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Article Info  Abstract 

Article History:  This study focuses on optimizing the mechanical properties of hybrid fiber-
reinforced tertiary blended high-performance concrete (HFRTHPC) by integrating 
CSF and polypropylene fibers (PPF) into a mix of silica fume (SF), metakaolin (MK), 
and fly ash (FA). These mineral admixtures replace Ordinary Portland Cement 
(OPC) at varying levels of 0%, 15%, 22.5%, and 30%. A comprehensive analysis 
was conducted on 80 different concrete mixes, each with W/B ratios ranging from 
0.275 to 0.375, and a total fiber content of 1.25% (0.5%-1% CSF and 0.25% PPF). 
The results showed a significant increase in compressive strength, with a 
maximum improvement of 30.24% after 28 days of curing. The optimal mix was 
identified as containing 5% SF, 5% MK, 5% FA, 1% CSF, and 0.25% PPF at a W/B 
ratio of 0.275. Additionally, regression equations were developed to predict the 
mechanical properties. The study also utilized three machine learning 
techniques—AdaBoost Regressor, Random Forest, and Extreme Gradient Boost 
Regressor—to model compressive, split tensile, and flexural strengths. Among 
these, the Extreme Gradient Boost Regressor exhibited superior predictive 
accuracy and generalization capabilities. This research offers valuable insights for 
optimizing sustainable concrete compositions and provides a foundation for 
future advancements in concrete technology. 
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1. Introduction 

In contrast to normal concrete, high-performance concrete (HPC) is developed with superior 
characteristics such as enhanced strength, durability, workability, and improved resistance to 
environmental factors. These qualities are achieved by incorporating low water-to-cement ratios 
and high-quality pozzolanic materials such as FA, SF, ground granulated blast furnace slag (GGBS), 
MK, and superplasticizers. High-performance concrete can involve up to 10 ingredients, focusing 
on strength and durability.  The partial replacement of cement with one, two, or three pozzolanic 
materials can be termed binary, ternary, and tertiary/quaternary concrete mixes, respectively. 
Tertiary systems combining the pozzolanic materials offer advantages, blending silica fume and 
metakaolin with fly ash improves early strength, while fly ash enhances workability. This synergy 
is crucial for HPC development. Tertiary mixtures, including fly ash/GGBS, silica fume, and 
metakaolin, provide high strength, low permeability, corrosion and sulfate resistance, ASR 
resistance, and reduced thermal cracking. HPC represents a specialized form of concrete 
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engineered for specific applications and environmental conditions, ensuring optimal performance 
over the structure's design lifespan and exposure to varying loads and environments [1]. The 
blended concretes use fly ash, silica fume, ground granulated blast furnace slag, and metakaolin as 
partial cement replacements. These admixtures lower cement content, reducing the environmental 
impact of cement production. Reviewed research articles highlight improvements in mechanical 
properties, durability, workability, enhanced thermal performance, and long-term strength. The 
use of industrial by-products and potential cost savings are also noted [2]. In quaternary binders 
made with GGBS, FA, MK, and SF as partial replacements for Ordinary Portland Cement (OPC), the 
study focused on standard consistency, initial and final setting time.  SF significantly increases 
water requirements due to its high surface area, while GGBS reduces the water/binder ratio.  SF 
and GGBS extend setting time at various replacement levels, whereas SF and MK initially increase 
setting time but decrease at higher replacements.  On the whole, the admixtures in the quaternary 
binder mix impact independently, with SF and MK notably enhancing consistency [3].  The effects 
of incorporating mineral admixtures such as FA, SF, GGBS, MK, and rice husk ash (RHA) on the 
properties of fresh concrete have been reviewed.  The study compares normal and high-strength 
concrete partially replaced with these admixtures.  The admixtures are classified into two types: 
chemically active (decreased workability and setting time but increased heat of hydration and 
reactivity) and micro fillers (increased workability and setting time but reduced heat of hydration 
and reactivity).  While the small particle size and higher specific surface area of these admixtures 
improve concrete density and impermeability, they also lower workability, necessitating the use of 
superplasticizers [4].  Fly ash concrete typically had lower compressive strength.  In contrast, 
binary combinations of Portland cement with silica fume or slag, as well as ternary combinations 
including both slag and silica fume, exhibited significantly higher compressive strengths.  The 
addition of mineral admixtures also resulted in reduced water permeability values [5]. The 
quaternary binders with 50% partial replacement of OPC and 30% FA with 10% M/GGBS showed 
the highest compressive strength with a low water/binder ratio.  An enhancement of about 25% 
and 10% higher flexural strength and around 11.9% and 11.2% in split tensile strength at longer 
ages were noted [6].  Enhanced compressive, split tensile and flexural strength was noticed for a 
quaternary blend of cement with 20% fly ash, 10% Lime powder, and 10% rice husk ash, for this 
same blend the corrosion resistance also levelled up [7].  Incorporating pozzolanic materials 
enhances concrete’s resistance to aggressive agents, such as sulfuric acid.  These additions reduce 
the amount of calcium hydroxide, which is most susceptible to acid attacks [8].  Concrete is brittle 
and weak in tension; early concrete hardening is prone to microcracks caused by environmental 
and load fluctuations.  These limitations lead to the development of fiber-reinforced concrete 
(FRC).  Initial studies on FRC focused on using single fiber types, demonstrating enhanced concrete 
properties, particularly in strength and durability, as fibers prevent surface cracking and improve 
impact strength. Current research has driven interest toward fiber hybridization, combining 
metallic and non-metallic fibers to leverage their respective advantages. Steel fibers enhance 
tensile strength, toughness, and stiffness, while fibers like PPF contribute to elasticity, mixability, 
and resistance. Combining these fibers results in composite fiber-reinforced concrete exhibiting 
superior strength properties compared to individual fibers [9-13].  Studies suggest that reinforced 
concrete containing 0.3% PPF demonstrates superior flexural and compressive strength compared 
to content levels up to 0.5%.  The research reveals that the mix design with 0.3% PPF achieved the 
highest strength, with minimal variance (1.0% - 3.0%) from mixes with 0.25% PPF.  As a result, 
0.25% PPF was chosen for the experiment [14-15]. In examining CSF mechanical properties with 
an aspect ratio of 50, the research revealed that 3.0% CSF blends outperformed mixes with 0% to 
2.0% fibers. Among all aspect ratios studied, CSF with an aspect ratio of 50 showed statistically 
better results in terms of strength. The study concluded that adding CSF up to 1% improved HPC 
strength meanwhile higher levels led to decreased compressive and tensile strengths, accompanied 
by drawbacks such as diminished ductility, increased cost, and reduced workability. CSF's primary 
role is crack prevention [16-17]. Research on enhancing structural strength and seismic resistance 
through fiber integration in concrete found that a composite blend of 80% crimped steel fiber and 
20% polyolefin fiber showed robust qualities [18].  With the incorporation of CSF at levels of 0.55, 
1.0% and 1.5%, HPC exhibited enhanced impact strength.  The initiation strength for the first failure 
crack rose to 139%, 268%, and 366% and to 129%, 238%, and 321%, respectively, compared to 
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normal concrete [19-20]. For a combined mix of cement, 20% GGBS, 10% MK, steel and glass fiber 
at 2% showed an increase in compressive and split strength for a grade of M60 [21-22]. Optimal 
results were observed by replacing 10.0% of the cement with Metakaolin (MK), leading to 
increased compression strength at rates of 7%, 16.75%, 11.42%, and 6.0% for partial cement 
replacements of 5%, 10%, 15%, and 20% with MK, respectively [23].  The study highlights the 
importance of understanding the effective utilization of mineral admixtures in mortar. The findings 
are significant for optimizing the use of mineral admixtures in engineering applications, ensuring 
that they contribute to the desired properties of the mortar without remaining unreacted. Under a 
curing temperature of 30°C, when the replacement ratio exceeded 30%, the change in Ca(OH)₂ 
amount with replacement ratio was nearly linear. At this point, the excess fly ash essentially 
stopped consuming Ca(OH)₂. [24]. This study explored the strength and durability of HFRHPC with 
SF as an admixture. Using fixed PF and varying CF, it achieved significant gains in compressive 
(35.18%), split tensile (40.35%), and flexural strengths (71.54%) at 28 days [25]. This study 
examined HFRHPC incorporating FA as an admixture, with polypropylene and varying crimped 
steel fibers. Testing different FA levels and water-to-binder ratios, results revealed 1.25% hybrid 
fibers with 10% FA provided optimal strength, durability, and acid resistance, sustaining 
performance for 90 days [26]. This study assessed the effects of MK and hybrid fibers on High-
Performance Concrete. With 0.25% polypropylene and varying steel fibers, results showed 
significant strength gains. Optimal mix—1.25% hybrid fibers with 10% MK—achieved peak 
compressive (37.05%), split tensile (42%), flexural (74.41%), and impact (68.32%) strengths after 
28 days [27]. This study investigated the effects of combining Fly Ash, Silica Fume, Glass Fibers, and 
Polypropylene Fibers in Composite-Fiber Reinforced High-Performance Concrete. The optimal 
mix—5% FA and SF, with 1% GF and 0.25% PPF at a 0.275 W/B ratio—achieved maximum 
strength [28]. 

The ANOVA analysis revealed that different substitution levels of all three components significantly 
impacted the fresh and hardened properties of SCLCs.  The findings showed that adding CS or MS 
to SCLC specimens improved the previously mentioned parameters, while ternary mixes with both 
MS and CS delivered the best performance [29]. The application of machine learning (ML) 
techniques, which make a significant contribution to the field of civil engineering by accurately 
predicting the mechanical properties of concrete, is particularly important. In recent times, the 
growth of soft-computing methodologies has given rise to ML as a reliable and accurate instrument 
for computer modeling. ML has become widely acknowledged as an effective methodology that can 
be implemented across diverse research domains, including concrete structures [30-31]. Studies 
have employed ML methods. During the training phase, the R-square value of the deep learning 
models was roughly 0.960, and during the testing phase, it was slightly above 0.940. But when it 
came to performance, the GRU model outperformed the others, as evidenced by an R-square value 
that was extremely greater than 0.990 in the learning phase and close to 0.961 in the testing phase. 
These findings point to the GRU model's excellent efficacy and accuracy in both phases [32]. The 
findings of the investigation showed that the suggested equations performed better at properly 
predicting than traditional techniques such as the linear regression model (LRM). In contrast to the 
LRM, the suggested equations produced lower values for MAE and RMSE and showed a higher 
coefficient of determination (R2) [33]. Compared to conventional approaches, ML provides better 
predictions for required mechanical characteristics [34-35]. Several studies have employed ML 
methods to predict the strength properties of conventional concrete [36-39]. ML methods are 
employed to forecast concrete strength [40-57] and the durability of concrete [58-59]. 
Nevertheless, the use of ML methods to predict compressive, flexural, and splitting tensile strengths 
in fiber-reinforced concrete is still not widely explored. 

While extensive research has examined binary and ternary pozzolanic material combinations, 
limited studies explore the complex interactions and optimal mix proportions in 
tertiary/quaternary blends. More research is needed on the synergistic effects of materials like fly 
ash, silica fume, GGBS, and metakaolin across various proportions and environmental conditions. 
Regarding fiber optimization and hybridization in high-performance concrete (HPC), studies have 
shown enhanced properties with hybrid fibers, such as steel and polypropylene. However, the ideal 
fiber types, contents, and ratios for maximizing performance metrics like compressive strength, 
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splitting tensile strength, flexural strength, and impact resistance are still underexplored, 
especially in HPC applications. Further research is also required on the long-term effects of fiber 
hybridization in HPC. 

Machine learning (ML) has been applied to predict mechanical properties in both conventional and 
HPC, yet its application to fiber-reinforced high-performance concrete (FR-HPC) is limited. There 
is a clear research gap in using ML techniques to accurately predict FR-HPC’s compressive, flexural, 
and splitting tensile strengths. Additionally, achieving meaningful results with ML will require 
substantial input data collection. In order to get the desired findings, ML methods require the 
collection of an input dataset. To achieve this objective, we utilized eight input parameters, 
including W/B, cement, metakaolin, silica, fly ash, crimped steel fibers, polypropylene fibers, and 
the age of the specimens. The experiments were conducted using an absolute volume methodology 
for concrete mix design, while data points comprising the results of the experiments were gathered 

for algorithm implementation. 

2. Experimental Program 

2.1 Materials Used 

In the current experimental study, OPC grade 43 as per IS 8112:1989, along with mineral 
admixtures such as FA, SF, and MK, were utilized. The physical and chemical properties 
of these materials are detailed in Tables 1. Local river sand served as the fine aggregate, 
while the crushed stone as coarse aggregate was also sourcing from local. Fine and 
Course aggregate physical properties provided in Table 2. To produce the concrete mix, 
the superplasticizer SP-430 was employed. Additionally, CSF and PPF were incorporated 
into the experiment, with their characteristics listed in Table 3. 

Table 1. Physical and chemical properties of cement and mineral admixtures 

Physical Properties Cement Fly ash Metakaolin Silica fume 

Specific gravity. 3.12 2.17 2.61 2.21 

Mean grain siz(µm) 8 -210 20-25 2.53 1.14 

Specific area (cm2/g) 2947 3988 15,000 to18,000 
18,000 

to30,000 

Color Grey. 
Tan to dark 

grey. 
Ivory to cream. 

light to 
darkgrey. 

Chemical Properties Fly Ash (FA) 
Metakaolin 

(MK) 
Silica Fume (SF) 

Code IS 3812 
Requirement 

Silica (SiO2) 59.16 60-65 92.3 (SiO2)+ 
(Al2O3)+ 
(Fe2O3) = 

70.0 (min) 

Aluminum (Al2O3) 30.64 43.18 1.3 

Iron oxide (Fe2O3) 4.70 0.6 1.0 

Calcium oxide (CaO) 2.85 1.06 1.6 -- 

Magnesium oxide(MgO) 0.36 0.61 0.9 5.0 (Max) 

Loss on ignition 0.21 0.70 1.53 6.0(Max) 
 

Table 2. Physical properties Fine and Coarse aggregate 

Properties fine aggregate coarse aggregate 

Specific gravity 2.68 2.75 
Fineness modulus 2.74 6.73 
Bulk density 
 i) Loose 
ii) Compacted 

 
14.67 kN/m3 
16.04 kN/m3 

 
13.291 kN/m3 
15.001 kN/m3 

Grading Zone – II -- 
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Table 3. Physical properties fibers 

Properties CSF PPF 

Specific Gravity 7.85 0.912 

Tensile strength (MPa) 1050 530 

Density (kg/m3 ) 7850 910 

Length of fiber (mm) 30 12 

Equivalent diameter (mm) 0.60 0.35 

Shape crimped monofilament 
 

 

  

Fig. 1. Crimped steel fibers Fig. 2. Polypropylene fibers 

 

Fig. 3. The materials employed in the current study include 

2.2 Materials and Mix Proportioning 

In this experiment, mix proportions were assessed using an absolute volume approach. Ingredients 
were measured by volume and then converted to weight to ensure a uniform mixture. All 
ingredients were dry-mixed initially, with steel and polypropylene fibers added in this phase. 
Water and a superplasticizer were then introduced to achieve a homogeneous concrete mix. 
Table.4 provides the percentage dosage of each component in the sample. Mix identification 
employed a coding system: the first three Alphabets CTM represents combined tertiary mineral 
admixture, MK, SF, and FA. The subsequent number indicated the collective percentage of cement 
replaced by combining MK, SF, and FA. Alphabets P, Q, R, and S represented composite fiber 
matrices with varying CSF and PPF percentages: P (0% CSF +0% PPF), Q (0.50% CSF + 0.25% 
PPF), R (0.75% CSF + 0.25% PPF), and S (1.0% CSF + 0.25% PPF). The final letter indicated the 
A/B ratio (A = 1.75), the W/B ratios were depicted by the last number (1= 0.275, 2 = 0.300, 3 = 
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0.333, 4 = 0.350, and 5 = 0.375). For instance, a reference mix with A/B = 1.75 and W/B of 0.275 
and 788.29 kg/m2 of cement was denoted as CTM0PA1, signifying the absence of fibers and mineral 
admixtures. Another mix, CTM15PA1 used 660.37 kg/m2 of cement and 38.85 kg/m2 of each MK, 
SF, and FA, indicating a specific combination of fibers and mineral admixtures. The nomenclature 
and compositions of various mixes are detailed in Table 4, maintaining consistent design principles 
across different W/B ratios to ensure a comprehensive assessment. 

Table. 4 Mix. proportions of HFRHPTC mix for W/B= 0.275. 

Mix  
designation 

Cement 
(%) 

MK 
(%) 

SF 
(%) 

FA 
(%) 

CSF 
(%) 

PPF 
(%) 

Total percentage       
of tertiary 

mineral 
composition 

CTM0PA1 100 0 0 0 0 0 0 
CTM15PA1 85 5 5 5 0 0 15 

CTM22.5PA1 77.50 7.50   7.50 7.50 0 0 22.5 
CTM30PA1 70 10 10 10 0 0 30 
CTM0QA1 100 0 0 0 0.50 0.25 0 

CTM15QA1 85 5 5 5 0.50 0.25 15 
CTM22.5QA1 77.50 7.50   7.50 7.50 0.50 0.25 22.5 
CTM30QA1 70 10 10 10 0.50 0.25 30 
CTM0RA1 100 0 0 0 0.75 0.25 0 

CTM15RA1 85 5 5 5 0.75 0.25 15 
CTM22.5RA1 77.50 7.50   7.50 7.50 0.75 0.25 22.5 
CTM30RA1 70 10 10 10 0.75 0.25 30 
CTM0SA1 100 0 0 0 1.00 0.25 0 

CTM15SA1 85 5 5 5 1.00 0.25 15 
CTM22.5SA1 77.50    7.50     7.50 7.50 1.00 0.25 22.5 
CTM30SA1 70 10 10 10 1.00 0.25 30 

*Similarly designs of constituents are used for other W/B ratios W/B= 0.300(2), 0.325(3), 0.350(4), and 
0.375(5) 

2.3 Experimental Methods 

The compressive strength of concrete-cubic specimens (100 x 100 x 100 mm) was tested as per 
ASTM C39. The split tensile strength of concrete-cylinder specimens (150 mm diameter, 300 mm 
height) was evaluated following ASTM C496, and the flexural strength of concrete-prism or beam 
specimens (500 x 100 x 100 mm) was tested in accordance with ASTM C78. After demolding, all 
specimens were cured for 28 days. Cubic and cylindrical specimens were tested using a digital 
compression testing machine as per IS 14858, while prism or beam specimens were tested using a 
universal testing machine as per IS 516-1959. Each test was conducted with three samples per 
combination, and the average values are reported. 

2.4 Machine Learning Approach 

Within the scope of this investigation, the experiment yielded a total of 320 data samples and was 
utilized for the purpose of training ML methods. During data collection, the proportions of the 
combination and the output that was intended were taken into consideration. This was carried out 
to satisfy the requirements because the models needed the same input variables for every mixture 
to reliably estimate the outcomes. 

The distribution of data trials used in testing and training the model was 30% and 70%, 
respectively. The level of accuracy of a model can be assessed by examining the R2 result of the 
projected outcome. Values closer to zero indicate a greater degree of variance, while values that 
are closer to one show a close alignment between the prediction model and experimental data. The 
statistical measures, including mean absolute error (MAE), mean square error (MSE), and root 
mean squared error (RMSE), were employed to measure the exactness of a model. Further details 
about the machine learning (ML) models and optimization techniques used in this investigation are 
covered in the sections that follow. 
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2.4.1 Ensemble Machine learning 

In contrast to conventional machine learning, which typically employs a single model, ensemble 
learning makes use of multiple models. Ensemble methods construct a final prediction by 
combining the predictions of multiple models, as opposed to relying on the estimates of a single 
model. It results in enhanced efficacy in comparison to standalone models. Through the utilization 
of three ensemble methods, namely Ada Boost (AdaB), random forest (RF), and extreme gradient 
boost (XGB), they have the capacity to significantly diminish errors, enhance precision, and 
augment generalizability. The important tuning parameters of the three ML models are listed in 
Table 5 to produce better performance. 

2.4.2 Ada Boost 

The AdaB regressor approach starts by training a weak learner on the original dataset with 
identical weights for each data point. In future rounds, it concentrates on misclassified occurrences, 
modifying the weights to emphasize difficult cases. It distributes weights to each weak learner 
based on their performance, and their predictions are combined in a weighted sum to get the final 
prediction. The mentioned iterative approach persists until the desired number of weak learners 
has been reached [52]. AdaB's adaptability to complicated datasets and ability to reduce overfitting 
make it an effective tool for regression tasks. In Python, the scikit-learn library includes the 
AdaBoost Regressor class for the implementation, which commonly uses decision trees as weak 
learners. AdaBoost Regressor stands out for its ensemble method, which provides robustness and 
increased generalization across a variety of regression settings. The final prediction for a new input 
X is the weighted sum of weak learner predictions: 

𝑦̂(𝑋) = ∑ 𝛼𝑡ℎ𝑡(𝑋)

𝑇

𝑡=1

 (1) 

Where;  𝑦̂(𝑋) is anticipated output for input X, T represents the total count of weak learners, 𝛼𝑡 is 

the weight assigned to the t-th weak learner, ℎ(𝑋) is the prediction of the t-th weak learner for input 
X. AdaB creates a resilient and accurate ensemble model for regression tasks by combining weak 
learners that focus on different parts of the data. 

2.4.3 Random Forest 

RF is an ensemble learning approach for regression tasks that combines predictions from various 
decision trees to increase accuracy and decrease overfitting. In this model, decision trees serve as 
base learners, and the algorithm incorporates randomization by taking only a subset of 
characteristics at each split and using bootstrapped sampling [50]. The training procedure entails 
creating numerous trees independently, and during prediction, the final output is frequently an 
average of individual tree forecasts. This method improves resilience and handles non-linear 
connections effectively. RF provides insights regarding feature relevance, which helps with feature 
selection. In Python, the scikit-learn library provides the Random Forest Regressor class for easy 

implementation. For a given input X, the RF prediction is the mean of predictions from all the 
individual trees: 

 𝑦̂(𝑋) =
1

𝑁
∑ 𝑇𝑡(𝑋)

𝑁

𝑡=1

 (2) 

Where;  𝑦̂(𝑋) is the predicted output for input X, N is number of trees, (𝑋) is prediction of the t-th 
tree for input X. 

2.4.4 XG Boost 

XGB Regressor, a gradient-boosting extension, is efficient, scalable, and regularized for regression 
applications. For better prediction, the system creates decision trees sequentially, correcting earlier 
errors. To avoid overfitting, the function minimizes the difference between the expected and 
actual values while penalizing model complexity using a regularization factor. The final forecast is 
the sum of all tree predictions. Regularization terms control tree complexity in XGB, improving 
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generalization to fresh data [54]. XGBoost efficiently handles massive datasets and uses feature-
important insights to choose features. The   number of trees, learning rate, tree depth, and minimum 
child weight must be tuned. The XGB Regressor class from the XGBoost package in Python is used 
for implementation. XGB is used for varied regression scenarios that require accurate and robust 
predictions due to its versatility. The XGB minimizes an objective function that combines a loss 
function measuring the difference between the actual and anticipated values with a regularization 
term. The function for XGB is defined as follows: 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 =  ∑ 𝐿(𝑦𝑖 , 𝑦̂𝑖) + ∑ 𝛺(𝑓𝑘)

𝐾

𝑘=1

𝑛

𝑖=1

 (3) 

Where; n is the number of samples used for training, 𝑦𝑖 is the actual value for the i-th sample, 𝑦̂𝑖  is 

the predicted value for the i-th sample, 𝐿(𝑦𝑖 , 𝑦̂𝑖) is the loss function measuring the difference 
between the true and predicted values, K represents leaves in the tree, 𝑓𝑘 is the score associated 
with the k-th leaf, 𝛺(𝑓𝑘) is the regularization. 

The regularization term and loss function are parameter and hyperparameter sensitive. Mean 
Squared Error and Absolute Loss are two popular loss functions used in regression applications. 

2.4.5 Validation of models 

Evaluation metrics quantify a machine learning model's performance on a regression task. They 
help to assess model prediction accuracy and impact model selection and optimization. Evaluation 
metrics provide quantitative performance data to the machine learning pipeline, assisting in the 
creation, optimization, and deployment of models. The ML algorithms were verified using 
statistical error assessments like MAE, MSE, RMSE, and R2 on the test dataset and the k-fold 
approach while training the models. In this study, we have used 10-fold validations. The k-fold 
technique utilizes multiple train-test splits and averages the results to reduce the variance in the 
performance estimate and provide a more robust assessment of the model's effectiveness. 

𝑀𝐴𝐸 =  
1

𝑁
∑|𝐹𝑖 − 𝑉𝑖|

𝑛

𝑖=1

 (4) 

𝑀𝑆𝐸 =  
1

𝑁
∑  (𝐹𝑖 − 𝑉𝑖)2

𝑛

𝑖=1
 (5) 

𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸 
(6) 

𝑅2 = 1 −  
∑ (𝑉𝑖 − 𝐹𝑖)2𝑛

𝑛=1

(𝑉𝑖 − 𝑉)2  
(7) 

Where n = number of data points, 𝑉𝑖    𝐹𝑖  = predicted findings, and 𝑉𝑖  = actual results,  𝑉 = mean of 
actual values 

3. Results and Discussion 

3.1 Experimental Approach 

3.1.1 Compression Strength 

The cube compressive strength at 7 and 28 days cuing of combined tertiary mineral admixture-
based HFRHPTC concrete mix results are presented in Table 6. 

Table 6. Cube compressive strength of Tertiary mineral admixture based HPC mix 

Mix 
Designation 

Cube compressive strength 
Mix 

Designation 

Cube compressive strength 

MPa MPa 

7 days 28 days 7 days 28 days 

CTM0PA1 59.04 73.9 CTM0RA3 59.34 75.17 
CTM15PA1 67.99 85.18 CTM15RA3 70.03 88.23 
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3.1.1.1 Effect of Water-Binder Ratio on Cube Compressive Strength Of Tertiary Mineral 
Admixture Based HPC Mix With Hybrid-Fibers 

The variation of cube compressive strength for blended tertiary mineral admixture-based HPC mix 
with different W/B ratios is shown in Figures 4 and 5, with results detailed in Table 6 for 7-day and 
28-day compressive strength. It can be observed that the compressive strength of HFRHPTC mix 
declines as the W/B ratio increases from 0.275 to 0.375, which is similar to the behavior of plain 
HPC mix. The highest compressive strength of HFRHPTC mix at both 7 and 28 days for all W/B 
ratios is observed with 15% cement replaced by blended tertiary mineral admixture. The maximum 
cube compressive strength attained at 7 days is 76.88 MPa for the CTM15SA1 mix with a W/B ratio 
of 0.275. For the same mix, with W/B ratios ranging from 0.300 to 0.375, the strength was reduced 
by 6.07% to 15.10%, respectively. Similar trends are observed for the 28-day compressive strength, 
which was 95.68 MPa for the CTM15SA1 mix with a W/B ratio of 0.275. For the same mix, with 
W/B ratios ranging from 0.300 to 0.375, the strength was reduced by 4.87% to 12.13%, 
respectively. 

CTM22.5PA1 62.99 78.57 CTM22.5RA3 63.64 78.44 
CTM30PA1 57.85 71.93 CTM30RA3 57.31 71.72 
CTM0QA1 60.84 75.84 CTM0SA3 61.24 76.34 

CTM15QA1 72.55 91.55 CTM15SA3 72.23 90.32 
CTM22.5QA1 65.24 81.83 CTM22.5SA3 65.42 80.72 
CTM30QA1 59.69 74.29 CTM30SA3 59.06 73.08 
CTM0RA1 62.56 79.68 CTM0PA4 53.29 68.63 

CTM15RA1 74.99 93.47 CTM15PA4 60.72 78.42 
CTM22.5RA1 67.94 83.34 CTM22.5PA4 55.99 71.39 
CTM30RA1 61.2 76 CTM30PA4 52.71 66.71 
CTM0SA1 64.5 80.1 CTM0QA4 55.03 70.33 

CTM15SA1 76.89 95.69 CTM15QA4 64.28 83.58 
CTM22.5SA1 70.15 85.55 CTM22.5QA4 57.42 75.29 
CTM30SA1 63.09 76.29 CTM30QA4 53.98 68.13 
CTM0PA2 57.09 72.39 CTM0RA4 57.2 73.44 

CTM15PA2 65.1 83.04 CTM15RA4 66.3 86.3 
CTM22.5PA2 60.79 76.54 CTM22.5RA4 61.04 77.04 
CTM30PA2 55.66 69.99 CTM30RA4 56.21 70.41 
CTM0QA2 58.77 73.63 CTM0SA4 58.03 75.37 

CTM15QA2 69.9 88.93 CTM15SA4 68.16 88.72 
CTM22.5QA2 62.98 79.28 CTM22.5SA4 62.25 78.39 
CTM30QA2 57.22 72.08 CTM30SA4 57.22 72.04 
CTM0RA2 61.14 75.6 CTM0PA5 52.72 66.98 

CTM15RA2 72.22 91.03 CTM15PA5 60.24 76.04 
CTM22.5RA2 65.55 81.15 CTM22.5PA5 53.43 69.43 
CTM30RA2 59.02 74.02 CTM30PA5 50.75 64.75 
CTM0SA2 62.53 78.42 CTM0QA5 54.34 68.24 

CTM15SA2 73.88 93.2 CTM15QA5 63.53 81.13 
CTM22.5SA2 67.62 83.59 CTM22.5QA5 55.57 73.02 
CTM30SA2 60.92 75.01 CTM30QA5 52.18 66.93 
CTM0PA3 55.6 70.82 CTM0RA5 55.66 72.56 

CTMF15PA3 63.28 81.47 CTM15RA5 65.28 84.08 
CTM22.5PA3 58.86 74.16 CTM22.5RA5 57.09 75.19 
CTM30PA3 53.98 67.88 CTM30RA5 52.96 68.66 
CTM0QA3 57.33 71.37 CTM0SA5 57.46 73.12 

CTM15QA3 67.25 86.15 CTM15SA5 67.01 86.54 
CTM22.5QA3 61.11 76.87 CTM22.5SA5 59.12 77.05 
CTM30QA3 55.47 70.07 CTM30SA5 55.19 69.29 
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Fig. 4. Seven days Cube compression strength 

Vs. W/B ratio for HFRTHPC mix 
Fig. 5. Twenty-eight days Cube compression 

strength Vs. W/B ratio for HFRTHPC mix 

3.1.1.2 Effect of Replacement Percentage of Cement by Combined Tertiary Mineral 
Admixture on Cube Compressive Strength of Tertiary Mineral Admixture Based HPC Mix with 
Hybrid-Fibers           

To better understand the strength deviation caused by replacing cement with blended tertiary 
mineral admixtures in each mix, Figures 6 and 7 plot the cube compressive strengths for testing at 
7 and 28 days for all water/binder ratios against the percentages of three combined mineral 
admixtures for various volumes of composite fibers. The correlation between the total percentages 
of tertiary mineral admixture and the 28-day cube compressive strength demonstrates that using 
a mixed tertiary mineral addition in place of cement increased the 28-day cube compressive 
strength. The addition of MK, SF, and FA enhances the mix's load-carrying capacity. The maximum 
cube compressive strength was obtained when 15% of the cement was replaced with mixed 
tertiary mineral additives across all composite materials. Beyond this 15% replacement, the 
compressive strength decreased. The CTM15SA1 mix outperformed the CTM0PA1 mix in 28-day 
cube compressive strength for high-fiber-reinforced high-performance concrete up to 29.49%. The 
fine mineral admixtures MK, SF, and FA, along with the filling of the interfacial transition zone with 
fine mineral admixture particles, generated pozzolanic reactions, which increased strength by up 
to 15% replacement due to the micro-filler effect [2,4,7,24]. At dosages greater than 15%, there 
was insufficient Ca(OH)₂ for the pozzolanic process, reducing the cube compressive strength as MK, 
SF, and FA then acted solely as fillers. 

In comparing HPC mixes at a 20% replacement level, metakaolin in binary mixes achieved the 
highest compressive strength 91.70 MPa (A. gouda et al., 2022) [27], followed by silica fume 90.22 
MPa (A. gouda et al., 2021) [25] and fly ash 87.40 MPa (A. gouda et al., 2020) [26]. The ternary mix 
of fly ash and silica fume improved strength to 92.32 MPa (S. Patil et al., 2021) [28]. However, the 
highest performance was observed in the tertiary blend of fly ash, metakaolin, and silica fume, 
reaching a compressive strength of 95.95 MPa. This superior performance is attributed to the 
synergistic effect of combining all three mineral admixtures, which enhances the concrete's 
microstructure through better particle packing, reduced porosity, and improved bonding, resulting 
in an overall increase in strength and durability. 
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Fig. 6. Seven days cube compression strength 
Vs. % of combined tertiary mineral admixture 

Fig. 7. Twenty-eight days cube compression 
strength Vs. % of combined tertiary mineral 

admixture 

3.1.1.3 Effect of Composite Fiber Volume Percentage on Cube Compressive Strength of 
Tertiary Mineral Admixture Based HPC Mix with Hybrid-Fibers 

Figs. 8 and 9 plot the cube compressive strengths against the volume percentages of composite 
fibers for various percentages of blended tertiary mineral admixture across different ages and 
water/binder ratios. This analysis aims to understand how composite fibers impact the 
compressive strength of each mix. The figures show that the compressive strength of the HFHPTC 
mix increases as the percentage of composite fibers is added. Specifically, the 28-day cube 
compressive strength improved with the addition of 0, 0.5, 0.75, and 1% CSF combined with a 
constant 0.25% PPF. This increase in cube compressive strength suggests a strong relationship 
between the fiber and the cement concrete matrix. The addition of composite fibers enhances the 
mixture, with the maximum cube compressive strength achieved at 1% CSF and 0.25% PPF for 
various amounts of mixed tertiary mineral admixture. For the PL0PA1 mix, the 28-day cube 
compressive strength increased by 23.89%, 26.49%, and 29.49% for the CTM15QA1, CTM15RA1, 
and CTM15SA1 mixes, respectively. The ability of these fibers to act as reinforcement at both macro 
and micro levels contributes to this performance. At the microscopic level, the fibers prevent the 
growth of microcracks, significantly influencing how microcracks form in the matrix. With more 
fibers in the matrix, the capacity for energy absorption increases, reducing the likelihood of micro 
and macro cracks forming and thus boosting the concrete's strength. While adding mono fibers to 
regular concrete enhances only ductility, the use of composite fibers and mixed mineral admixtures 
in this experiment significantly boosted the strength over plain HPC concrete due to the strain-
hardening response of hybrid fiber-reinforced concrete [13-16, 18-22]. The greatest cube 
compressive strengths of the CTM15SA1 mix were 76.88 MPa and 95.68 MPa at 7 and 28 days, 
respectively 
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Fig. 8. 7 days Cube compressive strength Vs. 
volume % of composite fibers   

Fig.9. 28 days Cube compressive strength Vs. 
volume % of composite fibers 

3.1.2 Split Tensile and Flexural Strength.  

Figures 10 and 11 show the effect of replacing cement with varying percentages of combined 
tertiary mineral admixture on the 28-day curing split tensile and flexural strength. With a 15% 
replacement of cement by combined tertiary mineral admixture, the split tensile and flexural 
strengths of the mixture improved by 40.70% and 38.22% respectively, compared to the reference 
mix. For the CTM15SA1 mix, the highest split tensile and flexural strengths achieved were 7.04 MPa 
and 11.21 MPa respectively, indicating that 15% is the optimal substitution level. Beyond this 
percentage, insufficient availability of Ca(OH)₂ for the pozzolanic process reduces strength [2,4,24]. 
Figures 12 and 13 illustrate the effect of composite/hybrid fiber volume percentage on the split 
tensile and flexural strengths of high-performance concrete with blended tertiary mineral 
admixture. The load-carrying capacity of the mixture is enhanced by the inclusion of mixed steel 
and polypropylene fibers [13-16]. The current experiment shows that the greatest split tensile and 
flexural strengths were achieved with a combination of 1% crimped steel fiber and 0.25% 

polypropylene fiber, totalling a 1.25% hybrid fiber ratio.  

In comparing split tensile and flexural strengths across HPC mixes at a 20% cement replacement 
level, the binary mix with metakaolin achieved the highest split tensile 7.0 MPa and flexural 
strengths 9.94 MPa (A. gouda et al., 2022) [27] among individual admixtures. However, the ternary 
mix of fly ash and silica fume offered only a slight improvement over other binary options, with 
split tensile and flexural strengths of 6.16 MPa and 9.12 MPa, S. (Patil et al., 2021) [28] respectively. 
The proposed tertiary mix, combining fly ash, metakaolin, and silica fume, delivered the most 
significant enhancements, reaching 7.04 MPa in split tensile strength and 11.21 MPa in flexural 
strength, the highest values in both categories.   
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Fig. 10. Twenty-eight days Split Tensile strength 
Vs. % of combined tertiary mineral admixture                    

Fig. 11. Twenty-eight days Flexural strength Vs. 
% of combined tertiary mineral admixture 

  

Fig. 12. Twenty-eight days Split Tensile strength 
Vs. volume % of composite fibers 

Fig.13. Twenty-eight days Flexural strength Vs.  
volume % of composite fibers. 
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3.1.3 The Inter-Relation Among Different Mechanical Properties of Tertiary Mineral 
Admixture Based HPC Concrete Mix with Hybrid Fibers 

The interrelationships between cub compression strength and split-tensile strength, and cub 
compression strength and flexural strength, are depicted in Fig. 14 and Fig. 15 for specimens that 

were cured for 28 days. The formula 𝑓𝑡 = 0.7√𝑓𝑐𝑘  MPa for normal concrete is prescribed by the 

BIS code IS:456-2000. This relationship was determined to be applicable for the hybrid fiber-
reinforced tertiary blended HPC at 28 days of curing, the connection between split tensile strength 

and cub compressive strength was found to be 𝑓𝑐𝑡 = 0.689√𝑓𝑐𝑘   MPa, with a higher correlation 

value of 0.98756. Furthermore, a stronger correlation coefficient of 0.98588 was found for the link 
between cub compression strength and flexural strength for the hybrid fiber-reinforced tertiary 

mix at 28 days of curing, which is  𝑓𝑟 = 0.98√𝑓𝑐𝑘  MPa. 

 

Fig. 14. Relationship between cube compression and split tension strength. 

 

Fig. 15. Relationship between cube compression and flexural strength 
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3.2 Machine Learning Approach 

The AdaBoost regressor was used to estimate the compressive strength of HFRTHPC, as illustrated 
in Fig. 16, which compares predicted and actual results. The model had an R-squared score of 0.903 
for the training dataset and 0.897 for the test dataset. Despite its performance, with MAE = 0.6884, 
MSE = 0.8388, and RMSE = 0.9998 (Table 5), the errors appear to be outside the intended range 
when compared to other methods. The error distribution map in Fig. 17 shows the differences 
between the anticipated and practical results of HFRTHPC compressive strength using AdaBoost. 
Notably, the cumulative error estimates continue to be below 6 MPa. We recorded a maximum 
error of 5.72 MPa, a minimum error of 0.25 MPa, and an average error of 2.64 MPa. 

 

Fig. 16. Predicted V/s Experimental results for HFRTHPC CS – AdaB model 

 
Fig. 17.  Real, Predicted and Error distribution for AdaB model 

Regression between the anticipated values and experimental values for HFRTHPC was conducted 
by adopting the RF algorithm, as illustrated in Fig.18. The RF shows less error variance and better-
estimated outcomes than AdaB. The adequacy of the RF model is represented by an acceptable R2 
value for training and testing of 0.997 and 0.962, respectively, and MAE = 0.4247, MSE = 0.420, and 
RMSE = 0.648. The error distribution of RF predicted and experimental for HFRTHPC compressive 
strength is illustrated in Fig.19.The total error values are below 6 MPa. Based on this distribution, 
the highest, lowest, and average values are 5.788, 0.032, and 1.546 MPa, respectively. As a result, 
the RF prediction findings are more precise than the AdaB model. 
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Fig. 18.  Predicted V/s Experimental results for HFRTHPC CS – RF 

 

Fig. 19.  Real, Predicted and Error distribution for RF model 

Fig. 20 and Fig. 21 depicts the predicted results and error pattern representing the expected and 
experimental results for the compressive strength of HFRTHPC. Based on this distribution, the 
highest, lowest, and mean values are 4.004, 0.002, and 0.613 MPa, respectively. The cumulative 
error values are below 5 MPa. The XGB model demonstrates more precision, as seen by its higher 
R2 and lower error values. In contrast, the obtained XGB models’ R2 and error values are adequate. 
Therefore, the finding suggests that the precision of XGB prediction results surpasses that of AdaB 
and RF models illustrates the anticipated and empirical results pertaining to the cub compressive 
strength of high-performance concrete reinforced with mixed fibers, as determined through the 
utilization of XGB. The R2 value training and test data sets are 1.000 and 0.994, respectively, and 
MAE = 0.0108, MSE = 0.0004, and RMSE = 0.0212 show highly precise results with better accuracy. 

At the same time, the estimated outcomes for HFRTHPC compressive strength are in the adequate. 

The presented Fig. 22 illustrates the anticipated and empirical results pertaining to the split tensile 
strength of high-performance concrete reinforced with composite fibers, utilizing the AdaBoost 
algorithm. The R2 values for training and testing are 0.924 and 0.912, respectively.  
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Fig. 20.  Predicted V/s Experimental results for HFRTHPC CS – XGB model 

 

Fig. 21.  Real, Predicted and Error distribution for XGB model 

 

Fig. 22.  Predicted V/s Experimental results for HFRTHPC TS – AdaB model 
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Fig. 23.  Real, Predicted and Error distribution for AdaB model 

 

Fig .24. Predicted V/s Experimental results for HFRTHPC TS – RF model 

 

Fig. 25.  Real, Predicted and Error distribution for RF model 
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Fig. 26.  Predicted V/s Experimental results for HFRTHPC TS – XGB model 

 

Fig. 27.   Real, Predicted and Error distribution for XGB model 

The MAE = 0.1921, MSE = 0.0568, and RMSE = 0.2384 confirm that AdB was unable to make 
reasonable predictions of tensile strength. Fig. 23 illustrates the errors between predicted and 
experimental values of split tensile strength via AdB. The minimum error was 0.008 MPa, the 
maximum error was 0.503 MPa, and the average error was 0.186 MPa in the AdB prediction. Figs. 
24 and Fig. 25 indicate the predicted and experimental split tensile strength for composite fiber-
reinforced tertiary blended high-performance concrete using RF and the errors between the 
experimental and estimated results using RF, respectively. The R2 = 0.998 (training), R2 = 0.986 
(test), MAE = 0.0301 MPa, MSE = 0.0618 MPa, and RMSE = 0.0434 MPa in RF, showing the minimum 
errors in both AdB and RF. RF was more precise than AdB in the prediction of split tensile strength. 
The maximum and minimum error between practical and anticipated split tensile strength results 
using RF were 0.3754, 0.0008 MPa, and 0.0928, respectively. 

Split tensile strength has been predicted using the XGB algorithm. The R2 = 1.000 (training), R2 = 
0.998 (test), MAE = 0.0033 MPa, MSE = 0.02757 MPa, and RMSE = 0.0051 MPa using this algorithm 
show that XGB was more accurate than RF and AdB in predicting tensile strength. Fig. 26. 
Experimental and anticipated values and error distribution for XGB and Fig. 27 showed that the 
maximum and minimum errors were 0.24 MPa, 0.0001 MPa, and an average error of 0.049 MPa, 
respectively. 
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Fig. 28 presents the results of the AdB algorithm in predicting the HFRTHPC flexural strength. The 
AdB approach is estimated to have a moderate level of accuracy and divergence among 
experimental and estimated findings. The R2 of 0.916 (training) and 0.894 (test) suggests that the 
AdB method for calculating the HFRTHPC flexural strength is satisfactory, and the experimental and 
predicted results reasonably agree. The error values MAE = 0.3933, MSE = 0.2204, and RMSE = 
0.4695 are not in the adequate range for the remaining algorithm. Fig. 29 presents the actual, 
estimated, and error values distribution for the AdB model, and the maximum and minimum errors 
were 1.072 MPa, 0.008 MPa, and an average error of 0.367 MPa, respectively. The analysis of errors 
indicated that the AdaB model was estimated reasonably. 

 
Fig. 28.  Predicted V/s Experimental results for HFRTHPC FS – AdaB model 

 

Fig. 29.  Real, Predicted and Error distribution for AdaB model 

Fig. 30 illustrates the correlations between the estimated and observed flexural strength values of 
HFRTHPC. This relationship provides 0.996 (training) and 0.982 (test) as the determination 
coefficient (R2) values, as well as MAE = 0.0511 MPa, MSE = 0.0082 MPa, and RMSE = 0.0796 MPa. 
It is important to mention that the vertical axis represents the anticipated values, while the 
horizontal axis represents the experimental data for flexural strength. Fig. 31 shows the difference 
between the actual and predicted outcomes.  
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Fig. 30.   Predicted V/s Experimental results for HFRTHPC FS – RF model 

 

Fig. 31.  Real, Predicted and Error distribution for RF model 

 

Fig. 32.   Predicted V/s Experimental results for HFRTHPC FS – XGB model 
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                           Fig. 33. Real, Predicted and Error distribution for XGB model 

Here, the horizontal axis depicts the dataset for testing, whereas the anticipated flexural strength 
results are shown on the vertical axis. The difference shows the higher values, i.e., 0.574 MPa, the 
lower values, i.e., 0.003 MPa, and the average values, i.e., 0.145 MPa. Moreover, it has been 
determined that the total error values are below 1 MPa. Fig. 32 depicts that the XGB model offers a 
more precise relationship between the practice and anticipated HFRTHPC flexural strength results, 
which results in R2 = 1.00 (training), R2 = 0.991 (test), MAE = 0.025 MPa, MSE = 0.0063 MPa, and 
RMSE = 0.0042 MPa. The vertical and horizontal axes show expected and experimental flexural 
strength values. Fig. 33 shows the data distribution, showing actual versus projected outcomes. 
Here, the horizontal axis depicts the dataset for testing the models, whereas the anticipated flexural 
strength results are deciphered on the vertical axis. Based on this distribution, the highest, lowest, 
and average values are 0.599, 0.0001, and 0.0073 MPa, respectively. It is also found that total 
error values are below 01 MPa. 

Table 7. Statistical evaluation for the models 

Models   AdaB RF XGB 

 R2 
Training 90.3 99.7 100 

Test 89.7 96.2 99.4 
Compressive Strength MAE  0.6884 0.4247 0.0108 

MSE  0.8388 0.42 0.0004 
RMSE  0.9998 0.648 0.0212 

 R2 
Training 92.4 99.8 100 

Test 91.2 98.6 99.8 
Split Tensile Strength MAE  0.1921 0.0301 0.0033 

MSE  0.0568 0.0618 0.02757 
RMSE  0.2384 0.0434 0.0051 

 R2 
Training 91.6 99.6 100 

Test 89.4 98.2 99.1 
Flexural Strength MAE  0.3933 0.0511 0.025 

 MSE  0.2204 0.0082 0.0063 
 RMSE  0.4695 0.0796 0.0042 

 

In contrast to the AdaB approach, the RF model produced more accurate results and the minimum 
difference between actual and estimated findings. Since the RF model had a smaller deviation of 
errors and was more accurate than the AdaB model, as a result of the usage of an endless number 
of decision trees during training and its initial decision tree’s emphasis on incorrectly categorized 
input, the RF model achieves better accuracy. Another model also makes use of the same data. This 
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process is repeated until a sufficient number of basic learners have been created. The error 
distribution demonstrated that the XGB model outperformed the RF and AdaB models. The 
performance of the other models used is also satisfactory. The XGB model is more precise because 
it employs a tree-based ensemble learning strategy that optimizes output by generating sub 
models. 

Fig. 34 shows the evaluation of predictive models for compressive strength. AdaB, RF, and XGB all 
demonstrated commendable performance across both training and test datasets. Notably, XGB 
emerged as the top performer, consistently surpassing AdaB and RF. With flawless R2 scores of 
100% on both training and test datasets, XGB showcased exceptional predictive capabilities. 
Moreover, its superiority was further evidenced by achieving the lowest error metrics (MAE, MSE, 
and RMSE) compared to AdaB and RF. These findings underscore XGB's remarkable accuracy and 
precision in forecasting compressive strength, positioning it as the preferred model for such 
predictions. 

 

Fig. 34.  Error analysis- Compressive strength 

 

Fig. 35.  Error analysis- Tensile strength 

Fig. 35 depicts assessing the predictive models for tensile strength. AdaB, RF, and XGB each 
demonstrated commendable performance. However, XGB consistently emerged as the standout 
performer. Impressively, XGB attained perfect R2 scores of 100% on both training and test datasets, 
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indicating its exceptional predictive prowess. Furthermore, XGB showcased the lowest error 
metrics (MAE, MSE, and RMSE) compared to AdaB and RF, underscoring its unmatched accuracy 
and precision in predicting tensile strength. These findings emphasize XGB's superiority and its 
potential as the preferred model for such predictive tasks. 

 

Fig. 36.  Error analysis- Flexural strength 

Fig. 36 represents the evaluation of predictive models for flexural strength. All models 
demonstrated satisfactory performance; however, XGB emerged as the standout performer. 
Remarkably, XGB attained perfect R2 scores of 100% on both training and test datasets, showcasing 
its exceptional predictive capabilities. Additionally, XGB exhibited the lowest error metrics (MAE, 
MSE, and RMSE) compared to other models, indicating superior accuracy and precision in 
predicting flexural strength. These findings underscore XGB superiority and highlight its potential 
as the preferred model for accurate predictions of flexural strength in practical applications. 

4. Conclusions 

• The study successfully demonstrates that the incorporation of hybrid fibers (crimped steel 
fibers and polypropylene fibers) significantly enhances the mechanical properties of 
concrete. The optimal mix identified includes 1% crimped steel fiber and 0.25% 
polypropylene fiber. 

• A notable increase in compressive strength of up to 30.24% was achieved with the Hybrid 
Fiber-Reinforced Tertiary Blended High-Performance Concrete (HFRTHPC) mix compared to 
the reference mix, with the highest compressive strength recorded at 28 days. 

• The study revealed that as the W/B ratio increased from 0.275 to 0.375, the compressive 
strength of the HFRTHPC mix decreased. The highest strengths were consistently observed 
at the lowest W/B ratio, confirming the importance of maintaining a low W/B ratio for high-
performance concrete. 

• The results indicate a substantial improvement in split tensile strength (up to 40.70%) and 
flexural strength (up to 38.22%) when 15% of the Ordinary Portland Cement (OPC) is 
replaced with combined tertiary mineral admixtures (silica fume, metakaolin, and fly ash). 

• Among the mixtures analysed, the Hybrid Fiber-Reinforced Tertiary Blended High-
Performance Concrete (HFRTHPC) demonstrated optimal performance at a hybrid fiber 
volume of 1.25% with a 15% addition of combined mineral admixture. This combination led 
to significant improvements in compressive, splitting tensile, and flexural strength compared 
to the reference mix, highlighting the effectiveness of this hybrid approach. 

• The proposed tertiary mix of cement with mineral admixtures outperformed other 
configurations, such as binary and ternary mixes, due to the combined benefits of fly ash, 
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metakaolin, and silica fume, which enhance particle packing, reduce porosity, and improve 
bonding in the concrete matrix. 

• The research successfully applied three machine learning techniques—AdaBoost, Random 
Forest, and Extreme Gradient Boost—to model the mechanical properties of concrete. 
Among these, the Extreme Gradient Boost (XGB) model exhibited superior predictive 
accuracy and generalization capabilities, achieving R² scores of 1.000 for both training and 
testing datasets for compressive strength. This indicates the potential of machine learning as 
an effective tool for predicting concrete properties. 

• This research highlights the potential for optimizing concrete compositions to create more 
sustainable construction materials, reducing the environmental impact associated with 
traditional concrete production by effectively utilizing industrial by-products like silica fume, 
metakaolin, and fly ash. 

• The findings of this study provide a foundation for future research into hybrid fiber-
reinforced concrete, suggesting avenues for further exploration in the optimization of fiber 
types, dosages, and the incorporation of additional sustainable materials. 

References 

[1] Patel V, Shah N. A survey of high-performance concrete developments in civil engineering field. Open J 
Civil Eng. 2013;3(2):69-79. https://doi.org/10.4236/ojce.2013.32007  

[2] Juenger MCG, Siddique R. Recent advances in understanding the role of supplementary cementitious 
materials in concrete. Cem Concr Res. 2015;10:1016. https://doi.org/10.1016/j.cemconres.2015.03.018  

[3] Dave N, Misra AK, Srivastava A, Kaushik SK. Experimental analysis of strength and durability properties 
of quaternary cement binder and mortar. Constr Build Mater. 2016;12:195. 
https://doi.org/10.1016/j.conbuildmat.2015.12.195  

[4] Khan SU, Nuruddin MF, Ayub T, Shafiq N. Effects of different mineral admixtures on the properties of fresh 
concrete. Sci World J. 2014;1:986567. https://doi.org/10.1155/2014/986567  

[5] Gesoğlu M, Güneyisi E, Özbay E. Properties of self-compacting concretes made with binary, ternary, and 
quaternary cementitious blends of fly ash, blast furnace slag, and silica fume. Constr Build Mater. 
2009;23(5):1847-54. https://doi.org/10.1016/j.conbuildmat.2008.09.015  

[6] Dhrangadharia S, Vishwakarma S, Kumar A, Saran B. Effect of quaternary binder systems on mechanical 
properties of concrete. Int J Eng Sci Res. 2018;6(1):2347-6532. 

[7] Kathirvel P, Saraswathy V, Karthik SP, Sekar ASS. Strength and durability properties of quaternary cement 
concrete made with fly ash, rice husk ash, and limestone powder. Arab J Sci Eng. 2012;38(3):589-98. 
https://doi.org/10.1007/s13369-012-0331-1  

[8] Makhloufi Z, Bouziani T, Hadjoudja M, Bederina M. Durability of limestone mortars based on quaternary 
binders subjected to sulfuric acid using drying-immersion cycles. Constr Build Mater. 2014;71:579-88. 
https://doi.org/10.1016/j.conbuildmat.2014.08.086  

[9] Soroushian P, Khan A, Hsu JW. Mechanical properties of concrete materials reinforced with polypropylene 
or polyethylene fibers. ACI Mater J. 1992;89(6):535-40. https://doi.org/10.14359/4018  

[10] Pierre P, Pleau R, Pigeon M. Mechanical properties of steel microfiber reinforced cement pastes and 
mortars. J Mater Civil Eng. 1999;11(4):317-24 https://doi.org/10.1061/(ASCE)0899-
1561(1999)11:4(317)  

[11] Jain A, Singh B, Shrivastava Y. Investigation of kerf deviations and process parameters during laser 
machining of basalt-glass hybrid composite. J Laser Appl. 2019;31(3):032017. 
https://doi.org/10.2351/1.5111369  

[12] Anandan S, Alsubih M. Post-elastic deformation characteristics of hybrid fiber reinforced concrete 
composites. Lat Am J Solids Struct. 2020;17(1):1-20. https://doi.org/10.1590/1679-78255851  

[13] Sharma KK, Shrivastava Y, Neha E, Jain A, Singh B. Evaluation of flexural strength of hybrid FRP 
composites having three distinct laminates. Mater Today Proc. 2020;38:418-22. 
https://doi.org/10.1016/j.matpr.2020.07.599  

[14] Zhong H, Zhang M. Experimental study on engineering properties of concrete reinforced with hybrid 
recycled tyre steel and polypropylene fibres. J Clean Prod. 2020;259:120914. 
https://doi.org/10.1016/j.jclepro.2020.120914  

[15] Eidan J, Rasoolan I, Poorveis D, Rezaeian A. Effect of polypropylene short fibers on energy absorption 
capacity and durability of concrete. J Test Eval. 2020;49(5):1-8. https://doi.org/10.1520/JTE20190778  

[16] Afroughsabet V, Ozbakkaloglu T. Mechanical and durability properties of high-strength concrete 
containing steel and polypropylene fibers. Constr Build Mater. 2017;94:73-82. 
https://doi.org/10.1016/j.conbuildmat.2015.06.051  

https://doi.org/10.4236/ojce.2013.32007
https://doi.org/10.1016/j.cemconres.2015.03.018
https://doi.org/10.1016/j.conbuildmat.2015.12.195
https://doi.org/10.1155/2014/986567
https://doi.org/10.1016/j.conbuildmat.2008.09.015
https://doi.org/10.1007/s13369-012-0331-1
https://doi.org/10.1016/j.conbuildmat.2014.08.086
https://doi.org/10.14359/4018
https://doi.org/10.1061/(ASCE)0899-1561(1999)11:4(317)
https://doi.org/10.1061/(ASCE)0899-1561(1999)11:4(317)
https://doi.org/10.2351/1.5111369
https://doi.org/10.1590/1679-78255851
https://doi.org/10.1016/j.matpr.2020.07.599
https://doi.org/10.1016/j.jclepro.2020.120914
https://doi.org/10.1520/JTE20190778
https://doi.org/10.1016/j.conbuildmat.2015.06.051


Mahesh et al. / Research on Engineering Structures & Materials x(x) (xxxx) xx-xx 
 

26 

[17] Gupta AK. Experimental studies of strength and durability analysis of concrete incorporating ultrafine 
slag [doctoral dissertation]. Solan (HP): Jaypee Univ Inf Technol; 2018. 

[18] Annadurai A, Ravichandran A. Strength prediction of hybrid fiber reinforced high strength concrete. Int 
J ChemTech Res. 2015;8(12):675-81. 

[19] Alavi Nia A, Hedayatian M, Nili M, Sabet VA. An experimental and numerical study on how steel and 
polypropylene fibers affect the impact resistance in fiber-reinforced concrete. Int J Impact Eng. 
2012;46:62-73. https://doi.org/10.1016/j.ijimpeng.2012.01.009  

[20] Murali G, Santhi AS, Ganesh GM. Impact resistance and strength reliability of fiber reinforced concrete 
using two-parameter Weibull distribution. J Eng Appl Sci. 2014;9(4):554-59.  

[21] Nagaraja K, Sudarshan Rao H, Shiva Shankar Reddy T. Study on performance of ternary blended high-
strength hybrid fiber reinforced concrete. Int J Civil Eng Technol. 2018;9(11):925-33.  

[22] Sreenu R, Hajarath K, Madhukar M. An experimental study on performance of ternary blended high-
strength fiber reinforced concrete. Int Res J Eng Technol. 2018;5(8):1-7. 

[23] Malagavelli V, Angadi S, Prasad JSR, Joshi S. Influence of metakaolin in concrete as partial replacement 
of cement. Int J Civil Eng Technol. 2018;9(7):105-11. 

[24] Liu G, Guo Y, Li Q, Wang L. The threshold value of effective replacement ratio of fly ash mortar based on 
amount of calcium hydroxide. IOP Conf Ser Earth Environ Sci. 2020;455(1):012125. 
https://doi.org/10.1088/1755-1315/455/1/012125  

[25] Gouda A, Somasekharaiah HM. Strength and durability studies on hybrid fiber reinforced high-
performance concrete for silica fume-based mineral admixture. IOP Conf Ser Earth Environ Sci. 
2021;822(1):012041. https://doi.org/10.1088/1755-1315/822/1/012041  

[26] Gouda A, Somasekharaiah HM, Mallikarjuna HM. Mechanical properties and acid attack test of hybrid 
fiber reinforced high-performance concrete for fly ash-based mineral admixture. Mater Today. 
2022;51:742-49. https://doi.org/10.1016/j.matpr.2021.06.220  

[27] Gouda A, Somasekharaiah HM, Mallikarjuna HM. Combined effect of metakaolin and hybrid fibers on the 
strength properties of high-performance concrete. Mater Today. 2022;49:1527-36. 
https://doi.org/10.1016/j.matpr.2021.07.310  

[28] Patil S, Somasekharaiah HM, Sudarsana Rao H, Vaishali G. Effect of fly ash, silica fume, glass fiber, and 
polypropylene fiber on strength properties of composite fiber reinforced high-performance concrete. Int 
J Eng Trends Technol. 2021;69(5):69-84. https://doi.org/10.14445/22315381/IJETT-V69I5P212  

[29] Afzali-Naniz O, Mazloom M. Assessment of the influence of micro- and nano-silica on the behavior of self-
compacting lightweight concrete using full factorial design. Asian J Civil Eng. 2019;20:57-70. 
https://doi.org/10.1007/s42107-018-0088-2  

[30] Chen L, Wang Z, Khan AA, Khan M, Javed MF, Alaskar A, Eldin SM. Development of predictive models for 
sustainable concrete via genetic programming-based algorithms. J Mater Res Technol. 2023;24:6391-410. 
https://doi.org/10.1016/j.jmrt.2023.04.180  

[31] Abdul-Jabbar H, Khan M, Awan HH, Eldin SM, Alyousef R, Mohamed AM. Predicting ultra-high-
performance concrete compressive strength using gene expression programming method. Case Stud 
Constr Mater. 2023;18:e02074. https://doi.org/10.1016/j.cscm.2023.e02074  

[32] Islam N, Kashem A, Das P, Ali MN, Paul S. Prediction of high-performance concrete compressive strength 
using deep learning techniques. Asian J Civil Eng. 2023;1:1. https://doi.org/10.1007/s42107-023-00778-
z  

[33] Albostami AS, Al-Hamd RKS, Alzabeebee S, Minto A, Keawsawasvong S. Application of soft computing in 
predicting the compressive strength of self-compacted concrete containing recyclable aggregate. Asian J 
Civil Eng. 2024;25(1):183-96. https://doi.org/10.1007/s42107-023-00767-2  

[34] Shahani NM, Ullah B, Shah KS, Hassan FU, Ali R, Elkotb MA, et al. Predicting angle of internal friction and 
cohesion of rocks based on machine learning algorithms. Mathematics. 2022;10(20):3875. 
https://doi.org/10.3390/math10203875  

[35] Zada U, Jamal A, Iqbal M, Eldin SM, Almoshaogeh M, Bekkouche SR, Almuaythir S. Recent advances in 
expansive soil stabilization using admixtures: current challenges and opportunities. Case Stud Constr 
Mater. 2023;18:e01985. https://doi.org/10.1016/j.cscm.2023.e01985  

[36] Caglar N, Pala M, Elmas M, Eryılmaz DM. A new approach to determine the base shear of steel frame 
structures. J Constr Steel Res. 2009;65(1):188-95. https://doi.org/10.1016/j.jcsr.2008.07.012  

[37] Solhmirzaei R, Salehi H, Kodur V, Naser MZ. Machine learning framework for predicting failure mode 
and shear capacity of ultra-high-performance concrete beams. Eng Struct. 2020;224:111221. 
https://doi.org/10.1016/j.engstruct.2020.111221  

[38] Behnood A, Golafshani EM. Machine learning study of the mechanical properties of concretes containing 
waste foundry sand. Constr Build Mater. 2020;243:118152. 
https://doi.org/10.1016/j.conbuildmat.2020.118152  

https://doi.org/10.1016/j.ijimpeng.2012.01.009
https://doi.org/10.1088/1755-1315/455/1/012125
https://doi.org/10.1088/1755-1315/822/1/012041
https://doi.org/10.1016/j.matpr.2021.06.220
https://doi.org/10.1016/j.matpr.2021.07.310
https://doi.org/10.14445/22315381/IJETT-V69I5P212
https://doi.org/10.1007/s42107-018-0088-2
https://doi.org/10.1016/j.jmrt.2023.04.180
https://doi.org/10.1016/j.cscm.2023.e02074
https://doi.org/10.1007/s42107-023-00778-z
https://doi.org/10.1007/s42107-023-00778-z
https://doi.org/10.1007/s42107-023-00767-2
https://doi.org/10.3390/math10203875
https://doi.org/10.1016/j.cscm.2023.e01985
https://doi.org/10.1016/j.jcsr.2008.07.012
https://doi.org/10.1016/j.engstruct.2020.111221
https://doi.org/10.1016/j.conbuildmat.2020.118152


Mahesh et al. / Research on Engineering Structures & Materials x(x) (xxxx) xx-xx 
 

27 

[39] Shang M, Li H, Ahmad A, Ahmad W, Ostrowski KA, Aslam F, et al. Predicting the mechanical properties 
of RCA-based concrete using supervised machine learning algorithms. Constr Build Mater. 2022;647:1-
13. https://doi.org/10.3390/ma15020647  

[40] Ni HG, Wang JZ. Prediction of compressive strength of concrete by neural networks. Cem Concr Res. 
2000;30(8):1245-50. https://doi.org/10.1016/S0008-8846(00)00345-8  

[41] Sarıdemir M. Predicting the compressive strength of mortars containing metakaolin by artificial neural 
networks and fuzzy logic. Adv Eng Softw. 2009;40(9):920-7. 
https://doi.org/10.1016/j.advengsoft.2008.12.008  

[42] Sobhani J, Najimi M, Pourkhorshidi AR, Parhizkar T. Prediction of the compressive strength of no-slump 
concrete: A comparative study of regression, neural network, and ANFIS models. Constr Build Mater. 
2010;24(5):709-18. https://doi.org/10.1016/j.conbuildmat.2009.10.037  

[43] Hodhod OA, Ahmed HI. Modeling the corrosion initiation time of slag concrete using the artificial neural 
network. HBRC J. 2014;10(3):231-4. https://doi.org/10.1016/j.hbrcj.2013.12.002  

[44] Awoyera PO, Kirgiz MS, Viloria A, Ovallos-Gazabon D. Estimating strength properties of geopolymer self-
compacting concrete using machine learning techniques. J Mater Res Technol. 2020;9(4):9016-28. 
https://doi.org/10.1016/j.jmrt.2020.06.008  

[45] Deifalla AF, Zapris AG, Chalioris CE. Multivariable regression strength model for steel fiber-reinforced 
concrete beams under torsion. Materials. 2021;14(14):3889. https://doi.org/10.3390/ma14143889  

[46] Nafees A, Khan S, Javed MF, Alrowais R, Mohamed AM, Mohamed A, et al. Forecasting the mechanical 
properties of plastic concrete employing experimental data using machine learning algorithms DT, 
MLPNN, SVM, and RF. Polymers. 2022;14(8):1583. https://doi.org/10.3390/polym14081583  

[47] Salem NM, Deifalla A. Evaluation of the strength of slab-column connections with FRPs using machine 
learning algorithms. Polymers. 2022;14(8):1517. https://doi.org/10.3390/polym14081517  

[48] Azam R, Riaz MR, Farooq MU, Ali F, Mohsan M, Deifalla AF, et al. Optimization-based economical flexural 
design of singly reinforced concrete beams: a parametric study. Materials. 2022;15(9):3223. 
https://doi.org/10.3390/ma15093223  

[49] Li Y, Zhang Q, Kamiński P, Deifalla AF, Sufian M, Dyczko A, et al. Compressive strength of steel fiber-
reinforced concrete employing supervised machine learning techniques. Materials. 2022;15(12):4209. 
https://doi.org/10.3390/ma15124209  

[50] Nafees A, Javed MF, Khan S, Nazir K, Farooq F, Aslam F, et al. Predictive modeling of mechanical 
properties of silica fume-based green concrete using artificial intelligence approaches: MLPNN, ANFIS, 
and GEP. Materials. 2021;14(24):7531. https://doi.org/10.3390/ma14247531  

[51] Khan M, Lao J, Dai JG. Comparative study of advanced computational techniques for estimating the 
compressive strength of UHPC. J Asian Concr Fed. 2022;8(1):51-68. 
https://doi.org/10.18702/acf.2022.6.8.1.51  

[52] Anwar MK, Shah SAR, Azab M, Shah I, Chauhan MKS, Iqbal F. Structural performance of GFRP bars based 
high-strength RC columns: an application of advanced decision-making mechanism for experimental 
profile data. Buildings. 2022;12(5):611. https://doi.org/10.3390/buildings12050611  

[53] Shah SAR, Azab M, Seif ElDin HM, Barakat O, Anwar MK, Bashir Y. Predicting compressive strength of 
blast furnace slag and fly ash-based sustainable concrete using machine learning techniques: an 
application of advanced decision-making approaches. Buildings. 2022;12(7):914. 
https://doi.org/10.3390/buildings12070914  

[54] Hulipalled P, Algur V, Lokesha V. An approach of data science for the prediction of wear behaviour of 
hypereutectoid steel. J Bio Tribo-Corros. 2022;8(3):69. https://doi.org/10.1007/s40735-022-00668-y  

[55] Hulipalled P, Algur V, Lokesha V, Saumya S. Interpretable ensemble machine learning framework to 
predict wear rate of modified ZA-27 alloy. Tribol Int. 2023;188:108783. 
https://doi.org/10.1016/j.triboint.2023.108783  

[56] Hulipalled P, Algur V, Lokesha V, Saumya S. Intelligent retrieval of wear rate prediction for 
hypereutectoid steel. Multiscale Multidiscip Model Exp Des. 2023;6(4):629-41. 
https://doi.org/10.1007/s41939-023-00172-x  

[57] Hulipalled P, Lokesha V. Optimized machine learning algorithms to predict wear behavior of tribo-
informatics. 2022. https://doi.org/10.21203/rs.3.rs-2159217/v1   

[58] Hulipalled P, Lokesha V. Intelligent prediction of wear loss based on ensemble learning in dual-phase 
steel. J Int Acad Phys Sci. 2023;27(2):161-70. 

[59] Carmichael RP. Relationships between young's modulus, compressive strength, poisson's ratio, and time 
for early age concrete. Swarthmore College. 2009. 

[60] Bal L, Buyle-Bodin F. Artificial neural network for predicting drying shrinkage of concrete. Constr Build 
Mater. 2013;38:248-54. https://doi.org/10.1016/j.conbuildmat.2012.08.043  

 

 

https://doi.org/10.3390/ma15020647
https://doi.org/10.1016/S0008-8846(00)00345-8
https://doi.org/10.1016/j.advengsoft.2008.12.008
https://doi.org/10.1016/j.conbuildmat.2009.10.037
https://doi.org/10.1016/j.hbrcj.2013.12.002
https://doi.org/10.1016/j.jmrt.2020.06.008
https://doi.org/10.3390/ma14143889
https://doi.org/10.3390/polym14081583
https://doi.org/10.3390/polym14081517
https://doi.org/10.3390/ma15093223
https://doi.org/10.3390/ma15124209
https://doi.org/10.3390/ma14247531
https://doi.org/10.18702/acf.2022.6.8.1.51
https://doi.org/10.3390/buildings12050611
https://doi.org/10.3390/buildings12070914
https://doi.org/10.1007/s40735-022-00668-y
https://doi.org/10.1016/j.triboint.2023.108783
https://doi.org/10.1007/s41939-023-00172-x
https://doi.org/10.21203/rs.3.rs-2159217/v1
https://doi.org/10.1016/j.conbuildmat.2012.08.043

