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 Nanostructured Al-Sn and Al-Pb alloys are effectively used to improve their wear 
characteristics. Taking this into consideration, the wear properties of aluminum 
have been studied while affected by both elements Sn-Pb solder at a lower level 
to explore its reusing potentials. In this purpose a common pin-on-disk device is 
used in which different dry, wet and corrosive sliding environments are applied. 
Additionally, pure Al, Al-Sn and Al-Pb alloys are also considered for recovering 
the clarification and to separate elemental effects on wear properties. The worn 
surfaces of the samples are examined using optical and scanning electron 
microscopy, both before and after wear. Surface roughness also is a measure to 
assess the wear properties under different environments. The findings revealed 
that minor solder has a great impact on the wear properties of Al with Sn playing 
a better role than Pb. Solid solution strengthening is the main reason for 
improved wear behavior in terms of the low wear rate and coefficient of friction. 
Both Sn and Pb do not form any intermetallic with Al but with impurities it can 
easily occur particularly with Sn resulting in better wear properties. This 
phenomenon is more prominent in corrosive environment than wet due to the 
protective oxide layer on the surfaces. In dry sliding conditions, numerous large 
wear particles, oxide debris and grooves can be seen on the worn surface, but 
smoother wear tracks are seen in wet and corrosive environments as form oxide 
film and thumbs down somewhat direct contact on the moveable surfaces. SEM 
analysis also reveals higher abrasive wear and plastic deformation on the worn 
surface produced under dry sliding conditions where minor added alloys 
indicating that reinforcing particles effectively influence the properties. 

 
© 2024 MIM Research Group. All rights reserved. 
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1. Introduction 

From the beginning, aluminum has been one of the popular materials in many industries 
due to its excellent physical, mechanical, electrical, and chemical properties such as light 
density, high strength, wear, and corrosion resistance [1-3]. Its properties are enhanced 
many times when it is alloyed with other elements. Alloying has a limitation in that 
improving one property it may affect other properties. In the book by S. Sivashankaranto 
provides ample information about the effects of alloying elements on aluminum [4]. More 
precisely Si lowers the melting point, cumulative fluidity, and Cu provides precipitation 
hardening and strength, while reducing ductility as well as corrosion resistance. Mn 
enhances work hardening rate, but prevents cracking during stress corrosion., 
correspondingly Fe can enhance hardness and decrease tensile strength in addition to 
corrosion resistance. Ni addition improves strength at high temperature, at the expense of 
electrical conductivity. For grain refining as well as thermal stability minor Zr also added 
into the Al-alloys [5-7]. Sometimes aluminum alloys give better strength by heat treatment. 
Plastic deformation is another method of increasing the strength of aluminum and its 
alloys [4, 8, 9]. The favorable point of aluminum is that it can be recycled again and again 
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without losing its major character. The process involves just re-melting and it is much less 
expensive along with energy-intensive than making new aluminum from its original 
source. Recycling it also has significant environmental benefits by eliminating air and 
water pollution which need to process raw materials [10, 11]. Aluminum is extensively 
used in the manufacturing of electronic and microelectronic components, and in some 
countries for power lines. It is widely used in the manufacture of transformers, low-voltage 
rotors, motor capacitors and sometimes also used for antenna and radar construction [12]. 
Hence, Al-alloys are also claimed to be suitable for the aerospace industry [13, 14].  

When used in this electrical sector, Al wires or parts are to be joined. Soldering is applied 
to the joining process. In this case the recycled aluminum content is a small amount of 
solder alloy [15, 16]. The best option is reusing the scraped materials at their leftover state 
for appropriate engineering applications. At earlier stages Sn-Pb solder alloys are mostly 
used. Therefore, cast aluminum will contain minor amounts of Sn and Pb. From this 
perspective, reused or melted scraped Al requires characterization of the properties 
achievable with special attention to surface behavior. Abrasion and friction properties of 
materials are the main component failures causing surface deformation and reduced 
durability [17, 18]. Some have reported the effect of Sn or Pb on the wear behavior of Al 
alloys where the levels of such elements were high [19, 20]. There is no work reported 
where Sn or Pb is used in small amounts as well as both elements simultaneously. 
Additionally, sufficient information on the tribological behavior of these alloys under water 
or saline environments is also lacking. Al-based bearings and associated fittings are 
preferred in corrosive environments, so it is necessary to have reliable data on friction and 
wear properties when alloys are applied to noncorrosive stainless steel counter bodies. 
Therefore, a significant effort has been taken to investigate these properties of Sn-Pb 
solder affected Al under different sliding conditions as mentioned above for applications 
in the marine sector. 

2. Materials and Methods 

The objective was to study the wear behavior of Sn-Pb solder affected Al under different 
conditions. Extensively old Al electrical wire and different soldered connecting electrical 
components were melted conventionally using a resistance heating furnace. From the 
chemical composition of melt aluminum, it contained the minor amount of 1.0~1.5wt% Sn 
and 1.0~1.5wt % Pb. To establish the influence separately of tin and lead in the Al, 
depending the minor elements another three more samples like pure Al, binary Al-Sn, Al-
Pb were chosen. Commercially pure grade Al, Sn and Pb were taken for developing those 
alloys where mild steel mould of 155 x 45 x 35 mm size was used. The cast alloys were then 
subjected to homogenization and solutionizing at 450°C for 12 h and 530°C for 2 h 
respectively. The developed four samples consist the following elements analyzed by 
Optical Emission Spectroscopy as in Table 1. Additionally, Cu, Mg, Mn, Zn, Ni, Cr, Ti etc, 
were also present in the alloys as trace impurities.  

Table 1. Alloys chemical composition by wt.%  

Alloy Sn Pb Fe Si Al 

Pure Al 0.002 0.002 0.202 0.280 Bal 

Al-Sn 1.512 0.012 0.314 0.335 Bal 

Al-Pb 0.002 1.275 0.335 0.345 Bal 

Al-Sn-Pb 1.433 1.201 0.406 0.435 Bal 
 

For the physical, mechanical and wear test the cast and heat-treated alloy samples were 
machined to 145 x 40 x 32 mm size for skin out the oxide layer. Then the bar was cold 

https://www.wordhippo.com/what-is/another-word-for/from_this_perspective.html
https://www.wordhippo.com/what-is/another-word-for/from_this_perspective.html


Kaiser / Research on Engineering Structures & Materials 10(3) (2024) 957-972 

 

959 

rolled by 80% with a 10HP rolling mill where the 40 mm thick portion under gone to 8 
mm.  For wear study, size of 12 mm in length and 5 mm in diameter were machined from 
the cold rolled alloys. Alloy densities were calculated from the chemical composition. The 
alloys are aged at 100°C for one hour becoming the better strength [21]. The 
microhardness of the aged samples was measured using a Micro Vickers Hardness testing 
machine. One kg load and ten seconds dwell time were used there. Tensile testing was 
carried out according to ASTM E8 specification at room temperature in an Instron testing 
machine. The wear and frictional properties of tested alloys were investigated following 
ASTM standard G99-05 where a pin-on-disc type apparatus was used [22, 23]. As the 
counter surface material 309s stainless steel disc with 100 mm semi-dia and 15 mm thick 
was used. The hardness and roughness of the disc was around HRB 85 and was 0.39 µm 
respectively. The 20 N load, that is calculated contact pressure 1.02 MPa was used for wear 
study. Furthermore, 5 to 50 N loads were used for other experiments. During the wear 
study the disc was rotated at 200 rpm where the pin samples stay on a track diameter of 
49 mm as a result the calculated sliding speed was 0.51 m/s. All the tests were completed 
in ambient conditions of 70% humidity and at 22 °C temperature.  For an individual data 
five tests were carried out and the average of these values were considered. The specimens 
were first subjected to dry sliding conditions and then chronologically to the distilled 
water and then 3.5% NaCl saline water. For both the wet and corrosive environments, drip-
type single-point at the contact interface of the sample and the steel counter plate was 
maintained with a constant rate of discharge throughout the experiment. The discharge 
rate was five drops per minute as controlled by the regulator. The specific wear rate was 
calculated from the measured weight loss (∆w), the running distance in the test (S.D.), and 
the normal load (L) applied to the samples [23]. The sliding distances were calculated from 
the track diameter and speed of rotation of the disc. The load cell reading (F) was 
normalized by the load applied, L to find out the friction coefficient (µ). The mathematical 
relations to obtain the weight loss, specific wear rate (S.W.R.) and the friction coefficient 
are stated by equations as follows: 

∆𝑊 = 𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙 −𝑊𝑓𝑖𝑛𝑎𝑙 (1) 

𝑆.𝑊. 𝑅.=
∆𝑊

𝑆.𝐷.× 𝐿
 (2) 

µ =
𝐹

𝐿
 (3) 

The worn surface and wear debris of the specimens from the test were put under 
microstructural observation using USB digital microscope. In some cases, SEM analysis 
was used by JEOL scanning electron microscope.  

3. Results and Discussion 

3.1. Physical and Mechanical Properties 

Table 2 displays the experimental results of physical and mechanical properties of 
commercially pure Al, binary Al-Sn, Al-Pb and solder affected ternary Al-Sn-Pb alloys 
including density, hardness, tensile strength and percent elongation. Pure Al exhibit lowest 
density, while Al-Sn shows higher for addition of 1.51 wt.% Sn. Similarly, 1.28wt% Pb is 
added to Al-Pb to continue the trend, and it is evident that the alloy with the highest 
density, Al-Sn-Pb, contains both added elements.  The density of Al, Sn and Pb are 
2.7gm/cm3, 7.3gm/cm3 and 11.34gm/cm3 respectively. Hardness of the alloyed samples is 
higher due to the solid solution strengthening. Sn has the BCC crystal structure but Pb has 
the FCC structure as Al. As a result, Sn shows the higher hardness than Pb added alloy. 
Furthermore, both Sn and Pb elements do not form any intermetallic with Al but form 
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intermetallic with trace impurities resulting in additional hardness with respect to Sn. 
Solder added alloys exhibit the result of two elements [24, 25].  

The solder-affected Al shows the highest tensile strength in the aforementioned reason, 
followed by alloys containing Sn and Pb, and pure Al, which shows the lowest tensile 
strength. A small variation is observed in case of percentage of elongation. Maximum 
fraction of precipitates occurs into the solder affected alloy which hinders the dislocation 
movement so the lower elongation. For the same reason the result of elongation conforms 
the sequence of Al-Sn followed by Al-Pb and pure Al [26, 27].  

Table 2. Physical and Mechanical properties of the experimental alloys 

Alloy Density, gm/cm3 Hardness, VHN UTS, MPa % Elongation 

Pure Al 2.709±0.008 51.4±1.5 114.4±4.5 10.7±1.1 

Al-Sn 2.801±0.025 62.3±2.5 137.3±7.5 9.6±0.7 

Al-Pb 2.826±0.025 52.8±2.3 123.8±6.5 10.2±0.7 

Al-Sn-Pb 2.889±0.031 63.5±3.1 147.0±8.0 9.5±0.6 

3.2. Wear Behavior 

Figure 1 displays the average weight losses of pure Al, Al-Sn, and Al-Pb, as well as the 
weight loss of the Al-Sn-Pb alloy, with respect to sliding distance. The dry sliding conditions 
were maintained at a pressure of 1.02 MPa and a velocity of 0.51 m/s. As expected, weight 
loss was observed for all samples, but the degree of weight loss varied. As the sliding 
distance increased, the contact period between the rotating disk and the sample face also 
increased, leading to further weight loss. The variation in weight loss can be attributed to 
material properties such as hardness, density, and softening behavior, as shown in Table 
2, while increases tensile strength, weight loss decreases [28, 29].  

 

Fig. 1. Variation of the weight loss with sliding distance in dry sliding environment 

Using Equations 1 and 2 calculated wear rates of investigated alloys mentioned above are 
plotted against the sliding distance. Whereas Fig. 2, 3 and 4 show the difference in wear 
rates in dry, wet and corrosive environments respectively. From the Fig. 2, it may be said 
that under dry sliding condition wear rate increase to certain distance followed by tends 
to a constant value. The increase in wear rate can be attributed to frictional heat by 
excessive pressure as prolonged intimate contact between the two mating surfaces and 
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softening of materials [30]. So, it occurs more effectively. The highest wear rate is raised 
for pure Al trailed by Pb added alloy, Sn added alloy and finally the solder affected alloy. 
According to the Archard’s theory wear rate in dry sliding condition of alloys is found to 
decrease with the increased hardness and found to be consistent with the result [31]. 
Besides, during wear tests, the generation of an intermediate oxide layer between mating 
surfaces is also one of the probable reasons for decreasing wear rate. Average values of 
two opposite effects are displayed in the graphs. For long time sliding contact the surfaces 
with air forms thick oxide layers which control the wear rate and favorable to the constant 
wear rate [23]. 

When sliding in distil water environment, the wear rate decreases some extend for all the 
alloys (Fig. 3). Throughout sliding the water by hydrogen attack form oxide which is 
relatively stable on the surface. Minor added alloys form higher oxides as protect the 
surface from wear. Once more, Sn oxide is more stable than that of Pb oxide as a result 
slightly the lower wear rate for Sn added as well as solder affected alloy [32]. More 
specifically in the case of ternary solder affected alloy the role of lower stable oxide of Pb 
dominates in high wear rates with sliding distance. 

Except for pure Al more decreasing nature of wear rate is observed in case of corrosive 
3.5% NaCl sliding environment. The wear rate radically reaches a constant value with the 
sliding distance (Fig. 4). In this case the corrosive wear serves as a clear indicator. Pure Al 
affected by corrosive attack, dissolute continuously or uniformly detached it wears out 
more quickly in the corrosive environment. In case of minor added alloys again, it is known 
that the foreign particles into the alloy is attacked more by the corrosion or oxidization. It 
may be noted that corrosive products are thought to be more stable on surfaces than when 
they form oxides in wet environment, resulting in lower wear rate [33]. The overall 
presence of wear rate variation with sliding distance in corrosive environments first 
increases then decreases and then increases again. The reason behind this increase in wear 
rate is due to the corrosive attack, next formation of passive films on the surface of the 
sample which acts as a barrier against further corrosion hence the wear rate is low. After 
some time, the wear rate increases due to the gradual breakdown of the progressively 
thicker passive films [34].  

 

Fig. 2. Variation of wear rate with sliding distance in dry sliding environment 

The results of the friction coefficient with different sliding distances are shown in Figures 
5-7 for four specimens under dry, wet and corrosive tested environment, respectively. In 
all cases the friction coefficient is initially low and then rises with increasing sliding 
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distance. The friction coefficient values are initially low due to the contact between the 
rough layers on the specimen and the disc material. Within a short sliding distance, the 
friction coefficient increases. This is because the cracking and removal of the surface oxide 
layer leading to metal-to-metal contact increases the coefficient of friction. With increasing 
sliding distance, interface temperatures can develop which can promote surface oxidation 
thereby reducing the direct contact of the surfaces hence slightly reducing the friction 
coefficient [35]. 

 

Fig. 3. Variation of wear rate with sliding distance in wet sliding environment 

 

Fig. 4. Variation of wear rate with sliding distance in corrosive sliding environment 

The coefficient of friction for all the alloys in the dry environment is much greater than 
under wet and corrosive environment. The cause of this friction reduction is the “Sealing 
Effect”, which reduces the roughness of the surfaces in contact [36, 37]. In all the cases the 
coefficient of friction of commercially pure aluminum shows the highest and solder 
affected Al-Sn-Pb alloy the lowest followed by tin added Al-Sn and then lead added Al-Pb 
alloy and the result is in good agreement with the observed microhardness value of the 
alloys. Differences in the extent of localized plastic deformation at real contact areas may 
lead to the deficiencies in friction coefficient. The solder affected alloy exhibits the lowest 
friction as it is the hardest one and undergo lowest plastic deformation [38]. Furthermore, 
solid solubilities of Sn and Pb in Al are less than 0.02 and 0.026 wt% at room temperature, 

https://www.sciencedirect.com/topics/engineering/plastic-deformation
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therefore, the soft Sn and Pb phase can form compact structure particles in the Al-matrix 
and act as solid lubricants. Some deviation is observed under water and saline 
environment as controlled by the oxidization and corrosion created by the minor added 
elements on the surfaces [24, 39]. The initial friction coefficient for all alloys is high due to 
the high roughness created by the dense saline particles as well as the rough matting 
surface. After some time, the corrosive product fills the voids and acts as a sealing effect. 

 

Fig. 5. Variation of the coefficient of friction with sliding distance in dry sliding 
environment 

 

Fig. 6. Variation of the coefficient of friction with sliding distance in wet sliding 
environment  

The nature of friction under different loads and environments at a constant velocity of 0.51 
m/s is presented in Figures 8, 9 and 10. The friction coefficient in dry sliding condition 
shows a normal nature of decreasing trend as it may be related to the development of oxide 
layers (Fig. 8). But beyond a certain load the coefficient increases and pure Al exhibits the 
lowest coefficient and solder affected Al shows the highest followed by alloys containing 
Sn and Pb. Alloys soften due to stress and temperature effects under high level loads 
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whereas alloys with first Sn and then Pb binary inclusions reflect higher coefficients for 
their lower melting temperatures. Both alloy effects show the highest intensity with the 
solder affected alloy. 

 

Fig. 7. Variation of the coefficient of friction with sliding distance in corrosive sliding 
environment  

However, under wet sliding condition all the samples show the decreasing trends of 
coefficient of friction with the applied loads (Fig. 9). In this case higher loads produces 
some oxide layer due to presence of water but it inhibits the heat generation as a result 
lower friction. The oxide layer formation of the individual alloys along with sealing effects 
reduces these coefficients.  

Additionally, under corrosive condition, the level of friction coefficient fully controlled by 
the saline water (Fig. 10). Stable oxide layer forms by the Sn is higher than that of Pb as a 
result lower friction and both elements effects with higher oxide formation is reflected on 
the solder added alloy. The sealing effect also more active with high dense of this thin 
lubricating film of water on the surfaces [40, 41].    

 

Fig. 8. Nature of friction coefficient in the dry sliding environment with loads 



Kaiser / Research on Engineering Structures & Materials 10(3) (2024) 957-972 

 

965 

 

Fig. 9. Nature of friction coefficient in the wet sliding environment with loads 

 
 

Fig. 10. Nature of friction coefficient in the corrosive sliding environment with loads 

 

3.3 Optical Microscopy 

Optical images of worn surfaces of pure Al, Al-Sn and Al-Pb and solder affected Al-Sn-Pb 
alloys before and after wear under dry, wet and corrosive sliding environments are 
presented in Figure 11. A pressure of 1.02 MPa applied throughout, a sliding velocity of 
0.51m/s and a sliding distance of 3000m were used. The worn surfaces before wear 
demonstrate some scatter mark throughout the direction to polish as created by the 
metallographic polishing paper. Additionally, the surfaces display some different tones 
since various levels of alloying elements are present in alloys. Normally, this type of alloy 
consists of α-Al phase along with the second phases depending on the element present into 
the materials. Trace impurities also form intermetallic into in the interdendritic region. 
Without etching, the polished microstructure does provide the enough information 
without some color changes depending on the elements present [42].  

When the alloys are tested under dry sliding conditions numerous large wear particles, 
oxide debris and the furrows are shown in the figure. Furthermore, the plastic deformation 

https://www.bing.com/ck/a?!&&p=a6d9051af361cb72JmltdHM9MTY5NTg1OTIwMCZpZ3VpZD0zZWI5Mjk3ZC1mZTE3LTY5YjctMGQ3ZS0zYTRjZmYxNjY4YTQmaW5zaWQ9NTQ0NA&ptn=3&hsh=3&fclid=3eb9297d-fe17-69b7-0d7e-3a4cff1668a4&psq=Metallographic+Polishing+Paper+made+of+&u=a1aHR0cHM6Ly93d3cuaW5kaWFtYXJ0LmNvbS9wcm9kZGV0YWlsL21ldGFsbG9ncmFwaGljLXBvbGlzaGluZy1wYXBlci0yMTY3MDQ0OTQ0OC5odG1s&ntb=1
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and numerous significant cracks can be seen. A significant amount of material is seen to be 
delaminating. It can also be observed from the figure, polish marks in the worn surfaces 
are fully absent on the surfaces as the delamination are occurred through removing the 
particles. The worn surface of solder affected along with minor added alloys show the 
surface morphology of low cracks but higher oxide layer indicating the white color on the 
surface compare to base metal pure Al. The wear scars and fragments show how abrasive 
wear, delamination wear, and oxidation wear all contribute to wear [43].  

Fig. 11. Optical micrograph of polished surfaces of experimental alloys before and later 
wear in the condition of dry, wet and corrosive sliding for 3000m at applied pressure of 

1.02 MPa 

In contrast, the wear tracks visible on the worn surface are smoother in a wet environment. 
Hardly any cracks are visible. In addition, the debris and grooves are only visible in a few 
places. Additionally, due to the lubricating and cooling effects, some dark areas can be seen. 
The liquid environment reduced the heat concentration, local stress, and friction of shear, 
which prevented the formation of cracks and debris. Furthermore, during the sliding 
process, the majority of particles and debris are washed away by water, minimizing 
abrasive wear. As a result, the liquid environment's frictional characteristics are much 
better than those of the surrounding air. However, in the 3.5% NaCl corrosive 
environment, the wear mechanism is altered. Actually, the corrosion-wear that occurred 
in the corrosive fluid is what produced the oxidation film. During the wear testing, the 
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oxides are subsequently broken down, and wear debris is produced. Additionally, heat 
from the friction is produced at the interface, which prompt the growth of more oxides. 
Change of surfaces color also confirm it. The size of the debris and particles is smaller than 
that of the dry sliding condition, and there are no signs of a crack or plastic deformation 
[43]. 

Figure 12 shows the dust particles that were created during the wear test of four 
experimental alloys when they were sliding in a dry environment. Granular alloy dust is 
present, and some of the chips are composed of stainless-steel discs. For each alloy, the 
quantity of steel chips in the dust varies. Pure Al dust has very little chips because of its 
low hardness. Sn-containing alloy dust has more chips than Pb-containing alloy dust, which 
results in a higher hardness. For maximum hardness, the majority of chips are produced in 
solder-affected alloy [44]. 

 

 
 

Fig. 12. Optical micrograph of generated dust from the different samples wear under dry 
sliding condition (a) pure Al (b) Al-Sn, (c) Al-Pb and (d) Al-Sn-Pb alloys 

3.4. Scanning Electron Microscopy 

Again, an attempt has been made for better understanding, SEM microphotographs of the 
worn surfaces of four samples after dry sliding wear at a distance of 3000 m are presented 
in Fig. 13.  All the pure Al along with other binary Al-Sn, Al-Pb and ternary solder affected 
Al-Sn-Pb alloys clearly suggesting abrasive wear. The worn surfaces after the wear tests of 
pure Al showed a two-body abrasive wear with predominance of plow groove regions, 
indicating abrasive wear by plastic deformation, and some regions with adhesive wear, 
featured by a rough aspect due to the occurrence of delamination (Fig. 13a). In case of Sn 
and Pb added alloy, the corresponding phases are present in respected worn surfaces (Fig. 
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13b and 13c). The solder affected alloy obviously indicates both the phases which 
dominate the wear properties (Fig. 13d) [45]. 

 

 

Fig. 13. SEM images of worn surfaces after dry sliding wear under 1.02 MPa pressure for 
a distance of 3000 m, a) pure Al, b) Al-Sn, c) Al-Pb and d) solder affected Al-Sn-Pb alloys 

3.5. Roughness 

Dry, wet and corrosive environments are used to compare the roughness levels of all four 
alloys. Figure 14 displays a bar graph of the results. In the dry sliding condition, pure Al 
exhibits the highest relative roughness, while Pb and Sn add-on alloy resemble those with 
solder. It is evident that the surface's softness causes more wear marks. This is connected 
to this phenomenon. Table 2 has been made available to demonstrate the hardness and 
other properties of materials. When exposed to water in wet environments, the alloy's 
roughness decreases due to a reduction in direct contracting between matting surfaces. 
Consequently, there are not enough differences between alloys. In contrast, corrosive wear 
can result in the presence of NaCl corrosion product on surfaces. Under pressure and 
temperature, the surface becomes smooth. Consequently, the roughness in this corrosive 
environment is inferior and entirely depends on the occurrence of rust [34, 46]. 
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Fig. 14. Surface roughness of the samples worn surfaces under different sliding 
conditions 

4. Conclusions 

This study investigated the wear characteristics of commercially pure aluminum affected 
by Sn-Pb solder and compares the influence of wet and corrosive with the dry sliding 
condition and the conclusions can be drawn from the study as follows.  

• When affected by Sn/Pb solder the tribological characteristics of commercially pure 
Al improves in terms of low specific wear rate and friction coefficient. Where tin 
plays a better role compare to lead. Solid solution strengthening is the key reason 
for better wear performance. Both Sn and Pb do not form any intermetallic with Al 
but with impurities it can easily ensnare for Sn resulting in better wear properties. 

• The highest wear rate is observed under dry sliding conditions due to thermal 
softening of the material but under distilled water sliding condition wear rate 
decreases as it holds back the heat generation to prevent the softening of contact 
materials. The decreasing nature continued in 3.5% NaCl saline water environment 
due to the formation of stable oxide layer on the surfaces along with the reduced 
direct contact. 

• The friction coefficient is solder affected alloy is the lowest than Al followed by Sn 
added and Pb added alloy due to better strength, as the low plastic deformation of 
the material at real contact areas may lead to the lack of friction coefficient. 
However, in a wet sliding environment every coefficient of friction decreases due to 
the sealing effects and corrosive environment in addition to the corrosive oxide 
layer as controlled the friction.  

• Optical microscopy confirms the visible wear tracks on worn surfaces are smoother 
in a wet and corrosive environment than in a dry sliding environment due to avoid 
softening and preventing direct contact between the two mating surfaces. 

• SEM analysis indicates higher abrasive wear and plastic deformation on the worn 
surfaces wear under dry sliding condition. Whereas minor added alloys show Sn 
and Pb phase particles in this matrix then perform by way of solid lubricants. 

• The solder affected alloy exhibits the lowest relative roughness followed by Sn, Pb 
and Al due to less wear marks resulting in higher surface hardness. In a wet sliding 
environment, alloys roughness is reduced due to reduced direct contact between 

https://www.sciencedirect.com/topics/engineering/plastic-deformation
https://www.sciencedirect.com/topics/engineering/real-contact-area
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the matting surfaces. Under saline environment smooth corrosive products fill-up, 
the gap between wear mark on the surface which further reduces the roughness. 
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