

Intensity 
=  ∫ 𝑆𝑎 (𝜁 = 5% , 𝑇) 𝑑𝑇

0.5

0.1

 

VSI 
Velocity Spectrum 

Intensity 
=  ∫ 𝑆𝑣 (𝜁 = 5% , 𝑇) 𝑑𝑇

0.5

0.1

 

DSI 
Displacement Spectrum 

Intensity 
=  ∫ 𝑆𝑑 (𝜁 = 5% , 𝑇) 𝑑𝑇

0.5

0.1

 

SI 
Response spectrum 

intensity 
=  ∫ 𝑆𝑣 (𝜁 = 5% , 𝑇) 𝑑𝑇

2.5

0.1

 

Df Dominant frequency 
The frequency that carries out the highest 
amount of energy 

Bw Bandwidth 
The difference between the lower and upper 
frequencies of a certain thresholds (-3db) 

fc central frequency 
The mean frequency between the upper and 
the lower frequencies. 
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Run the simulation in OpenSees after specifying the control node, direction, number of 
degrees of freedom and the needed responses (e.g., acceleration, velocity, displacement, 
reactions, drift). 

 

Fig. 3. The followed process on OpenSees to perform the NLTHA 

 

Fig. 4. The displacement history of a 4-story RC frame subjected to El-Centro GM 
scaled to PGA = 0.4g 

Figure 4 illustrates the displacement time history of a 4-story RC frame building subjected 
to El-Centro ground motion scaled to PGA = 0.4 g using FEM software and OpenSees. It 
shows that the OpenSees model accurately estimates and find the displacement response 
of the validation model. 

The dataset is generated using OpenSees by performing the NL-THA. The buildings are 
created by randomly selecting their geometric and material characteristics from the 
selection range, as shown in Table 2. The geometric and material characteristics are 
illustrated in Figure 5. In this work, it is considered that we have two types of loads 
(permanent load (G) and live load (Q)). The yielding and the ultimate strain of the concrete 
are -0.2% and -0.35%, and “concrete02” is used in OpenSees. A 200 GPa is the young 
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modulus of the reinforcement steel with a zero-post yielding ratio, and the “Steel02” is 
used in OpenSees. 

Table 2. The structural characteristics and the selection range (min, max and step) 

Parameter Unit Min Step Max 

Ns - 1 1 10 

Hs m 3 0.2 4 

Nbx - 1 1 6 

Lbx m 3.5 0.5 6 

Nby - 1 1 6 

Lby m 3.5 0.5 6 

h  cm 25 0.05 100 

b cm 25 0.05 100 

h1 cm 25 0.05 50 

b1 cm 25 0.05 50 

As_col cm² 9.0432 0.2512 64.3072 

As_beam cm² 9.0432 0.2512 64.3072 

G kN/m² 1 1 6 

Q kN/m² 1 1 6 

fc28 MPa 25 5 45 

fy GPa 350 50 550 
 

After selecting the required geometric and material characteristics and selecting the GM, 
and scaling it, an NL-THA is performed, and the seismic response is captured, i.e., MBS, 
MISDR, and MRDR. These characteristics and the seismic response represent the input and 
the outputs that will be used in the machine-learning algorithms.  As a result, a dataset has 
been generated that contains 192,092 NL-THA using eighty artificial and synthetic GMs, 
and this dataset should be preprocessed before using it in the ML. 

Figure 6 displays a heatmap which shows the correlation between the various features of 
the dataset, including inputs and outputs. Upon examining the heatmap, it becomes 
apparent that there is a strong positive correlation between the MIDR and the ground 
motion parameters such as PGA, PGV, Ecum, Ai, CAV, Sa, Sv, HI, ASI, VSI, DSI, and SI. 
Conversely, there is a negative correlation between the MIDR and structural geometry 
parameters such as h, b, Nbx, Nby, and b1. The MRDR exhibits the same correlation with the 
GMs parameters and structural geometry as the MIDR. This correlation helps to identify 
the most critical features that impact the performance or damage incurred during an 
earthquake event. For the MBS, It is affected positively with the earthquake parameters 
(PGA, PGV, Ecum, AI, ASI, VSI, DSI, SI) and negatively with the structural geometry ( Nbx, 
Nby and As_column). 
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Fig. 5. The geometric characteristics of the 3D RC frame building 

 

Fig. 6. The degree of correlation between the generated dataset features (inputs and 
outputs) 
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2.3. Principal Component Analysis (PCA) 

The PCA is one of the most used techniques for dimensionality reduction. It is an 
unsupervised machine learning algorithm that aims to capture the principal components 
of the dataset. The data reorientation allows us to use fewer dimensions without losing 
much information. In addition, this technique may reduce the data noises and the 
irrelevant features that can affect the training time, the performance, and the 
hyperparameters optimization of the ANN. The PCA is based on transforming the 
correlated variables into uncorrelated new variables using a linear combination. The 
eigenvalues and the cumulative variability of each principal component are illustrated in 
Figure 7. If 90% of the variability is fixed as a threshold, twenty principal components will 
be used as inputs of the ANN model. 

2.4. Autoencoder Algorithm 

The autoencoder is a type of ANN used for unsupervised learning and dimensionality 
reduction. It is highly used in various domains, including text, voice, and image data 
analysis. It can capture the essential characteristics of the data and reduce the input 
features without losing the information. It is based on transforming the input data into a 
new compressed dataset by the encoder. Then, the decoder reconstructs the original data 
from the compressed data. By doing so, the noises or any redundant information can be 
discarded from the dataset. Compared to the PCA, the autoencoder algorithm is used when 
the correlation between the dataset variables is nonlinear using a nonlinear activation 
function such as: (Tanh, sigmoid). Figure 8 illustrates the structure of the autoencoder 
algorithm. The bottleneck or the code layer will have 20 neurons, the same number as the 
PCA's selected principal components, to compare the performance of the ANN using both 
methods. 

 

Fig. 7. Eigenvalues and the cumulative variability of the dataset 
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Fig. 8. The autoencoder structure 

2.5. Artificial Neural Networks (ANN) 

The ANN is supervised machine learning based on training the model on a dataset 
containing inputs and outputs and testing its performance in predicting unseen cases. It is 
composed of an input layer, hidden layers, and output layers. The input layer will contain 
the earthquake and the building characteristics or the transformed input features using 
the PCA or the autoencoder. A backpropagation (BP) algorithm will train the ANN model. 
The hidden layers (HL) contain intermediate neurons, and the number of hidden layers 
and number of neurons (NN) should be optimized to avoid the underfitting or overfitting 
of the ANN model. The output layer contains three neurons representing the seismic 
responses (MBS, MIDR, and MRDR). An “Adam” algorithm is used as an optimization 
algorithm, and “ReLu and Linear” activation functions are used for the hidden and output 
layers, respectively. The hyperparameters (HL/ NN) are selected by performing the ANN 
several times, changing them randomly, and selecting the best combination that 
corresponds to the highest correlation coefficient (R²) and the lowest mean squared error 
(MSE). Figure 9 illustrates the ANN structures and the used activation functions. 

 

Fig. 9. the structure of the ANN 
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2.6. Performance of the ANNs 

In order to find the best model that can predict the seismic responses accurately, three 
ANN models have been performed (ANN, PCA-ANN, and Autoencoder-ANN). The dataset 
is split into training (80%), testing (10%), and validation data (10%). The performance of 
the ANN will be evaluated using the correlation coefficient (R²), mean squared error (MSE), 
and root mean squared error (RMSE), as they are shown in Table 3, where: 

𝑦𝐴𝑁𝑁,𝑖: is the predicted seismic response. 

𝑦𝑁𝐿𝑇𝐻𝐴,𝑖: is the calculated seismic response. 

𝑦𝐴𝑁𝑁,𝑖̅̅ ̅̅ ̅̅ ̅: is the mean value of the predicted seismic response. 

𝑦𝑁𝐿𝑇𝐻𝐴,𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ : is the mean value of the calculated seismic response.  

Table 3. the formulas of the performance coefficients  

Performance coefficient Formula 

R² =
∑(𝑦𝐴𝑁𝑁,𝑖− 𝑦𝐴𝑁𝑁,𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )(𝑦𝑁𝐿𝑇𝐻𝐴,𝑖− 𝑦𝑁𝐿𝑇𝐻𝐴,𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

√∑(𝑦𝐴𝑁𝑁,𝑖− 𝑦𝐴𝑁𝑁,𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )²(𝑦𝑁𝐿𝑇𝐻𝐴,𝑖− 𝑦𝑁𝐿𝑇𝐻𝐴,𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)²
 

MSE =
1

𝑁
∑(𝑦𝐴𝑁𝑁,𝑖 − 𝑦𝑁𝐿𝑇𝐻𝐴,𝑖) 

RMSE =√
1

𝑁
∑(𝑦𝐴𝑁𝑁,𝑖 − 𝑦𝑁𝐿𝑇𝐻𝐴,𝑖) 

 

Firstly, the ANN model is trained on the generated dataset directly without using any 
unsupervised techniques (PCA or Autoencoder). It aims to compare the results of using the 
ANN model with hybrid ANN models regarding predictability. Secondly, a hybrid PCA-ANN 
model is performed using a dimensionality reduction and twenty principal components 
(reducing the dimensions from 37 to 20). Finally, another hybrid Autoencoder-ANN model 
is trained where a coder layer holds 20 neurons (20 dimensions). All the models’ 
hyperparameters have been optimized using random selection and choosing the best 
combinations. Table 4 summarizes the hyperparameters used in these three models. Table 
5 illustrates the performance of the ANN models, where the results represent the mean 
values of training, testing, and validating. 

Table 4. The hyperparameters of the three ANN models 

ANN model 
Number 

of 
neurons 

Number 
hidden 
layers 

Learning 
rate 

Activation 
function 

ANN 60 4 0.01 Relu & linear 

PCA-ANN 30 3 0.01 Relu & linear 
Autoencoder-ANN 35 2 0.01 Relu & linear 

Table 5. The performance of the ANN, PCA-ANN, and Autoencoder-ANN 

 
MBS MIDR MRDR 

ANN 
Auto-
ANN 

PCA-
ANN 

ANN 
Auto-
ANN 

PCA-
ANN 

ANN 
Auto-
ANN 

PCA-
ANN 

R² 0.972 0.985 0.986 0.976 0.989 0.9913 0.9745 0.984 0.988 

MSE 0.0018 
7.6E-

05 
0.013 0.0017 0.00013 0.0087 0.0051 0.00011 0.0117 

RMSE 0.042 0.0086 0.111 0.042 0.0113 0.090 0.071 0.0106 0.1045 
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Overfitting is a common problem that may occur during the training of ANN model. This 
can be caused due to the bad selection of hyperparameters such as the number of neurons 
or number of hidden layers. The overfitting is captured when the performance of the 
validation data diverges from the training performance as shown in Figure 10. It is 
represented in a high performance of the training process and low performance of 
validation data. In Figure 11 depicts the evolution of loss function (MSE) in function of 
number of epochs for the three ML models.  

 
Fig.10 Overfitting in ML models illustration 

2.7. Performance of the ANN-Models to Unseen GMs 

This section aims to test the performance of the ANNs when the buildings are subjected to 
30 unseen GMs. These AGMs matched the identical target response spectra, as shown in 
Figure 12. Three buildings will be used as a case study (low-, mid-, and high-rise) to check 
the predictability of the ANN models to unseen cases. IDA curves will be generated and 
compared to the predicted ones. The 3D fragility surfaces will be constructed using the IDA 
curves of the MISDR and the MRDR, and then a comparison between these surfaces will be 
made. The characteristics of the case study buildings are shown in Table 6. 

Table 6. The geometric and material characteristics of the case study buildings (low-, 
mid-, and high-rise) 

Parameter Low-rise mid-rise High-rise Parameter Low-rise mid-rise High-rise 

Ns 3 6 9 h1 (m) 0.4 0.45 0.45 

Hs (m) 3 3 3 b1 (m) 0.3 0.3 0.35 

Nbx 4 4 4 As_col (cm²) 
30.39 30.39 49.23 

Lbx (m) 3.2 3.2 3.2 As_beam (cm²) 
25.12 25.12 36.17 

Nby 3 3 3 fc28 (MPa) 35 35 35 

Lby (m) 3.2 3.2 3.2 fy (GPa) 500 500 500 

h (m) 0.4 0.45 0.65 G (kN/m²) 3 3 3 

b (m) 0.4 0.45 0.65 Q (kN/m²) 1 1 1 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
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(g) 

 

(h) 

 

(i) 

Fig. 11. Loss function in terms of number of epochs and the best performance position: 
a) ANN model for predicting the MBS, b) Auto-ANN model for predicting the MBS, c) 
PCA-ANN model for predicting the MBS, d) ANN model for predicting the MRDR, e) 

Auto-ANN model for predicting the MRDR, f) PCA-ANN model for predicting the 
MRDR, g) ANN model for predicting the MIDR, h) Auto-ANN model for predicting the 

MIDR, i) PCA-ANN model for predicting the MIDR 

3. Results 

The goal of this paper is not only to predict the seismic response but to generalize the 
prediction of the outputs based on the training dataset only. In the case study, three 
buildings were selected to perform the IDA, construct the fragility surfaces, and test the 
ANN models to predict seismic responses under unseen GMs. Figure 13, Figure 14, and 
Figure 15 illustrate the IDA points of the three buildings using the NL-THA and the ANN 
models. The performance criteria of the prediction of the MBS, MIDR and MRDR of the ANN 
model, PCA-ANN model and Autoencoder-ANN model is summarized in Table 7-8-9. 
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Fig. 13 the MRDR for the three models: a) low-rise, b) mid-rise and c) high-rise 

 
Fig. 14.The MIDR prediction for the three models: a) low-rise, b) mid-rise and c) high-rise 

 

Fig. 15. The MBS prediction for the three models: a) low-rise, b) mid-rise and c) high-rise 

Figure 16, Figure 17, Figure 18, Figure 19, Figure 20 and Figure 21 represent the 3D 
fragility surfaces constructed using the NL-THA and the ANN models for low-, mid-, and 
high-rise buildings. The accuracy of the prediction of these 3D fragility surfaces is 
calculated using the same performance criteria (R², MSE, and RMSE), and they are 
summarized in Table 10 and Table 11 for MIDR and MRDR. 
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Table 7. The performance of the ANN to predict the MBS to unseen GMs. 
 

MBS 

Low-rise Mid-rise High-rise 

ANN Auto-
ANN 

PCA-
ANN 

ANN Auto-
ANN 

PCA-
ANN 

ANN Auto-
ANN 

PCA-
ANN 

R² 0.850 0.964 0.964 0.931 0.965 0.931 0.822 0.964 0.954 

MSE 0.025 0.002 0.017 0.016 0.005 0.009 0.084 0.017 0.034 

RMSE 0.158 0.051 0.133 0.127 0.072 0.097 0.291 0.133 0.185 

Table 8. The performance of the ANN to predict the MIDR to unseen GMs. 
 

MIDR 

Low-rise Mid-rise High-rise 

ANN Auto-
ANN 

PCA-
ANN 

ANN Auto-
ANN 

PCA-
ANN 

ANN Auto-
ANN 

PCA-ANN 

R² 0.91 0.94 0.93 0.93 0.959 0.958 0.938 0.9550 0.94 

MSE 0.0006 9.6E-
05 

1.0E-
04 

3.0E-04 8.7E-04 1.90E-
04 

1.22E-
03 

1.89E-04 2.48E-04 

RMS
E 

0.025 0.0098 0.0103 0.0174 0.0296 0.0137 0.0348 0.0137 0.0157 

Table 9. The performance of the ANN to predict the MRDR to unseen GMs. 
 

MRDR 

Low-rise Mid-rise High-rise 

ANN Auto-
ANN 

PCA-
ANN 

ANN Auto-
ANN 

PCA-
ANN 

ANN Auto-
ANN 

PCA-
ANN 

R² 0.70
8 

0.90 0.909 0.861 0.961 0.962 0.878 0.968 0.9549 

MSE 0.00
03 

0.0001 0.0009
6 

0.0002 7.18E-05 7.07E-04 2.20E-
04 

5.84E-04 8.16E-05 

RMSE 0.01
74 

0.0101 0.0311 0.0160 0.0084 0.0265 0.0148 0.0241 0.0090 

Table 10. The accuracy of the 3D fragility surfaces prediction (MIDR). 

 

MIDR 

Low-rise Mid-rise High-rise 

ANN 
Auto-
ANN 

PCA-
ANN 

ANN 
Auto-
ANN 

PCA-
ANN 

ANN 
Auto-
ANN 

PCA-
ANN 

R² 0.6014 0.9512 0.9139 0.833 0.9917 0.9830 0.971 0.9719 0.9716 

MSE 0.0808 0.0007 0.0098 0.059 0.0018 0.0035 0.006 0.0061 0.0062 

RMSE 0.2842 0.0258 0.0989 0.244 0.0425 0.0595 0.078 0.0778 0.0784 

Table 11. The accuracy of the 3D fragility surfaces prediction (MRDR). 

 

MRDR 

Low-rise Mid-rise High-rise 

ANN 
Auto-
ANN 

PCA-
ANN 

ANN 
Auto-
ANN 

PCA-
ANN 

ANN 
Auto-
ANN 

PCA-ANN 

R² 0.8361 0.9713 0.9422 0.8993 0.9908 0.9414 0.9052 0.9937 0.9316 

MSE 0.0583 0.0062 0.0126 0.0216 0.0020 0.0127 0.0202 0.0013 0.0149 

RMSE 0.2416 0.0785 0.1122 0.1471 0.0449 0.1127 0.1420 0.0367 0.1222 
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 NL-THA    Predicted   

 

(a) 

 

(b) 

 

(c) 

Fig. 16. 3D Fragility surfaces (NL-THA and ANNs) of the MIDR for low-rise building: a) ANN, b) 
Autoencoder-ANN and c) PCA-ANN 

 

(a) 

 

(b) 

 

(c) 

Fig. 17. 3D Fragility surfaces (NL-THA and ANNs) of the MIDR for mid-rise building: a) ANN, b) 
Autoencoder-ANN and c) PCA-ANN 

 

(a) 

 

(b) 

 

(c) 

Fig. 18. 3D Fragility surfaces (NL-THA and ANNs) of the MIDR for high-rise building: a) ANN, b) 
Autoencoder-ANN and c) PCA-ANN 
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(a) 

 
(b) 

 
(c) 

Fig.19. 3D Fragility surfaces (NL-THA and ANNs) of the MRDR for low-rise building: a) ANN, b) 
Autoencoder-ANN and c) PCA-ANN 

 

(a) 

 

(b) 

 

(c) 

Fig. 20. 3D Fragility surfaces (NL-THA and ANNs) of the MRDR for mid-rise building: a) ANN, b) 
Autoencoder-ANN and c) PCA-ANN 

 

(a) 

 

(b) 

 

(c) 

Fig. 21. 3D Fragility surfaces (NL-THA and ANNs) of the MRDR for mid-rise building: a) ANN, b) 
Autoencoder-ANN and c) PCA-ANN 

4.Discussion 

The seismic response is essential for the vulnerability and fragility assessment of new and 
existing buildings. The NL-THA is considered the most reliable and accurate method to 
achieve an exact investigation. However, this method is not always suitable due to its 
complexity and time-consuming. Therefore, many works have been proposed to facilitate 
the assessment process using techniques like machine learning algorithms. In this paper, 
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an ANN model has been developed to predict the seismic responses (MBS, MIDR, and 
MRDR) of RC frame buildings using only the building geometry and earthquake 
characteristics. It aims to offer analysts a rapid and fast alternative to predict the building's 
performance and calculate the probability of exceeding a certain damage level. 

The paper starts by generating a dataset with more than 190,000 NL-THA performed, and 
three ANN models were trained (ANN, Autoencoder-ANN, PCA-ANN). Table 5 illustrates 
that three ANN models achieved a good performance level with correlation coefficients 
exceeding 97%. The Autoencoder-ANN model showed the lowest MSE and RMSE 
(0.00007,0.000131 and 0.00011) for MBS, MIDR, and MRDR, respectively. For the PCA-
ANN model showed the highest correlation coefficients (98%, 99%, and 98%) during the 
training process, and the MSE is higher than the ANN's (0.0013,0.0087 and 0.011761) for 
MBS, MIDR, and MRDR. The hybrid models (PCA and Autoencoder) performed better in 
training, testing, and validation than the ANNs. Only twenty dimensions have been used to 
train the ANN. In addition, the dimensionality reduction allowed us to reduce and optimize 
the ANN model's hyperparameters, as shown in Table 4, which made the training process 
faster and less complex. This improvement is caused to the ability of the unsupervised 
techniques to capture the principal components (in the case of the PCA) or the essential 
features of the dataset (in the case of the Autoencoder). The proposed model was tested 
on unseen GMs since the work aims to develop an accurate, fast, and generalized method 
that can be used as an alternative to the NL-THA. Three buildings with different heights 
were used as a case study, and thirty artificial GMs matched to the same target response 
spectrum were used to perform the analysis. 

Figure 13, Figure 14, and Figure 15 illustrate the IDA points of the (MBS, MIDR, and MRDR) 
versus the incremented seismic intensity (PGA). Table 7, Table 8, and Table 9 summarized 
the performance of the prediction. The results showed that the Autoencoder-ANN model 
has the highest rate of predictability regarding R² and MSE. The PCA-ANN model also 
showed high accuracy in terms of R² and MSE and slightly less than the Autoencoder's 
accuracy. The ANN model showed good predictability but remarkably less than the 
previous hybrid models for all the ANN models and all three buildings. It can be concluded 
that using these unsupervised techniques enhanced the accuracy of the prediction, even 
for unseen GMs. 

The 3D fragility surfaces were constructed using the IDA results and compared to the NL-
THA fragility surfaces. Figure 16, Figure 17, and Figure 18 illustrate the 3D fragility 
surfaces of the MIDR using the ANN, Autoencoder-ANN, and PCA-ANN for low-, mid-, and 
high-rise buildings. Figure 19, Figure 20, and Figure 21 illustrate the 3D fragility surfaces 
of the MRDR using the ANN, Autoencoder-ANN, and PCA-ANN for low-, mid-, and high-rise 
buildings. The accuracy of these surfaces to the exact surfaces is summarized in Table 10 
and Table 11 for the MIDR and MRDR, respectively. According to these Figures and the 
tables, it can be noticed that the Autoencoder and the PCA models accurately predict the 
fragility of surfaces with an R²> 95% where the Autoencoder models represented the 
highest correlation coefficient of 95%, 99%,97% for the MIDR and 97%, 99%, and 99% for 
the MRDR, and the lowest MSE 0.0007,0.0018 and 0.0061 for the MIDR and 0.0062, 0.002 
and 0.0013 for the MRDR. The PCA-ANN model also showed high accuracy and slightly less 
than the Autoencoder-ANN model, with an R² of 91%,98%, and 97% for the MIDR and 
94%, 94%, and 93% for the MRDR. For the ANN models, they showed an acceptable 
correlation with an R² of 83%, 89%, and 90% for the MRDR and 60%, 83%, and 97% for 
the MIDR and an MSE of 0.08, 0.05, and 0.0062 for the MIDR and 0.5, 0.02 and 0.02 for the 
MRDR. 

Given these results, the Autoencoder-ANN is the most suitable hybrid method to predict 
seismic responses. Its accuracy is not limited to seen GMs but to unseen ones. Also, the 
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PCA-ANN model presented an excellent model, slightly less accurate than the Autoencoder 
regarding the predictability of the IDA points and fragility surfaces. The use of the hybrid 
models improved the accuracy and optimized the ANN's hyperparameters, making the 
ANN model more generalized to unseen scenarios.  

5.Conclusion 

The paper presents a new approach for predicting seismic responses with high speed and 
accuracy. The approach utilizes unsupervised algorithms and Artificial Neural Networks 
(ANN) to predict critical seismic parameters such as MBS, MIDR and MRDR. This new 
approach can be helpful in the field of earthquake engineering and research, as it can 
provide better understanding of the seismic behavior of structures. 

The paper compares the performance of three different ML models. The first model is an 
ANN without any modification to the input features. The second model is a combination of 
an autoencoder and an ANN, where autoencoder algorithm is used to obtain the input 
features for ANN. The third model is a combination of Principal Component Analysis (PCA) 
and ANN, where PCA is used to reorient and reduce the input data. These ML models are 
compared with the NLTHA results in terms of R², MSE and RMSE. 

The comparative study provides several insights into the performance of different models: 

• The ML-based approach presented a quick alternative to the NLTHA, where it can 
be used as an alternative by the engineers to fast assess the seismic response of RC 
frame buildings without the need for modeling to processing time. 

• The use of hybrid approaches as PCA-ANN and Autoencoder-ANN made the 
prediction more accurate and enhanced the performance and outputs results and 
reduced the MSE. 

• The ML models were able to reach a high accuracy by using only the geometry 
characteristics which mean that the engineer can use it on the field without the need 
to any calculations or FEM software. 

• The Autoencoder made the ANN training more accurate, and it reduced the MSE 
remarkably compared to PCA-ANN and ANN models. 

• The use of hybrid models made the ANN training much faster and less complex due 
to the dimensionality reduction and data reorientation and make the ANN train on 
the principal components. 

• The hybrid model reduces the hyperparameter numbers such as number of neurons 
and number of hidden layers due to the input features reduction. 

• The ML-based can be a useful tool for vulnerability and fragility assessments due to 
it high accuracy and reduce computational time and its simplicity. 

The hybrid model is a useful tool for quickly investigating the seismic vulnerability and 
fragility of structures. However, it should be noted that the accuracy of the model's 
predictions is limited to reinforced concrete frame structures with specific geometry 
characteristics mentioned in the paper. To ensure accurate results, it is recommended not 
to use parameters that exceed the upper bound of the training dataset. Doing so may affect 
the accuracy of the model's predictions. 
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Appendix A 

Table A1. The eighty artificial ground motions and their characteristics used to generate 
the dataset. 

GMs 
PGA 
(g) 

PGV 
(cm/sec) 

PGD 
(cm) 

AI Ic 
CAV 

(cm/sec) 
VSI 

(cm) 
HI 

(cm) 
A95 
(g) 

PP 
(sec) 

SD 
(sec) 

GM 1 0.16 14.11 20.11 0.52 0.04 567.24 59.85 55.06 0.15 0.40 12.78 

GM 2 0.19 14.32 9.15 0.51 0.04 545.23 61.57 57.10 0.19 0.20 11.38 

GM 3 0.19 14.66 13.81 0.50 0.04 543.61 63.62 58.87 0.18 0.18 12.02 

GM 4 0.22 18.64 15.45 0.52 0.04 554.85 61.65 56.96 0.22 0.26 11.88 

GM 5 0.21 15.38 31.25 0.47 0.04 531.61 61.30 54.65 0.21 0.38 11.99 

GM 6 0.18 13.76 8.97 0.53 0.04 561.33 63.73 57.84 0.17 0.22 11.86 

GM 7 0.23 13.48 10.61 0.46 0.04 525.61 64.23 59.44 0.23 0.20 11.65 

GM 8 0.21 16.43 18.57 0.50 0.04 543.66 61.33 56.10 0.21 0.18 12.40 

GM 9 0.17 13.75 14.87 0.43 0.03 501.45 59.01 54.77 0.17 0.40 10.55 

GM 10 0.18 13.25 7.55 0.35 0.03 439.99 63.80 57.74 0.18 0.36 9.65 

GM 11 0.15 14.28 7.21 0.41 0.03 490.52 60.75 55.85 0.15 0.22 10.96 

GM 12 0.19 13.93 6.34 0.50 0.04 546.92 62.42 58.53 0.19 0.26 12.25 

GM 13 0.17 14.99 7.42 0.55 0.04 560.44 64.80 60.13 0.17 0.16 10.45 

GM 14 0.19 12.39 4.40 0.41 0.03 468.87 64.58 58.89 0.18 0.26 10.14 

GM 15 0.17 15.18 8.90 0.33 0.03 418.10 59.98 55.27 0.17 0.16 9.40 

GM 16 0.18 16.73 12.04 0.39 0.03 472.72 61.43 56.29 0.17 0.20 10.20 

GM 17 0.21 15.10 6.76 0.34 0.03 422.32 61.96 56.02 0.20 0.32 9.08 

GM 18 0.16 12.79 9.33 0.50 0.04 587.56 59.82 55.51 0.15 0.40 14.25 

GM 19 0.19 16.89 20.74 0.47 0.03 558.46 65.73 59.56 0.19 0.36 13.36 

GM 20 0.16 13.91 9.36 0.49 0.04 588.11 61.13 56.49 0.16 0.22 15.16 

GM 21 0.16 14.25 5.40 0.57 0.04 628.21 62.70 58.45 0.15 0.16 14.80 

GM 22 0.18 13.23 8.54 0.51 0.04 579.00 64.44 59.07 0.18 0.26 13.76 

GM 23 0.20 14.88 13.59 0.58 0.04 588.32 64.21 59.57 0.19 0.18 12.84 

GM 24 0.17 12.02 8.39 0.40 0.03 515.35 59.72 56.04 0.17 0.16 14.70 

GM 25 0.17 17.88 11.52 0.49 0.04 579.15 61.86 57.78 0.16 0.20 13.85 

GM 26 0.19 14.01 12.36 0.39 0.03 508.24 57.89 54.05 0.19 0.32 14.31 

GM 27 0.15 22.68 53.92 0.43 0.03 494.46 58.71 55.17 0.14 0.28 10.62 

GM 28 0.15 15.24 4.38 0.40 0.03 468.88 61.65 57.47 0.15 0.34 10.34 

GM 29 0.18 24.89 32.01 0.46 0.04 524.63 62.76 57.31 0.17 0.30 16.74 

GM 30 0.24 16.87 7.59 0.44 0.03 492.32 61.89 57.19 0.24 0.16 10.35 

GM 31 0.18 11.58 7.91 0.40 0.03 453.14 64.66 58.25 0.17 0.38 10.04 

GM 32 0.18 29.46 41.92 0.37 0.03 443.87 57.01 55.76 0.17 0.22 9.66 
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GM 33 0.20 20.19 24.56 0.41 0.03 477.89 61.34 58.43 0.20 0.38 10.57 

GM 34 0.24 15.01 6.42 0.51 0.04 561.26 60.64 56.34 0.24 0.16 12.83 

GM 35 0.19 16.13 10.13 0.32 0.03 408.98 58.44 54.50 0.19 0.18 10.54 

GM 36 0.16 12.97 6.89 0.40 0.03 564.23 61.60 53.14 0.16 0.36 14.24 

GM 37 0.17 104.02 300.93 0.63 0.04 785.25 48.45 52.69 0.17 0.30 16.41 

GM 38 0.18 12.77 9.02 0.43 0.03 586.99 56.76 51.90 0.17 0.24 13.71 

GM 39 0.17 12.85 11.58 0.46 0.03 612.88 58.90 52.80 0.16 0.30 14.16 

GM 40 0.15 33.28 90.36 0.44 0.03 593.89 58.27 53.39 0.15 0.32 14.39 

GM 41 0.13 11.18 7.23 0.41 0.03 588.53 54.63 52.33 0.13 0.40 13.90 

GM 42 0.15 38.52 124.98 0.47 0.03 680.39 56.90 53.23 0.15 0.36 20.67 

GM 43 0.17 15.18 19.05 0.44 0.03 623.98 57.08 54.43 0.16 0.30 15.23 

GM 44 0.13 30.39 130.65 0.59 0.03 905.73 57.45 53.37 0.13 0.28 24.96 

GM 45 0.18 30.64 121.62 0.50 0.04 545.28 61.88 56.41 0.18 0.38 12.40 

GM 46 0.15 13.73 26.47 0.60 0.03 906.12 57.12 53.26 0.14 0.32 24.16 

GM 47 0.16 37.30 210.98 0.67 0.04 996.46 58.37 54.64 0.15 0.28 25.90 

GM 48 0.15 16.38 10.19 0.70 0.04 983.07 60.61 54.21 0.15 0.24 23.87 

GM 49 0.14 10.51 13.95 0.65 0.04 963.25 58.47 53.19 0.14 0.28 25.55 

GM 50 0.14 41.64 159.92 0.67 0.04 1037.31 54.92 53.06 0.14 0.18 30.23 

GM 51 0.15 13.97 21.95 0.63 0.03 943.91 57.09 52.38 0.15 0.26 25.03 

GM 52 0.15 31.67 201.03 0.65 0.04 967.57 55.53 53.23 0.14 0.16 25.46 

GM 53 0.14 16.77 29.56 0.70 0.04 991.50 62.04 56.74 0.13 0.24 25.21 

GM 54 0.15 21.46 114.56 0.66 0.04 950.93 62.88 59.05 0.15 0.24 24.22 

GM 55 0.16 15.49 79.16 0.69 0.04 977.16 61.59 56.89 0.16 0.28 23.85 

GM 56 0.19 12.23 7.14 0.45 0.04 510.95 62.72 57.80 0.18 0.22 12.88 

GM 57 0.14 19.87 106.57 0.68 0.04 981.23 60.71 54.27 0.14 0.24 24.55 

GM 58 0.14 23.68 129.52 0.69 0.04 1006.77 60.98 56.66 0.14 0.26 26.05 

GM 59 0.14 22.31 147.84 0.68 0.04 1025.23 56.65 52.42 0.14 0.40 28.88 

GM 60 0.17 28.67 186.34 0.69 0.04 989.14 59.66 56.10 0.16 0.32 25.36 

GM 61 0.14 14.10 40.27 0.70 0.04 991.06 60.10 55.87 0.14 0.16 24.87 

GM 62 0.17 16.89 44.37 0.43 0.03 592.90 63.35 54.69 0.17 0.36 14.49 

GM 63 0.16 12.64 3.39 0.52 0.03 660.31 61.54 55.08 0.16 0.36 14.55 

GM 64 0.18 14.31 18.33 0.47 0.03 617.75 60.10 54.91 0.17 0.28 13.93 

GM 65 0.17 11.51 15.65 0.47 0.03 624.10 60.11 53.38 0.16 0.28 14.42 

GM 66 0.16 12.85 10.56 0.46 0.03 607.56 60.32 54.61 0.15 0.20 14.17 

GM 67 0.22 24.04 38.87 0.48 0.04 541.49 63.77 59.20 0.21 0.20 12.39 

GM 68 0.14 12.78 10.24 0.46 0.03 630.85 57.82 54.31 0.13 0.40 14.72 

GM 69 0.16 22.10 58.72 0.45 0.03 595.52 63.40 57.76 0.15 0.32 13.75 
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GM 70 0.19 158.68 1376.71 0.67 0.04 876.57 52.93 55.44 0.19 0.30 25.31 

GM 71 0.16 13.53 6.32 0.40 0.03 560.41 61.40 52.97 0.16 0.46 14.14 

GM 72 0.16 38.57 116.48 0.52 0.03 676.30 58.32 54.42 0.15 0.30 15.47 

GM 73 0.19 13.18 8.14 0.46 0.03 606.51 57.80 52.84 0.18 0.24 13.71 

GM 74 0.17 12.60 10.78 0.46 0.03 614.91 58.90 52.79 0.17 0.30 14.16 

GM 75 0.15 11.51 17.89 0.48 0.03 640.40 59.84 54.59 0.15 0.32 15.12 

GM 76 0.14 12.42 8.64 0.46 0.03 620.74 56.73 54.02 0.13 0.40 14.24 

GM 77 0.16 13.93 14.37 0.42 0.03 564.42 60.17 53.84 0.15 0.36 13.24 

GM 78 0.19 15.51 10.81 0.39 0.03 478.98 60.31 55.50 0.18 0.18 13.59 

GM 79 0.18 23.61 32.97 0.45 0.03 639.30 55.32 53.26 0.17 0.30 16.54 

GM 80 0.19 15.27 13.54 0.50 0.04 542.96 63.50 57.38 0.18 0.24 11.56 
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