
 

 

 

 

 

 

 

  

 

 

 

 

 

 

Thin layer interface: An alternative modeling 

consideration in soil-structure interaction system 
 

Gaurav D. Dhadse, Gangadhar Ramtekkar, Govardhan Bhatt 

 

Online Publication Date: 15 February 2024 

URL:  http://www.jresm.org/archive/resm2024.16me0926rs.html  

DOI:  http://dx.doi.org/10.17515/resm2024.16me0926rs 

Journal Abbreviation: Res. Eng. Struct. Mater. 

To cite this article 

Dhadse GD, Ramtekkar G, Bhatt G. Thin layer interface: An alternative modeling 

consideration in soil-structure interaction system. Res. Eng. Struct. Mater., 2024; 10(3): 1173-

1194. 

Disclaimer 

All the opinions and statements expressed in the papers are on the responsibility of author(s) and are 

not to be regarded as those of the journal of Research on Engineering Structures and Materials (RESM) 

organization or related parties. The publishers make no warranty, explicit or implied, or make any 

representation with respect to the contents of any article will be complete or accurate or up to date. The 

accuracy of any instructions, equations, or other information should be independently verified. The 

publisher and related parties shall not be liable for any loss, actions, claims, proceedings, demand or 

costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with use 

of the information given in the journal or related means. 

 

 

 

 

Published articles are freely available to users under the terms of Creative 

Commons Attribution ‐ NonCommercial 4.0 International Public License, as 

currently displayed at here (the “CC BY ‐ NC”). 

 

http://www.jresm.org/archive/resm2024.16me0926rs.html
http://dx.doi.org/10.17515/resm2024.16me0926rs
https://creativecommons.org/licenses/by-nc/4.0/legalcode


*Corresponding author: gdhadse@yahoo.com  
a orcid.org/0000-0002-8857-9509; b orcid.org/0000-0002-3063-4480; c orcid.org/0000-0002-8683-1918 
DOI: http://dx.doi.org/10.17515/resm2024.16me0926rs  

Res. Eng. Struct. Mat. Vol. 10 Iss. 3 (2024) 1173-1194  1173 

 

Research Article 

Thin layer interface: An alternative modeling consideration in 
soil-structure interaction system 

Gaurav D. Dhadse*1,a, Gangadhar Ramtekkar2,b, Govardhan Bhatt2,c 

1Dept. of Civil Engineering, G. H. Raisoni Institute of Engineering and Business Management, Jalgaon, India 
2Dept. of Civil Engineering, National Institute of Technology, Raipur, India 

Article Info  Abstract 

Article history: 
 
Received 26 Sep 2023 
Accepted 15 Feb 2024  

 The numerical modeling of a soil-structure interaction (SSI) system subjected to 
lateral loads depends mainly upon the interface behavior. The soil stiffness in 
relation to the structure is quite low, and the structure generally has a rough 
surface in contact with the soil. As a result of the slipping and rolling of soil grains 
caused by friction, a thin layer of shear zone forms in soil with the application of 
lateral loads. A thin layer interface is represented by the shear zone. As a result, 
the decision on the thickness requirement is critical for appropriate modeling of 
the thin layer interface, which is rarely documented by researchers. 
Furthermore, it has been reviewed in the literature that modeling the SSI system 
with a thin layer interface more accurately replicates the physical system than 
modeling it with a zero-thickness interface. The methodology for effective usage 
(in terms of proper interface thickness) of the thin-layer interface in SSI system 
using finite element (FE) modeling is proposed in this work. The thickness of the 
interface has also been determined via numerical modeling of a large direct 
shear test (DST). 
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1. Introduction 

The modeling of the SSI system with a thin layer interface has many advantages [1-3]. The 
performance and execution of numerical modeling considering thin layer interface mainly 
depends on the interface thickness [4]. This paper effectively deals with thin layer interface 
element as well as evaluation and execution of interface thickness for various normal 
stresses.  

According to the reviewed literature, it has been reported that the thin layer interface is 
appropriately representing the physical state of the SSI problem than that of the zero-
thickness interface [5-10]. Also, it has been noted that due to the bottom roughness of the 
footing, the soil particles slip as well as roll because of lateral loads as a result the thin layer 
interface has formed [11-13]. The interface acts differently than the rest of the soil [3, 14-
16]. If both footing and underlying material act as solid such as footing-rock interaction, 
then the representation of interface has considered as zero thickness [17]. Such interface 
has been modeled with appropriate constant normal stiffness values and meshing aspect 
ratio, to avoid the numerical ill-conditioning [18-19]. It is worth to mention that many 
researchers showcased the computational difficulties that occur in zero thickness 
interfaces [2, 4, 18, 20-23]. In contrast, the recent software is using zero thickness 
interfaces for SSI problems by adopting only interface reduction factor with a high value of 
normal stiffness [24-29]. Such analysis is based on certain assumptions or approximations 
which have considered the interface performance by selecting only interface reduction 
factor, which may not be suitable for every soil and footing/structure condition. So, 
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consideration of zero thickness interfaces in SSI problem is disadvantageous, whereas 
there are many advantages of using a thin layer interface. 

The implementation of a thin layer interface necessitates the use of an appropriate 
evaluation interface thickness. According to Desai et al. [1], Dalili et al. [7] and Dhadse G.D. 
et al. [23], the interface thickness should be 0.1 to 0.01 of the adjacent element size. If the 
adjacent mesh size fluctuates, the thickness value is inconsistent and altering regardless of 
soil type or structure surface roughness. According to the literature, the interface thickness 
should be five times the average soil grain size [6, 11, 13, 30-33]. Whereas Fang H. and 
Wang W. [34], Saberi et al. [35] and Gennaro et al. [36] proposed the interface thickness 
should be 5 to 10 times the average particle size. The criteria given with respect to average 
particle size is realistic and varies according to grain size. But the formation of a thin layer 
interface is due to roughness of footing surface [11] in contact with soil and depends upon 
soil type, particle size, normal stress etc. [13, 30, 37-39]. As a result, the criterion based 
solely on particle size appears insufficient for determining optimal interface thickness for 
every SSI analysis situation. 

The methodology for thickness evaluation and thin layer interface execution in FE 
modeling of the SSI system has been proposed in this study. The proposed methodology is 
inclusive of normal stress only, but the same methodology can be adopted by taking into 
consideration all interface thickness influencing parameters.  

2. Proposed Problem Statement 

Many scholars have claimed that employing a thin layer over zero thickness interfaces has 
advantages. The research into the decision on interface thickness requirement is 
insufficient and requires further analysis. Few researchers had proposed the criteria based 
on grain size for the determination of interface thickness. This criterion may not be 
effective for every SSI system as the thickness predominantly relates to contact roughness 
and indirectly relates to soil type, grain size, normal stress etc.  

The methodology for effective evaluation of interface thickness and execution of thin layer 
interface is proposed in the present study. The FE model of a large DST with a thin layer 
interface has been developed to validate the experimental results for various proposed 
thicknesses. The relation between normal stress and interface thickness has been 
established. The footing-soil interaction (FSI) problem considering zero thickness 
interfaces by Viladkar et al. [40] has been solved using the proposed thin layer thickness 
for the execution of the interface thickness. Non-linearity at the soil and interface has also 
been incorporated into FE formulations. 

3. Finite Element Modeling 

The footing and soil mass is modeled with 8 noded isoparametric plane strain element. 
Each node in the element has two degrees of freedom (DoF) i.e. translations in ξ and η 
directions in a local coordinate system. The elements geometry is shown in Fig. 1. The 
mathematical formulation of the element is referred from J. N. Reddy [41], Chandrupatla 
and Belegundu [42], S.S. Rao [43] and O.C. Zienkiewicz et al. [44]. This element is very well 
compatible with 6 noded thin layer interface element as well as the various constitutive 
models of soil. Also, the element is useful in the proper evaluation of stresses near junction 
points [45]. 
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Fig. 1. Geometrical details of elements used for footing, interface and soil 

3.1. Thin Layer Interface Element Formulation 

The 6 noded thin layer isoparametric interface element depicted in Fig. 2 serves as a 
continuum interface between soil and footing. The element's constitutive performance is 
thought to differ from that of adjacent solid elements, and it is mostly determined by the 
interface's normal and shear stiffness (as determined by the shear test). The element is 
compatible with adjacent soil and footing element. Earlier, this element has been used by 
Sharma and Desai [3], Zaman et al. [14] and Noorzaei et al. [9] to analyze various soil-
structure interaction systems. In the present study, the same element is executed for 
analyzing the SSI problem with proper thickness. The detailed element stiffness matrix 
formulation is given below. 

 

Fig. 2. Thin layer interface element representation in the global and local coordinate 
systems 

The six-noded thin layer interface element is depicted in Fig. 2 in both global and local 
coordinate systems. In general, the interface details are evaluated in a local coordinate 
system, therefore the orientation of the interface is an important criterion.  As a result, the 
formulation I generated in a local coordinate system and then transformed to the global 
system using the transformation matrix. It is also worth noting that as the interface 
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thickness approaches zero the in-plane stress and strain become minimal in compared to 
normal and shear stress and strain [3]. As a result, the contact response is approximate 
idealized by simply normal and shear stiffness. 

In the global X and Y systems, U and V represent nodal displacement. In the local coordinate 
and system, u and v are the nodal displacements. Equation 1 gives the shape functions ‘N’ 
in the local coordinates system at each node, 

 

(1) 

The element displacement matrix in the global system is (Equation 2), 

(2) 

 Therefore, the displacement at any point within an element is given by 
Equation 3; 
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The strain at any point within an element is given by strain displacement relationship as 
given in Equation 4, 
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where, yx  ,   and xy   are axial strain, normal strain and shear strain respectively in 

the global system. Whereas 'B' is the strain displacement relation matrix and 'δe' is the 
global element displacement matrix. 

It is discussed earlier that, interface properties are in a local coordinate system, hence 
stress-strain relation is written as shown in Equation 5, 

 (5) 

where, n   and    are normal and shear stress (Local coordinate system). knn and kss are 

normal and shear stiffness whereas ksn and kns are in-plane stiffness. vr and ur are relative 
displacements. As thickness is very small for the interface, the in-plane stresses are 
negligible, hence Equation 5 can be written as (Equation 6), 

 (6) 

As in-planes stresses are negligible, hence (Equation 7) 
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Where, [De] is material matrix or relation matrix in the local coordinate system 

To transform the local coordinate system into the global coordinate system, use the 
transformation matrix [T] in Equation 9, 
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where, s = sinθ, c = cosθ and θ is the angle made by interface with X-axis. Therefore, the 
global stress-strain relation matrix is expressed as (Equation 10) 
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Thus, the element stiffness matrix [K] in global form can be written as, (Equation 11) 
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where, ‘Rf’ is failure ratio, 'φ' is the angle of friction, ‘σ1’ and ‘σ3’ are major and minor 
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the Finite Element Method, the slipping and rolling of the particles have been idealized by 
tangential stiffness value as express in equation 13 and the shear zone has been idealized 
with thin layer interface element (with appropriate thickness) as discussed in Section 3.1. 
The tangential stiffness ‘Kss’ from equation 13 is evaluated at every load step whereas 
normal stiffness ‘Knn’ is approximately evaluated as ‘ET/t’ [3] (‘t’ is interface thickness). It 
is also reviewed from the literature that, due to a very thin interface, few problems may 
face computational difficulties as a result; arbitrary high value for normal stiffness is also 
considered [40, 45, 55]. 

 

(13) 

From equation 13, ‘kj’ is modulus number, ‘γw’ is the unit weight of water, ‘σn’ is normal 
stress, ‘Pa’ is atmospheric pressure, ‘Rf’ is failure ratio, ‘τ’ is shear stress, ‘Ca’ is adhesion at 
the interface, ‘φ’ angle of friction, 'n' is the exponent and ‘Ki’ is initial stiffness. 
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The large box shear FE model has been analyzed for maximum shear stress for given 
normal stress. The result for tangential displacements (for every thickness) has been 
compared to get a value that approximately matches with experimental data. Thus for 
every normal stress, the interface thickness has found out. The plot between interface 
thickness and normal stress gives the best fit prediction about interface thickness based 
on a variation of normal stress. The predicted equation further used for the execution of 
thin layer interface in soil-structure interaction problem. 

5. Validation of Large DST with Thin Layer Interface 

The plane strain idealization with boundary conditions of large DST in FE modeling [57-
58] is shown in Fig. 3. Each box is of dimension 300 x 300 x 75 mm. Shear stress acts on 
the side of the structure portion, whereas normal stress acts on the top of the upper box. 
The thin layer interface is located between two boxes as shown in Fig. 3. By maintaining 
normal stress constant, shear stress is applied with each load step, and tangential 
displacement is determined. Both boxes and interface has been discretized into 8 noded 
isoparametric and 6 noded thin layer isoparametric plane strain elements respectively. For 
the structure part, concrete or mild steel material is used (analyzed as linear elastic) with 
a rough bottom in contact with the soil whereas sand is used in the upper box.  

 

Fig. 3. Idealization of the large DST [57] 

    

(a): No. of Elements = 02  (b): No. of Elements = 08  (c): No. of Elements = 60 

   

(d): No. of Elements = 200  (e): No. of Elements = 300  (f): No. of Elements = 600 

Fig. 4. Mesh configurations for large DST 
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Desai et al.'s example was used to conduct the mesh convergence study [1]. The linear 
elastic analysis is checked with various meshes as shown in Fig. 4 for the materials used 
by Desai et al. [1].  The result for tangential displacement (Table 1) is compared with the 
literature result. 

The tangential displacement of large DST subjected to the normal stress of 0.955 N/mm2 
and shear stress of 0.5 N/mm2 for all meshes is plotted in Fig. 5. The interface thickness is 
considered as 3mm for all mesh configurations. From Fig. 5, it is observed that the mesh 
configuration with 200 elements has been found optimum. Thus in further analysis, the 
same configuration of elements has been used. Also, the result for tangential displacement 
(mesh = 200 elements) from Table 1 is appropriately matching with literature results. 

 

Fig. 5. Large box shear test mesh convergence analysis 

Table 1. Validation with Desai et al. 1984[1] 

Author Tangential displacement (mm) 

Desai et al.  0.34 

Present Study  0.3219 
% Variation 5.32 % 

5.1. Prediction of interface thickness 

The large box shear test performed on the soil-mild steel interface by Viladkar et al. [40] 
has been numerically modeled (section 5.0) in the present study to find out the interface 
thickness. The optimum mesh size as per Fig. 4(d) is used to discretize the soil, mild steel 
and interface. The experimental plot of tangential displacement against shear stresses for 
soil-mild steel interface shows non-linear nature. Thus, in addition to soil non-linearity; 
interface non-linearity has also been incorporated in the developed FE model. As the 
hyperbolic constitutive relation is used to represent soil and interface behavior as per 
section 3.2, the hardening and stiffness non-linearity can appropriately be included in the 
FE model. Hence, it is decided to analyze the system for maximum shear stress for given 
normal stress and the corresponding displacement is found out.  

Table 2. Material properties for structure (Mild steel) 

Sr. No. Component Elastic Modulus (N/mm2) Poisson’s Ratio 
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The structure part is modeled as mild steel (considered as linear elastic) with a rough side 
in contact with sand. The test had been carried by Viladkar et al. [40] for four normal stress 
conditions such as 40.8 kPa, 61.24 kPa, 81.65 kPa and 102.07 kPa as shown in Fig. 6. The 
mild steel, sand, and interface material properties are provided in Table 2, Table 3 and 
Table 4 respectively. 

Table 3. Material properties for sand 

Sr. No. Description Value 
1 Soil Type SP 
2 Unit weight 16.3 kN/m3 
3 Relative Density 84% 
4 Modulus Number ‘K’ 700 
5 Exponent ‘n’ 0.50 
6 Failure Ratio ‘Rf’ 0.90 
7 Cohesion ‘C’ 0 
8 The angle of Internal Friction ‘ɸ’ 410 
9 Poisson’s Ratio of sand 0.3 

10 Mean diameter of sand particle ‘D50’ 0.25 mm 

Table 4. Material properties for interface 

Sr. No. Description Value 
1 Modulus Number ‘kj’ 8625 
2 Exponent ‘n’ 0.662 
3 Failure Ratio ‘Rf’ 0.82 
4 Adhesion ‘Ca’ 0 
5 The angle of Internal Friction 'ɸ' 29.30 
6 Unit weight of water ‘γw’ 0.00001 N/mm3 
7 Atmospheric pressure ‘Pa’ 0.10132 N/mm2 

5.1.1 Result and Discussion 

The graph of shear stress vs shear displacement by Viladkar et al. [40] is shown in Fig. 6 for 
the various normal stress conditions. To determine the thickness of the interface, the FE 
model for large DST has been subjected to normal stress and maximum shear stress. 
Normal stress is kept constant throughout loading, while shear stress is applied in stages.  

 

Fig. 6. Large box shear test result for sand-footing interface [40] 
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Fig. 7. No. of iterations performed for each normal stress during interface shear test 

Fig. 8, Fig. 9, Fig. 10 and Fig. 11 show the results for tangential displacement (Experimental 
and FE model result) in interface shear test for each normal stress and maximum shear 
stress condition. (IT – Interface Thickness, σn – Normal stress and τ – Shear stress) 

The no. of iterations performed by the FE model for each load increment till convergence 
is shown in Fig. 7. For every normal stress, four different interface thicknesses (such as 
3D50, 5D50, 10D50 and 12D50) have been considered. The tangential displacement for 
maximum shear stress of every interface thickness has been compared and a value having 
good agreement with the experimental result is considered in further analysis. Hence 
interface thickness is found out for every normal stress. 

Results observed from Fig. 8, Fig. 9, Fig. 10 and Fig. 11 show consistent in nature i.e. as the 
interface thickness is increased, the corresponding tangential displacement is also 
increased. Because in the formulation of thin layer interface, the element stiffness is 
indirectly proportional to interface thickness, hence if the thickness is increased the 
corresponding tangential displacement also increased. For Fig. 8 and Fig. 9, interface 
thickness equal to 5D50 show good results with 9 % and 1.53% difference with 
experimental results. Whereas, Fig. 10 with interface thickness of 10D50 demonstrates 
good agreement with experimental results with a difference of 1.63%. In case of σn = 
102.07 kPa (Fig. 11), 12D50 interface thickness gives appropriate result (difference = 0.9 
%). Thus it can be said that considering common interface thickness for every normal 
stress is not suitable. The available criteria for interface thickness from literature seem 
insufficient, as for every normal stress the interface thickness is changing.  

The maximum average change in tangential displacement from 3D50 to 12D50 is about 13% 
to 15% from Fig. 8 to Fig. 11. In the present study only variation of normal stress has been 
considered for determination of interface thickness (to achieve the objective of the paper) 
whereas there are various parameters such as particle size, moisture content, density, 
interface adhesion, etc. are responsible for change in interface thickness as per the 
literatures. Hence due to change in interface thickness, the system’s response is very 
robust. 
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Fig. 8. Interface shear test - tangential displacement plot for σn = 40.8 kPa and                 
τ = 30 kPa 

 

Fig. 9. Interface shear test - tangential displacement plot for σn = 61.24 kPa and              
τ = 35 kPa 

 

Fig. 10. Interface shear test - tangential displacement plot for σn = 81.65 kPa and            
τ = 46.3 kPa 
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Fig. 11. Interface shear test - tangential displacement plot for σn = 102.07 kPa and         
τ = 57.9 kPa 

The interface thickness (thickness which validates with experimental values) observed 
from Fig. 8, Fig. 9, Fig. 10 and Fig. 11 have been plotted against corresponding normal 
stress values shown in Fig. 12. The graph is useful in predicting interface thickness for 
various normal stresses. 

It is observed from Fig. 12 that, the interface thickness is increasing as normal stress goes 
on increasing. The formation of a thin layer interface is because of rolling and slipping of 
the sand particle due to contact roughness. In the present investigation, normal stress is 
increasing in addition to contact roughness, thus additional sand particles may take part 
in the shearing action. Therefore, such condition leads to increase in the interface thickness 
with respect to increase in normal stress.  

 

Fig. 12. Variation of interface thickness against normal stress 

The graph shown in Fig. 12 has been fitted with a linear equation. The equation shows the 
prediction of interface thickness for various normal stress values. Present investigation is 
a proposed methodology for effective evaluation and execution of interface thickness 
hence the equation in Fig. 12 is limited for this particular study only.  If the interface 
thickness (according to equation in Fig. 12) is less than 5D50 then the minimum thickness 
of 5D50 can be consider for analysis. To execute the predicted equation from Fig. 12, the FSI 
problem subjected to inclined-eccentric load has been solved with the developed FE model. 
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6. Implementation of Interface Thickness for SSI Analysis 

The FSI problem experimented by Agrawal [59] and numerically modeled by Viladkar et 
al. [40] and Zedan [60] for zero thickness interface element has been considered in the 
present investigation for the execution of thin layer interface. The FE model has been 
developed as shown in Fig. 13. The settlement and horizontal displacement of the footing 
with a thin layer interface are compared and validated with an experimental and zero 
thickness FSI system. The thickness evaluation for the FSI problem has been carried out 
from the equation given in Fig. 12.  

FSI system has consisted of strip footing resting on sand and subjected to eccentric inclined 
loads. The FE model is developed as a plane strain problem. Considering the thin layer 
interface, 3 different cases are analyzed (Fig. 14), such as, 

Case I: Df/B = 0; e/B = 0.2 and angle of inclination for inclined load with vertical = 150  

Case II: Df/B = 0; e/B = 0.2 and angle of inclination for inclined load with vertical = 100 

Case III: Df/B = 0; e/B = 0.2 and angle of inclination for inclined load with vertical = 50 

where, ‘Df’ is depth of the footing, ‘B’ is width of the footing and ‘e’ is eccentricity of load. 

 

Fig. 13. FE model for FSI system 

The soil and footing are discretized with 8 noded isoparametric elements whereas the 
interface is discretized as 6 noded thin layer interface element. The constitutive relations 
as discussed in section 3.2 are used for soil and interface. The footing is considered to be 
made up of mild steel (thickness = 12mm) with the same roughness in contact with soil as 
that of large DST mild steel specimen. The materials used for carrying out FSI analysis are 
same as that of large DST as discuss in section 5.1. Table 2, Table 3 and Table 4 show the 
properties for footing, soil and interface.  
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(a)   Case I                                                                 

  
(b) Case II 

 
(c) Case III 

Fig. 14. Various cases considered for eccentric inclined loading in FSI problem 

The interface thickness for the case I, case II and case III are 1.25 mm, 1.71 mm and 2.35 
mm respectively. The thickness has been calculated based on the maximum normal stress 
acting on the footing from equation in Fig.12. 
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6.1. Result and Discussion 

The FSI system with a thin layer interface's non-linear analysis (Fig. 13) for various cases 
(Fig. 14) has been carried out with a mixed incremental iterative procedure. The plot 
between pressure-settlement and pressure-horizontal displacement at end B (Fig. 14) of 
the footing for various cases are shown in Fig. 15 (a), Fig. 15 (b), Fig. 16 (a), Fig. 16 (b), Fig. 
17 (a) and Fig. 17 (b). 

 

Fig. 15 (a). Pressure-Settlement plot for Case I 

 

Fig. 15 (b). Pressure-Horizontal displacement plot for Case I 

Fig. 15 (a) and Fig. 15 (b) shows the results for experimental analysis by Agrawal [59], 
numerical analysis (without interface and with zero thickness interface) by Viladkar et al. 
[40] and analysis considering thin layer interface as present investigation. For pressure-
settlement, the effect of the interface is negligible because of the full bond between soil and 
footing. Wherein, pressure-horizontal displacement plot shows the necessity of interface. 
It is also reported that the results for settlement and horizontal displacement considering 
thin layer interface shows very good agreement with the experimental result. 
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Fig. 16 (a). Pressure-Settlement plot for Case II 

 

Fig. 16 (b). Pressure-Horizontal displacement plot for Case II 

 

Fig. 17 (a). Pressure-Settlement plot for Case III 
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Fig. 17 (b). Pressure-Horizontal displacement plot for Case III 

It is observed from Fig. 16 (a) to Fig. 17 (b) that the settlement and horizontal displacement 
considering thin layer interface shows appropriately matching results with experimental 
analysis. It is also noted that the results considering thin layer interface are superior to 
zero thickness interface. It may be because of consideration of normal stiffness for thin 
layer interface as ‘ET/t’ and not a constant value. Thus, such value is giving more 
appropriate results than the constant value. Also by considering this normal stiffness, the 
interface nodes are not penetrating thus it satisfies the contact stiffness criteria. 

In addition to the above, due the roughness of footing in contact with the soil; the soil 
particles are rotate and slip during the application of lateral loads thus it is obvious to form 
the thin shear zone just beneath the footing which is called as thin layer interface. Hence 
the SSI model with thin layer interface is giving realistic results as compared to the zero 
thickness interfaces. 

There are some results such as Fig. 16 (a) and Fig. 17 (a), where the settlement by thin 
layer interface showing more than 10% difference with respect to experimental values. 
Such difference may due to consideration of only normal stress for deciding the interface 
thickness. Whereas there may be a few other parameters responsible for interface 
thickness, such as surface roughness, particle size, and soil type, which need to be 
investigated further. 

7. Conclusions 

There are numerous advantages of using a thin layer interface over a zero-thickness 
interface. The selection of interface thickness is important and must be deal with caution. 
The methodology for effective usage (in terms of interface thickness) of the thin-layer 
interface in FE modeling of the SSI system has been investigated in this work. The following 
findings are reached from the evaluation and execution of interface thickness, 

• The parameters which are responsible for interface thickness such as, surface 
roughness, particle size, normal stress and soil type are varying for every soil 
condition. Thus, the criterion for interface thickness based only on D50 looks 
insufficient. Hence there is a need to propose a methodology consisting of these 
parameters for predicting appropriate interface thickness. 

• The proposed methodology, which was used to evaluate interface thickness while 
taking normal stress into account, is also applicable to other contributing 
parameters. 
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• The non-linear hyperbolic model is suitable for modeling large DST. Thus it is useful 
in the evaluation of interface thickness. 

• The relation between interface thickness and normal stress (derived from 
numerical validation of large DST) is useful in predicting interface thickness based 
on normal stress value. In general, such methodology can be adopted for various 
SSI systems for interface thickness prediction. 

• The pressure-settlement response in the FSI system is independent of interface 
effect whereas under lateral and eccentric-inclined loading condition for 
appropriate horizontal displacement, interface consideration is necessary. 

• The results for settlement and horizontal displacement in the FSI system 
considering thin layer interface have been improved in comparison to the zero-
thickness interface.  

• The proposed methodology for effectively utilizing thin layer interfaces in FE 
modeling of SSI problems has been successfully applied. 

In order to obtain the more realistic results of SSI system, the consideration of proper 
thickness of thin layer interface (considering all variations in soil and structure) and 
advanced constitutive model is necessary. 
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