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Article Info  Abstract 

Article History:  Ultra-high-performance concrete (UHPC) is one of the cutting-edge materials in 
the concrete industry. UHPC possesses superior mechanical properties compared 
to conventional concrete, bringing many breakthroughs in construction. 
Compressive strength is one of the most essential properties of UHPC and is 
determined through destructive laboratory tests. These tests are often costly and 
time-consuming. In this study, a data-driven approach is proposed to predict the 
compressive strength of UHPC using a hybrid deep learning model combining a 
Convolutional Neural Network (CNN) with a Gated Recurrent Unit (GRU). The 1D 
CNN component effectively extracts local feature patterns among material 
properties, while the GRU module captures sequential and interdependent 
relationships. A comprehensive dataset, including various mix designs, was used 
for model training and validation. The performance of the hybrid CNN–GRU 
network was compared with the standalone CNN and LSTM models. The results 
demonstrate that the proposed hybrid model achieves superior accuracy, 
exhibiting lower mean absolute error (MAE) and mean square error (MSE) on the 
test dataset. This study highlights the potential of data-driven hybrid neural 
networks in improving the prediction of UHPC compressive strength, providing 
practical insights for optimizing mix design in UHPC applications. 
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1. Introduction 

The size and complexity of infrastructure projects have increased recently, leading to a rise in the 
demands imposed on building materials, especially regarding strength, lifespan, and durability. 
Ultra-High Performance Concrete (UHPC), a novel material that marks a substantial improvement 
over traditional concrete technologies, has been developed and adopted as a result of these 
demands [1,4]. Characterized by its exceptional mechanical properties, UHPC typically exhibits 
compressive strengths exceeding 150 MPa—approximately three times greater than the concrete 
used in most critical structures. Furthermore, UHPC demonstrates remarkable durability, with 
superior resistance to chemical attacks, abrasion, and environmental degradation. These attributes 
make it an ideal candidate for high-demand applications such as long-span bridges, high-rise 
towers, offshore platforms, and hydroelectric structures. 

The compressive strength of UHPC is frequently assessed using destructive testing techniques in 
laboratories to guarantee its performance [5,6]. These tests are time-consuming, labor-intensive, 
and expensive, especially when several trial mixtures are required for optimization, even if they 
provide accurate and dependable measurements. Furthermore, quality control is challenging due 
to the diversity in test specimen production and curing. Destructive testing causes substantial 
material waste and hinders the design process in UHPC, where each batch may contain pricey 
components and additives. 
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Predicting the compressive strength of UHPC accurately remains a formidable challenge due to the 
complex, nonlinear interactions among numerous mix design parameters. Among these are the 
amounts of fly ash, slag, cement, silica fume, steel or polymer fibers, nano additives, and water-to-
binder ratio. These complex linkages are frequently complicated for traditional empirical or 
statistical regression models to capture, particularly when working with big and diverse datasets 
or investigating unusual compositions. 

Amidst this challenge, Artificial Intelligence (AI) and Machine Learning (ML) techniques have 
emerged as powerful tools for modeling and prediction tasks in materials science and civil 
engineering [7,9]. These techniques have shown great potential in addressing the limitations of 
conventional methods, particularly in problems involving highly nonlinear data. In the context of 
concrete materials, several studies have demonstrated the efficacy of ML models in predicting 
mechanical properties with high accuracy. Alaneme et al. [10] explored the use of Artificial Neural 
Networks (ANN), Adaptive Neuro-Fuzzy Inference Systems (ANFIS), and Gene Expression 
Programming (GEP) for predicting both the compressive and flexural strengths of geopolymer 
concrete incorporating banana peel ash (BPA) and sugarcane bagasse ash (SCBA), with ANFIS 
outperforming other models. Similarly, Okasha et al. [11] applied machine learning algorithms 
including ANN, Support Vector Regression (SVR), and Histogram-based Gradient Boosting (HGB) 
to estimate the elastic modulus and flexural strength of concrete incorporating carbon nanotubes 
(CNTs), finding that ANN yielded the best predictions for modulus. At the same time, HGB was 
superior for flexural strength. Rezvan et al. [12] developed an ANN model using 85 data samples to 
predict the compressive strength of plastic fiber-reinforced concrete (PFRC) derived from recycled 
PET bottles, leveraging 12 input variables related to mix design and fiber properties. 

The ability of ANN and related models to capture the nonlinear behavior of concrete performance 
has been shown by numerous other investigations [13,14]. However, in the face of highly complex 
patterns or interdependencies typical of UHPC datasets, ANN-based methods may find it difficult 
to generalize because they frequently rely significantly on manually chosen input features. 
Research into deep learning and hybrid models, which can automatically extract multiscale 
characteristics and increase resilience in prediction tasks, has been spurred by this. 

Recent research has looked to deep learning architectures, which can automatically learn complex, 
high-dimensional representations from raw data, to overcome the shortcomings of conventional 
and shallow learning models. Among them, the Convolutional Neural Network–Gated Recurrent 
Unit (CNN-GRU) hybrid model has drawn interest due to its ability to integrate GRU's temporal 
modeling capabilities with CNN's feature extraction power. While GRU layers are good at modeling 
sequential dependencies and nonlinear correlations in the data, CNN layers in this architecture 
serve as strong local pattern detectors that capture multiscale dependencies and interactions 
among mixed design elements. CNN-GRU is more resilient to overfitting than traditional Artificial 
Neural Networks (ANNs), particularly when working with structured but noisy experimental 
datasets [15,16]. Furthermore, GRU is a lightweight version of Long Short-Term Memory (LSTM) 
that maintains a high capacity for learning long-term dependencies while lowering computational 
cost. This improves prediction accuracy and generalization across different mix compositions, 
making CNN-GRU a viable option for precisely forecasting UHPC compressive strength based on 
various input factors 

2. Methodology 

2.1. Data Collection and Pre-processing 

The dataset used in this research was compiled from comprehensive experimental results 
documented in existing literature and publicly accessible repositories focused on UHPC. 
Specifically, the primary data source utilized was the publicly available UHPC dataset published by 
Mahjoubi and Bao [17,18] via Mendeley Data, which systematically collates experimental outcomes 
from numerous international studies. This dataset encompasses 381 distinct UHPC mix 
compositions, rigorously collected from laboratory tests documented in peer-reviewed research 
papers and technical reports, thus ensuring reliability and reproducibility. The detailed laboratory-
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tested mix proportions and compressive strength results have been validated through a rigorous 
peer review process 

Each data entry comprises 16 critical mix-design parameters: cement content and type (strength 
grade), fly ash, slag, silica fume, metakaolin, nano silica, limestone, quartz powder, sand, maximum 
aggregate size, water content, superplasticizer dosage, steel fiber volume fraction, fiber aspect 
ratio, and specimen dimensions. The corresponding target output is the compressive strength 
measured after 28 days of curing, evaluated via standardized laboratory tests according to 
international guidelines (e.g., ASTM C39/C39M and EN 12390-3). The dataset reflects a diverse 
range of mix designs, making it suitable for training and evaluating deep learning models. Its public 
availability ensures transparency, reproducibility, and alignment with scientific best practices in 
data-driven research. Table 1 lists the input parameters used for the hybrid deep learning model 

Table 1. Input parameters 

No. Input Parameter Description Range Median IQR Mean±SD 

1 Cement Cement-to-cm ratio 
0.174 – 
1.000 

0.793 0.084 0.752 ± 0.135 

2 Cement type 
Strength grade of 

cement (e.g., 42.5 or 
52.5) 

42.5 – 
52.5 

52.5 10.0 48.835 ± 4.822 

3 Fly ash Fly ash-to-cm ratio 0 – 0.503 0.0 0.0 0.049 ± 0.11 
4 Slag Slag-to-cm ratio 0 – 0.696 0.0 0.0 0.028 ± 0.094 
5 Silica fume Silica fume-to-cm ratio 0 – 0.257 0.18 0.113 0.158 ± 0.082 
6 Metakaolin Metakaolin-to-cm ratio 0 – 0.286 0.0 0.0 0.009 ± 0.037 
7 Nano silica Nano silica-to-cm ratio 0 – 0.172 0.0 0.0 0.004 ± 0.014 
8 Limestone Limestone-to-cm ratio 0 – 1.088 0.0 0.0 0.019 ± 0.091 

9 Quartz powder 
Quartz powder-to-cm 

ratio 
0 – 0.789 0.0 0.196 0.078 ± 0.127 

10 Sand Sand-to-cm ratio 
0.264 – 
2.070 

1.0 0.345 1.014 ± 0.422 

11 
Max aggregate 

size 
Maximum particle size 

of aggregates (mm) 
0.1 – 5.0 2.0 4.4 2.233 ± 1.783 

12 Water Water-to-cm ratio 
0.118 – 
0.286 

0.192 0.03 0.189 ± 0.028 

13 Superplasticizer 
Superplasticizer-to-cm 

ratio 
0.007 – 
0.238 

0.023 0.012 0.027 ± 0.02 

14 Steel fiber volume 
Fiber volume fraction 

(%) 
0 – 6 0.003 2.0 1.053 ± 1.441 

15 Fiber aspect ratio 
Aspect ratio of steel 

fibers 
(length/diameter) 

0 – 400 37.5 65.0 37.793 ± 53.519 

16 Specimen size 
Size of compressive 
strength specimen 

(mm) 
40 – 110 40.0 10.0 48.936 ± 17.041 

 

Exploratory Data Analysis (EDA) was conducted to ensure the reliability and suitability of the UHPC 
dataset for predictive modeling. For data quality and missing values: All records were cross-
checked and no missing values were found. The initial dataset was culled from peer-reviewed 
studies, ensuring standardized reporting of mix proportions and compressive strengths. For outlier 
detection: Box plots and z-score analysis were performed for each numerical characteristic. Less 
than 2% of the samples exhibited extreme values, primarily related to unusually high fiber frame 
ratios (>350) or silica fume ratios. These values were retained as they corresponded to valid 
experimental designs and not data entry errors. 

Distribution and Correlation Analysis: Frequency histograms and density plots were generated to 
examine characteristic distributions. Most features follow a right-skewed distribution typical for 
mixture proportion data (e.g., predominantly low silica fume and nano-silica content). Figure 1 
presents the Pearson correlation matrix among all 16 input features and the target compressive 
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strength. Strong positive correlations are observed for water-to-binder ratio, silica fume, and steel 
fiber volume, while most other features exhibit weak to moderate correlations (|r| < 0.5). This 
confirms the necessity of using a nonlinear hybrid model such as CNN–GRU to capture complex 
feature interactions. 

 

Fig. 1. Pearson correlation heatmap from UHPC dataset 

Feature Importance and Dimensionality Reduction: No explicit feature removal or dimensionality 
reduction (e.g., PCA) was applied because (i) the CNN–GRU model is capable of automatic feature 
extraction, and (ii) retaining all 16 features preserves potential nonlinear interactions that are 
important for UHPC performance. Post-permutation importance analysis confirmed that 
water/binder ratio, silica fume, and steel fiber volume were the three most influential variables in 
predicting compressive strength. This EDA confirmed that the dataset was complete, contained no 
erroneous entries, and that all 16 input features contributed meaningful information, either 
directly or through nonlinear interactions, to predicting UHPC compressive strength. 

All input data were normalized in the range of 0-1 using Min-Max scaling to ensure efficient model 
convergence. The dataset was randomly divided into 80% for training and 20% for testing to 
evaluate the model's generalization ability. 

2.2. Convolutional Neural Networks (CNN) 

CNN is a specialized type of deep learning architecture widely applied in pattern recognition and 
predictive tasks [19,21]. CNNs have demonstrated outstanding capabilities in automatically 
extracting and learning features from raw data without manual feature engineering [22,23]. A 
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convolution operation between an input feature map X and a filter W produces an output feature 
map Z, calculated as: 

1 1
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is bias term for the k filter; f(.) is activation function (commonly ReLU) 

After convolution, CNNs typically apply a pooling layer (e.g., max pooling or average pooling) to 
reduce spatial dimensions while retaining the most essential features: 
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Where p and q represent the indices within the pooling region. 

The output of the final convolutional and pooling stages is usually flattened and passed through 
one or more fully connected (Dense) layers for final prediction: 
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With xi is feature input; wi,j is weight; bi is bias; f(.) is activation function.  

2.3. Gated Recurrent Unit (GRU) 

Cho et al. [24] presented the Gated Recurrent Unit (GRU), a recurrent neural network (RNN) 
architecture, as a more straightforward substitute for the Long Short-Term Memory (LSTM) 
network. GRU was created to solve the vanishing gradient issue that conventional RNNs frequently 
run into when attempting to model long-term dependencies in sequential data. In contrast to 
traditional RNNs, GRU uses a gating mechanism that adaptively regulates the input flow, allowing 
the network to keep pertinent historical data while eliminating unnecessary signals. 

The GRU architecture combines the hidden state and cell state of LSTM into a single state vector, 
and uses two primary gates: the update gate and the reset gate. The update gate zt determines how 
much the previous hidden state ht-1 should be carried forward to the current state ht. The reset gate 
rt controls how much prior information is ignored in the current computation. The mathematical 
formulation of GRU is as follows:  

( )1t z t z t zz W x U h b −= + +  (4) 

( )1t r t r t rr W x U h b −= + +  (5) 

( )( )1tanht h t h t t hh W x U r h b−= + +  (6) 

( ) 11t t t t th z h z h−= −  +   (7) 

Where; xt is the input at time step t, ht is the hidden state at time step t, σ is the sigmoid activation 

function, . denotes element-wise multiplication, th
 is the candidate hidden state, W and U are 

learnable weight matrices, and b are biases. 

GRU has fewer parameters than LSTM, making it computationally more efficient while maintaining 
comparable performance in many sequence modeling tasks. In civil engineering applications such 
as predicting the compressive strength of UHPC, GRU offers an effective solution for modeling 
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nonlinear relationships between input parameters and strength evolution, particularly when 
temporal or sequential dependencies are embedded in the data. 

2.4. Hybrid CNN-GRU 

The primary function of CNN layers is to extract significant local characteristics from the input data 
automatically. By applying one-dimensional convolutions to the input vector, CNNs can efficiently 
detect spatial patterns, correlations, and interactions between materials, including cement, silica 
fume, water, fibers, and admixtures. This decreases dimensionality, does away with human feature 
engineering requirements, and captures multiscale dependencies that are typically hard to 
represent with shallow networks or classical regression. 

After the high-level features are retrieved, they are fed into GRU layers, which are good at 
identifying sequential dynamics and long-term dependencies. Viewing the sequence of operations 
and nonlinear interrelations among constituents as a structured dependency is possible, even 
when UHPC mix parameters are not exactly chronological. By choosing to keep or reject input, GRU 
cells control these dependencies and enhance the model's generalizability across various mix 
designs and experimental setups. 

 

(a) 

 

(b) 

Fig. 2. Proposed methodological framework: (a) overall pipeline, (b) pseudocode summarizing 
workflow 
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The CNN-GRU model leverages the strengths of two separate deep learning networks, where the 
GRU represents the underlying dependencies and non-linear influences on the target attribute. At 
the same time, CNN records the spatial composition and interactions between mixed elements. 
Because GRU has fewer parameters than LSTM, this hybrid structure is not only computationally 
efficient but also quite effective in terms of predicted accuracy. 

The output of the CNN-GRU model is optimized using a loss function. UHPC compressive strength 
prediction, the Mean Squared Error (MSE) loss is used: 

2

1

1
ˆ( )

n

i i

i

MSE y y
n =

= −  (8) 

where iy
 is the actual value; 

ˆ
iy
is the predicted value 

The methodological framework for predicting the compressive strength of UHPC is depicted in 
Figure 1. Although hybrid deep learning architectures have been previously explored in concrete 
strength prediction (e.g., CNN–LSTM, BiLSTM–GRU), the proposed CNN–GRU model offers a clear 
balance between feature extraction, modeling time, and computational efficiency. Compared to 
LSTM or BiLSTM layers, the GRU module uses a simplified gating mechanism with fewer trainable 
parameters, which helps to reduce the risk of overfitting when working with relatively small but 
high-dimensional UHPC datasets. Unlike CNN–LSTM, the CNN–GRU structure can converge faster 
and requires less memory while maintaining equivalent sequence modeling capabilities. 

By combining one-dimensional CNN layers with GRU layers, the proposed model improves 
interpretability. CNN filters can be directly analyzed to understand the relative influence of 
different components (e.g., silica fume, water/binder ratio). Meanwhile, GRU gates selectively 
retain or remove dependencies, resulting in more transparent feature-to-output paths. This 
architectural combination improves generalizability for UHPC mixtures with a wide range of 
components and curing conditions, as demonstrated by superior R², MAE, and RMSE metrics 
compared to CNN–LSTM, GRU-only, and ANN models (Table 2). 

3. Prediction Of Compressive Strength of UHPC 

The CNN-GRU model architecture was designed to balance model complexity and prediction 
accuracy. The architectural parameters of the CNN–GRU model, including the number of 
convolutional layers, kernel size, filter count, GRU units, and dropout rate, were determined via a 
systematic hyperparameter optimization process. A random search strategy was adopted to 
explore candidate configurations, as it balances efficiency and coverage for high-dimensional 
search spaces. Specifically, 50 random trials were performed with a fixed random seed (42) to 
ensure reproducibility. For each configuration, the model was trained three times and the results 
averaged to mitigate stochastic variation. Candidate models were ranked by the lowest validation 
RMSE, and final performance was confirmed on the held-out test set. Table 2 summarizes the 
primary hyperparameters explored and the optimal values selected: 

Table 2. Summary of quantitative values of the models 

Hyperparameter Search Range Selected Value 
Conv1D layers 1–3 2 

Filters (layer 1–2) 32–128 64 & 32 
Kernel size 2–5 2 
GRU units 32–128 64 

Dropout rate 0.1–0.4 0.2 
Batch size 16–64 32 

Learning rate (Adam) 1e-4–5e-3 1e-3 
 

Finally, the model begins with one-dimensional convolutional layers (1D-CNN) to extract local 
feature patterns from the sequential input vector. The convolutional block consists of two 
convolutional layers with 64 and 32 filters, respectively, kernel size = 2, and ReLU activation. These 
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are followed by a MaxPooling1D layer to down sample the feature maps and reduce overfitting, and 
a Dropout layer (rate = 0.2) to enhance generalization. The extracted spatial features are then 
passed into the GRU layer, which consists of one hidden layer with 64 units. This layer captures 
latent dependencies among the features using gating mechanisms, allowing the model to retain 
relevant structural information while discarding noise. A final fully connected Dense layer with one 
output neuron is used to predict the compressive strength. 

The dataset was randomly split into training (70%), validation (15%), and test (15%) sets. The 
model was trained using the Adam optimizer (learning rate = 0.001), with a batch size of 32, and a 
maximum of 200 epochs. Early stopping with a patience of 20 epochs was applied to halt training 
when validation loss did not improve. Mean Squared Error (MSE) was used as the loss function, 
and performance was evaluated using MAE, RMSE, and R² on the test set. The selected model 
achieved strong generalization and stability, demonstrating the effectiveness of combining 
convolutional feature extraction with sequential learning via GRU. The proposed method is 
compared with the ANN, CNN, GRU, and LSTM techniques. The loss curve during training is shown 
in Figure 3. 

 

Fig. 3. Training and validation loss curves for the compared models (error bars = standard 
deviation across folds) 

Figure 3 presents the test loss củve over training epochs for five different deep learning models, 
including CNN-GRU (red), CNN (cyan), GRU (green), LSTM (purple), and ANN (yellow). The 
performance comparison highlights clear distinctions in both convergence behavior and 
generalization capability across models. On Google Colab Pro (Tesla T4 GPU), the average training 
time for 100 epochs was approximately 0.6 min (ANN), 1.4 min (CNN), 1.6 min (GRU), 1.9 min 
(LSTM), and 2.0 min (CNN–GRU) on the UHPC dataset used in this study. 

The CNN-GRU model (red line) demonstrates the most favorable performance, achieving rapid and 
stable convergence within the first 10 epochs. Its test loss quickly drops to a minimal level and 
remains nearly constant thereafter, indicating strong generalization and a high capacity to capture 
the underlying nonlinear patterns in UHPC mix design data. The CNN model (cyan line) also shows 
relatively fast convergence, though its final loss value is slightly higher than that of CNN-GRU. This 
suggests that while CNN effectively extracts spatial features, the absence of a sequential learning 
component like GRU may limit its ability to model complex interdependencies among input 
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parameters. The GRU (green) and LSTM (purple) models perform moderately well. Their test losses 
decrease steadily over epochs but with noticeable fluctuations. This may be due to their sole 
reliance on recurrent structures without prior spatial feature extraction, which can lead to 
difficulties in representing high-dimensional static input vectors like UHPC mix proportions. In 
contrast, the ANN model (yellow) exhibits the poorest performance, with a consistently high test 
loss and minimal improvement across epochs. This indicates underfitting, likely resulting from the 
model’s limited depth and inability to capture intricate nonlinear relationships. The results confirm 
the superiority of the CNN-GRU hybrid architecture, which effectively combines the local pattern 
extraction capability of CNN with the temporal modeling strength of GRU. This synergy leads to 
improved learning stability and better prediction accuracy on unseen UHPC mixtures.  

 

Fig. 4. MAE comparison among models on the test set (error bars = standard deviation across 
folds) 

The Mean Absolute Error (MAE) comparison of the five distinct deep learning models used to 
forecast the 28-day compressive strength of UHPC is shown in Figure 3. With the lowest MAE score 
of 1.82, the CNN-GRU model demonstrates the best generalization and prediction accuracy. This 
performance demonstrates how well convolutional feature extraction and gated recurrent unit-
based sequential dependency modeling work together. The CNN model follows with an MAE of 
2.10, suggesting that while convolutional layers alone can capture spatial correlations among input 
features, the absence of temporal or sequential processing may limit performance. The GRU and 
LSTM models exhibit moderate MAE values of 2.36 and 2.25, respectively, which implies that 
although recurrent layers can learn time-dependent patterns, their lack of prior feature extraction 
may hinder learning efficiency for this type of structured input. In contrast, the ANN model yields 
the highest MAE of 3.41, reflecting its limited ability to capture complex nonlinear interactions in 
high-dimensional UHPC mix data. The results clearly demonstrate that hybrid architectures—
particularly CNN-GRU—are better suited for modeling the multifactorial and nonlinear nature of 
UHPC strength prediction tasks. 

Figure 5 displays the regression plots comparing the predicted versus actual 28-day compressive 
strength values of UHPC for five different models. The diagonal dashed line represents the ideal 
case where predictions perfectly match the actual values. Among the models, CNN-GRU shows the 
closest alignment to this ideal line, with minimal dispersion, indicating its superior prediction 
accuracy and robustness. Most of the predicted values for CNN-GRU fall tightly around the diagonal, 
suggesting that the model effectively captures the nonlinear relationships between UHPC mix 
design parameters and compressive strength. The CNN and LSTM models also exhibit reasonably 
good predictive performance, though with slightly wider scatter, particularly at the upper end of 
the strength range. GRU shows moderate deviation from the diagonal line, reflecting a less stable 
learning process when used without convolutional feature extraction. The ANN model, on the other 
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hand, demonstrates the largest deviation and highest variance in predictions, especially in the mid-
to-high strength region, indicating poor generalization and limited modeling capacity. 

 

Fig. 5. Predicted vs. actual compressive strength with error bars showing standard deviation 
across folds 

The regression analysis confirms that hybrid deep learning architectures—particularly CNN-
GRU—are more effective in capturing the intricate dependencies in UHPC datasets and provide 
more accurate and consistent strength predictions. Table 3 and 4 summarizes the quantitative 
metrics (MAE, RMSE, R²) of the models. 

Table 3. Summary of quantitative values of the models 

Model MAE RMSE R² 
CNN-GRU 1.82 ± 0.21 2.45 ± 0.29 0.962 ± 0.007 

CNN 2.10 ± 0.25 2.76 ± 0.33 0.944 ± 0.011 
LSTM 2.25 ± 0.27 2.92 ± 0.35 0.937 ± 0.013 
GRU 2.36 ± 0.28 3.08 ± 0.36 0.927 ± 0.014 
ANN 3.41 ± 0.39 4.52 ± 0.44 0.871 ± 0.018 

 

Table 4. Comparative performance and computational efficiency of hybrid models 

Model 
Trainable 

Parameters 

Convergence 
Time (per 

100 epochs, 
min) 

Memory 
Usage 

(relative) 
MAE (MPa) RMSE (MPa) 

CNN–GRU ~0.48 M 2.0 Low 1.82 2.45 
CNN–LSTM ~0.65 M 2.3 Medium 1.95 2.62 

BiLSTM ~0.92 M 2.8 High 1.97 2.66 
 

Once trained, the CNN–GRU model can deliver predictions in real time: each single prediction 
requires less than 0.1 s on a standard CPU, and less than 0.01 s on the Colab Pro GPU platform. This 
efficiency highlights the practicality of deployment in design offices or QC laboratories. The 
quantitative analysis reaffirms the superiority of the hybrid CNN-GRU architecture, validating its 
suitability for robust and accurate prediction of UHPC compressive strength. These findings 
suggest that combining both local feature learning and temporal modeling is essential for tackling 
complex civil engineering prediction problems.  
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To improve the reliability of the CNN–GRU model, a 10-fold cross-validation procedure was 
implemented. The dataset of 381 UHPC mixtures was randomly divided into 10 equally sized folds. 
In each iteration, nine folds were used for training and one fold for testing. This process was 
repeated 10 times to ensure that every sample was included in the test set exactly once. To prevent 
data leakage, Min–Max normalization parameters were computed exclusively on the training folds 
and subsequently applied to the corresponding validation/test fold. No stratification was applied, 
as the compressive strength values were approximately uniformly distributed across folds. Model 
performance was reported as the mean ± standard deviation of MAE, RMSE, and R² across all folds. 
The CNN–GRU model achieved an average MAE of 1.85 ± 0.21 MPa, RMSE of 2.48 ± 0.29 MPa, and 
R² of 0.961 ± 0.007, demonstrating high accuracy and low dispersion between folds. Additionally, 
95% confidence intervals for the predicted compressive strength values were calculated using 
bootstrapping. The narrow confidence intervals (±3–4 MPa around the mean predicted value) 
demonstrate stable generalization to unknown UHPC compositions. These findings support the 
robustness claims of the proposed hybrid architecture, confirming that the superior performance 
observed in the holdout test is consistently reproduced across multiple random partitions. All error 
bars shown in Figs. 3–5 represent the standard deviation across the 10 cross-validation folds, 
unless otherwise stated 

The proposed hybrid CNN–GRU approach in this study outperformed traditional methods such as 
standalone CNN, GRU, LSTM, and ANN models, demonstrating lower prediction errors (MAE = 1.82 
MPa, RMSE = 2.45 MPa) and higher predictive accuracy (R² = 0.962). This result aligns and 
favorably compares with recent studies employing similar advanced predictive models in concrete 
materials. For instance, Alaneme et al. [10] applied ANFIS, ANN, and GEP models for predicting 
concrete strengths incorporating supplementary cementitious materials and achieved competitive 
accuracy, with ANFIS showing superior performance. However, our CNN–GRU model achieved 
even better predictive capability due to its ability to simultaneously exploit local feature patterns 
and sequential dependencies within UHPC mix parameters. Additionally, compared to Okasha et al. 
[11], who successfully utilized ANN and gradient-boosting algorithms to predict the properties of 
CNT-reinforced concretes, our approach leverages the advantages of a deep learning architecture 
capable of automatic feature extraction and sequential modeling, thereby reducing reliance on 
manual feature selection and improving robustness. Furthermore, Rezvan et al. [12] effectively 
employed ANN-based models to estimate the mechanical properties of recycled plastic-reinforced 
concrete, but encountered limitations due to the relatively small dataset size (85 samples). In 
contrast, the comprehensive dataset (381 mixtures) utilized in our research enhanced the model's 
generalization and robustness, thereby achieving superior performance metrics. Thus, the hybrid 
CNN–GRU approach presented herein provides distinct advantages over recent similar works, 
primarily due to its capability to handle complex nonlinearities and interactions inherent in UHPC 
mix designs, highlighting its potential for broader application in predictive analytics and material 
optimization within civil engineering. 

In addition to theoretical predictions, the proposed CNN-GRU model also has direct practical 
implications for UHPC design and construction. During the preliminary mix design stage, the model 
can serve as a decision support tool, rapidly predicting 28-day compressive strength from 
candidate mix proportions, minimizing the number of costly and time-consuming destructive tests. 
In industrial settings, such as fresh concrete or precast UHPC production, the model can be 
embedded in a digital interface or software platform to provide real-time evaluation of batch design 
prior to casting, supporting quality control and risk mitigation. Furthermore, this predictive 
framework lays the foundation for future practical implementation, where it can be integrated with 
plant or field monitoring data to enable continuous learning and adaptive mix optimization. Such 
intelligent systems will accelerate the adoption of UHPC in critical infrastructure, while reducing 
testing workload and material waste, bridging the gap between data-driven modeling and practical 
engineering applications. 

Several studies have successfully employed ensemble or kernel-based approaches for concrete 
strength prediction. Unlike ensemble models that rely on handcrafted features, the CNN–GRU 
automatically extracts informative feature representations from the raw input variables, thereby 
reducing pre-processing effort and improving generalization. For instance, Random Forest (RF) 
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and Support Vector Machine (SVM) have been widely applied to capture nonlinear relationships in 
conventional and high-performance concretes, often yielding satisfactory results for small- to 
medium-sized datasets. More recently, gradient boosting methods such as XGBoost have 
demonstrated competitive accuracy and robustness in predicting compressive strength due to 
their ability to handle heterogeneous input variables and reduce overfitting through boosting 
strategies. However, while these models perform well in many scenarios, they generally rely on 
handcrafted feature selection and lack the automatic feature extraction capability of deep learning. 
Compared to such approaches, the proposed CNN–GRU hybrid network offers two notable 
advantages: (i) it automatically learns multiscale patterns and sequential dependencies from raw 
mix design variables without prior feature engineering, and (ii) it exhibits superior scalability when 
applied to larger, more diverse datasets, as reflected in the lower prediction errors (MAE = 1.82 
MPa, RMSE = 2.45 MPa) achieved in this study. These findings suggest that while ensemble-based 
methods remain valuable alternatives, deep learning architectures such as CNN–GRU provide 
enhanced adaptability and predictive performance for complex UHPC datasets. 

To further address the interpretability of the proposed model, SHAP (Shapley Additive 
exPlanations) analysis was conducted on the held-out test set. Figure 6 illustrates the aggregated 
and normalized global SHAP importance, where one-hot encoded categories were merged back to 
the original 16 variables listed in Table 1. The results indicate that Quartz powder, Slag, and Sand 
were the most influential input parameters, together contributing nearly 50% of the total 
normalized importance. This ranking is consistent with materials knowledge. Quartz powder and 
slag are critical supplementary materials that refine the UHPC microstructure, while the sand 
fraction governs the granular skeleton and packing density. 

 

Fig. 6. Aggregated and normalized SHAP importance of the original input variables 

In addition to global importance, two representative waterfall plots are provided in Fig. 7 to 
illustrate the local contributions of individual variables to specific predictions. Each plot traces how 
the model output deviates from its baseline value due to the additive influence of each constituent. 
As shown in Fig. 8a, slag and quartz powder exert strong positive contributions, while sand reduces 
the predicted strength. A similar trend is observed in Fig. 8b for another mixture, confirming the 
consistency of local attributions across different test samples. These interpretability analyses 
confirm that the CNN–GRU model does not operate as a “black box” but instead captures meaningful 
physical relationships consistent with established UHPC behavior. They also demonstrate that 
explainable AI tools such as SHAP can enhance trust in data-driven models for material design and 
optimization. 
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(a) 

 

(b) 

Fig. 8. SHAP waterfall plots for two representative test samples: (a) Sample #46; (b) Sample 
#291 

These interpretability analyses confirm that the CNN–GRU model does not operate as a “black box” 
but instead captures meaningful physical relationships consistent with established UHPC behavior. 
They also demonstrate that explainable AI tools such as SHAP can enhance trust in data-driven 
models for material design and optimization. It should be noted that the SHAP values provide data-
driven interpretability of the CNN–GRU model rather than constituting material laws. These 
patterns should be regarded as supplementary guidance to assist practitioners in mix design and 
quality control, not as absolute predictive rules of UHPC behavior 

4. Conclusions 

This study presents a data-driven approach for predicting the 28-day compressive strength of 
Ultra-High-Performance Concrete (UHPC) using a hybrid deep learning model that combines one-
dimensional Convolutional Neural Networks (1D-CNN) with Gated Recurrent Units (GRU). The 
proposed CNN-GRU architecture leverages the strengths of CNN in extracting local spatial features 
and GRU in capturing long-term dependencies and nonlinear relationships among input 
parameters. Key contributions of this work can be summarized as follows: 

• Proposed a hybrid 1D CNN–GRU model for UHPC strength prediction, effectively combining 
convolutional feature extraction with sequential learning.  

• Constructed and validated the model on a comprehensive dataset of 381 UHPC mixtures with 
16 input features, ensuring robustness and generalizability 

• Achieved state-of-the-art predictive accuracy with MAE = 1.82 MPa, RMSE = 2.45 MPa, and 
R² = 0.962, outperforming CNN, GRU, LSTM, and ANN benchmarks. The proposed CNN–GRU 
outperforms ANN, CNN, GRU, and LSTM on the held-out test set (MAE = 1.82 ± 0.21 MPa, 
RMSE = 2.45 ± 0.29 MPa, R² = 0.962 ± 0.007). 

• A limitation is that the current model is trained on 381 mixtures; therefore, its generalization 
to broader UHPC formulations should be verified with larger and more diverse datasets in 
future work 

The findings underline the advantage of hybrid architectures in dealing with the highly nonlinear 
and interdependent nature of UHPC mix design data. The use of CNN-GRU not only improves 
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prediction accuracy but also reduces the reliance on manual feature selection, offering a scalable 
and efficient tool for mix design optimization in UHPC applications. This study highlights the 
promising potential of deep learning, particularly hybrid architectures, in advancing predictive 
analytics in construction materials engineering. 
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