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Article Info  Abstract 

Article History:  In this paper, the free and forced vibrations of carbon nanotube-reinforced 
composite beams are studied using Euler-Bernoulli beam theory. The effective 
properties of the composite material are estimated using the Mori-Tanaka 
homogenization technique. Two beam models are considered, the single-walled 
carbon nanotube (SWCNT) beams with uniformly aligned carbon nanotubes and 
beams with randomly oriented carbon nanotubes. A MATLAB code is developed to 
analyze the dynamic response of carbon nanotube-reinforced composite beams 
subjected to harmonic loading, considering different boundary conditions.  The 
originality of this work lies in the comparative analysis between beams reinforced 
with aligned and randomly oriented CNTs, under harmonic excitations, which has 
not been widely addressed in the literature Particular attention is paid to the effect 
of the carbon nanotube distribution ratio on the natural frequencies and vibration 
performance. Results indicate that the incorporation of oriented CNTs markedly 
boosts the stiffness and vibration resistance of the beam. Notably, strategic CNTs 
alignment leads to higher natural frequencies and reduced displacement. 
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1. Introduction 

Innovative engineering structures require materials capable of supporting both static and dynamic 
loads. Among these, composite beams have become essential in modern constructions [1]. Studies 
show that nanocomposite materials, especially those incorporating carbon nanotubes (CNTs), 
often exhibit remarkably high natural frequencies due to their exceptional structural stiffness [2 
and 3]. Moreover, this study addresses buckling and free vibration of porous FGM beams. A 
parametric survey shows how porosity volume fraction and distribution patterns degrade stiffness 
and stability margins. Foundation stiffness and grading index can be tuned to regain lost 
performance. [4]. The natural frequencies of 2D functionally graded Euler–Bernoulli beams with 
multiple internal cracks resting on a Winkler–Pasternak foundation computed, A finite element 
technique is built to capture multi-crack locations and stiffness loss. Increasing crack severity and 
foundation softness lowers the fundamental frequency, while higher FG gradation stiffens the 
system. [5]. Unlike traditional composites, functionally graded materials (FGMs) adopt a spatial 
evolution of reinforcements and a gradual transition [6]. The work analyzes the effect of porosity 
and boundary conditions on the dynamic characteristics of cracked FGM plates. A refined model 
quantifies changes in frequencies and mode shapes across different edge constraints. Greater 
porosity and freer boundaries accentuate frequency reductions, while stiffer constraints 
counteract crack-induced softening. [7]. This structural configuration exhibits lower stiffness than 
other designs, resulting in greater displacement and higher vibration amplitudes.  
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According to reference [8], reducing the volume fraction of carbon nanotubes (CNTs) further 
amplifies these vibrations. The Mori-Tanaka method was used to estimate the effective material 
properties of carbon nanotube (CNT)-reinforced composites in [9]. This approach is adaptable to 
different types of nanocomposites reinforced with straight, aligned, or randomly dispersed carbon 
nanotubes [10]. Using multi-scale analysis, carbon nanotubes (SWNT) and graded through 
thickness. Different beam theories (classical, Timoshenko, and parabolic shear deformation) 
combined with the Rayleigh–Ritz method are applied and validated with finite element simulations. 
Results show that increasing SWNT content, slenderness ratio, and decreasing power-law index 
significantly enhance the natural frequencies of the beams, demonstrating the strong reinforcing 
effect of SWNT [11]. Vodenitcharova and Zhang [12] explored the dynamic behavior of functionally 
graded double-beam nanocomposite systems infused with single-walled carbon nanotubes 
(SWCNTs). In [13], the free vibrations of a functionally graded beam were analyzed using the finite 
element method. 

Furthermore, [14] studied CNT-based polymer composites and discovered a powerful effect: the 
introduction of even a trace of carbon nanotubes can significantly improve the composite's 
mechanical strength and thermal performance. Piovan and Sampoia [15] analyzed the dynamic 
response of rotating beams composed of functionally graded materials. Xiang and Yang [16] studied 
the response of a thermally prestressed, variable-thickness functionally graded laminated beam to 
free and forced vibrations. Annapoorna K et al. [17] improved the mechanical properties of a new 
material by using alumina nanoparticles as reinforcements in an aluminum matrix composite. Ke 
et al. [18] and Virendra Kumar et al. [19] studied the nonlinear free vibration behavior of 
functionally graded nanocomposite beams embedded with SWCNTs. The impact of CNT volume 
fraction, distribution patterns, aspect ratio, and dynamic parameters on the forced vibration 
response of SWCNT beams was extensively examined [20]. Sina et al. [21] presented an advanced 
beam theory designed to capture the free vibration characteristics of functionally graded beams. A 
key strategy for vibration control, as discussed in [22], is to adjust the natural frequencies of a 
structure relative to those of external excitations. Based on this principle, the equations of motion 
were formulated using the Lagrange method under the Euler-Bernoulli beam assumptions, as 
demonstrated by Shokrieh and Rafiee [23]. Extending to the nanoscale, [24] performed a nonlinear 
study of a carbon nanotube embedded in a polymer matrix, using a comprehensive 3D multi-scale 
finite element model. In this study, we examine the dynamics of composite beams reinforced with 
carbon nanotubes. Particular attention is paid to the influence of CNT distribution on natural 
frequencies and overall vibration performance. [25] examines how cracks affect the dynamic 
response of bidirectional porous FG beams on an elastic foundation via a finite element approach. 
Material gradation in two directions and uniform porosity is included. Results indicate that crack 
depth and position strongly decrease frequencies and raise dynamic deflections, with foundation 
stiffness mitigating the degradation. 

2. Material Properties of The Nanocomposite Beams 

2.1. Composites Reinforced with Aligned CNT’s 

Consider a polymer-based composite material incorporating carbon nanotubes. The CNTs were 
assumed to be non-functionalized and uniformly dispersed, and their effective contribution was 
calculated through the Mori–Tanaka scheme in MATLAB. the CNTs were assumed to be non-
functionalized and uniformly dispersed within the polymer matrix. Functionalization effects, such 
as improved dispersion or interfacial bonding, were not included the CNTs were assumed to be 
non-functionalized and uniformly dispersed within the polymer matrix for a unidirectional 
composite, the CNT modulus is determined in terms of stiffness constants 

The effective elastic moduli tensor 𝑪 is defined analytically as: 

𝐶 = (𝑓𝑚 𝑐𝑚 + 𝑓𝑟𝑐𝑟 ∶ 𝐴): (𝑓𝑚𝐼 + 𝑓𝑟𝐴)−1                 (1) 

in which 𝑓𝑚 , 𝑓𝑟 denote volume fractions of the matrix and CNTs (fiber), respectively, while 𝑐𝑚 and 
𝑐𝑟 denote the elastic moduli tensor of the matrix phase and the fiber phase, respectively, I is the 
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fourth-order identity tensor; then A is : 𝐴 = [𝐼 + 𝑆 ∶ (𝑐𝑚)−1 : (𝑐𝑟 − 𝑐𝑚)]−1, where, S denotes 
Eshelby tensor. We consider first a polymer composite reinforced with straight CNTs aligned in the 
x2-axis direction. In case of CNTs’ Hill’s elastic moduli are not directly available, we can calculate 
them through CNTs’ elastic Young’s and shear moduli as well as Poisson’s ratio. 

[

𝑛𝑟 𝑙𝑟
𝑙𝑟 𝑘𝑟 + 𝑚𝑟

𝑙𝑟 0
𝑘𝑟 + 𝑚𝑟 0

𝑙𝑟 𝑘𝑟 − 𝑚𝑟

0 0

𝑘𝑟 − 𝑚𝑟 0
0               𝑝𝑟

] =

[
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𝐸𝑟𝑇

−
𝑣𝑟

𝐸𝑟𝐿
0

−
1

𝐸𝑟𝑇
0

−
𝑣𝑟

𝐸𝑟𝐿
−

1

𝐸𝑟𝑇

0 0

1

𝐸𝑟𝑇
0

0
1

𝐺 ]
 
 
 
 
 
 
 
 
−1

   (2) 

The subscripts L and T represent the longitudinal and normal directions, respectively. The elastic 
moduli parallel and normal to the CNTs as well as Poisson's ratio are expressed as [10]: 

𝐸11 = 𝑛 −
𝑙2

𝑘
,   𝐸22 =

4𝑚 (𝑘𝑛 − 𝑙2)

𝑘𝑛 − 𝑙2 − 𝑚𝑛
,   𝐺12 = 2𝑝,    𝜈12 =

𝑙

2𝑘
 (3) 

The index1and 2 represent the longitudinal and normal directions, respectively. The n, l, k, m, n, 
represent Hill’s elastic moduli, they are given by Mori-Tanaka method: 

𝑘 =
𝐸𝑚{𝐸𝑚𝑐𝑚 + 2𝑘𝑟(1 + 𝑣𝑚)[1 + 𝑐𝑟(1 − 2𝑣𝑚)}

2(1 + 𝑣𝑚)[𝐸𝑚(1 + 𝑐𝑟 − 2𝑣𝑚) + 2𝑐𝑚𝑘𝑟(1 − 𝑣𝑚 − 2𝑣𝑚
2 )]

𝑙 =
𝐸𝑚{𝑐𝑚𝑣𝑚[𝐸𝑚 + 2𝑘𝑟(1 + 𝑣𝑚)] + 2𝑐𝑟𝑘𝑟(1 − 𝑣𝑚

2 )}

(1 + 𝑣𝑚)[2𝑐𝑚𝑘𝑟(1 − 𝑣𝑚 − 2𝑣𝑚
2 ) + 𝐸𝑚(1 + 𝑐𝑟 − 2𝑣𝑚)]

𝜂 =
𝐸𝑚  

2 𝑐𝑚(1 + 𝑐𝑟 − 𝑐𝑚𝑣𝑚) + 2𝑐𝑚𝑐𝑟(𝑘𝑟𝑛𝑟 − 𝑙𝑟
2)(1 + 𝑣𝑚)2(1 − 2𝑣𝑚)

(1 + 𝑣𝑚)[2𝑐𝑚𝑘𝑟(1 − 𝑣𝑚 − 2𝑣𝑚
2 ) + 𝐸𝑚(1 + 𝑐𝑟 − 2𝑣𝑚)

+

𝐸𝑚 [2𝑐𝑚
2 𝑘𝑟(1 − 𝑣𝑚) + 𝑐𝑟𝜂𝑟(1 − 2𝑣𝑚 + 𝑓𝑟) − 4𝑐𝑚𝑙𝑟𝑣𝑚

2𝑐𝑚𝑘𝑟(1 − 𝑣𝑚 − 2𝑣𝑚
2 ) + 𝐸𝑚(1 + 𝑐𝑟 − 2𝑣𝑚)

𝑝 =
𝐸𝑚[𝐸𝑚𝑐𝑚 + 2𝑝𝑟(1 + 𝑐𝑟)(1 + 𝑣𝑚)]

2(1 + 𝑣𝑚)[𝐸𝑚(1 + 𝑐𝑟) + 2𝑐𝑚𝑝𝑟(1 + 𝑣𝑚)]

𝑚 =
𝐸𝑚[𝐸𝑚𝑐𝑚 + 2𝑚𝑟(1 + 𝑣𝑚)(3 + 𝑐𝑟 − 4𝑣𝑚)]

2(1 + 𝑣𝑚){𝐸𝑚[𝑐𝑚 + 4𝑐𝑟(1 − 𝑣𝑚)] + 2𝑐𝑚𝑚𝑟(3 − 𝑣𝑚 − 4𝑣𝑚
2 )}

 (4) 

 𝑐𝑟and𝑐𝑚 are the volume fractions for carbon nanotube and matrix, 𝑐𝑚 = 1 − 𝑐𝑟, 𝐸𝑚is the matrix 
Young’s modulus, 𝑣𝑚is the Poison’s ratio and 𝑘𝑟 , 𝑙𝑟 , 𝑚𝑟 , 𝑛𝑟 , 𝑝𝑟are the elastic modulus for the fiber. 

2.2. Composites Reinforced with Randomly Oriented CNT’s 

This section explores the influence of incorporating straight carbon nanotubes CNTs with 
completely random orientations into the polymer matrix. Under these conditions, This orientation 
is characterized by two Euler angles α and β. The base vectors 𝑒𝑖   and 𝑒𝑖

′ of the global (𝑜 − 𝑥1𝑥2𝑥3) 
and the local coordinate systems (𝑜 − 𝑥1𝑥2𝑥3) are related via the transformation matrix g 

ei = gijei
′ (5) 

where g is given by 

g=[
cos β
sin β

0

− cos α sin β
cos α cos β

sin α

sin α sin β
− sin α cos β

cos β
] (6) 
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The orientation distribution of CNTs in a composite is characterized by a probability density 
function 𝑝 = (𝛼, 𝛽)satisfying the normalization condition  

∫ ∫ p(α, β) sin α

π
2⁄

0

2π

0

dαdβ = 1                                             (7) 

If CNTs are completely randomly oriented, the density function is  

p(α, β) =  
1

2π
                                                                      (8) 

According to the Mori–Tanaka method, the strain 𝜀𝑟(𝛼, 𝛽) and the stress 𝜎𝑟(𝛼, 𝛽) of the CNT are 
related to the stress of matrix 𝜎𝑚by 

εr(α, β) = A(α, β)εm = A(α, β)Cm
−1σm                                                          (9) 

the average strain and stress in all randomly oriented CNTs can be written as  

〈𝜀𝑟〉 = [∫ ∫ 𝑝(𝛼, 𝛽) 𝐴(𝛼, 𝛽)𝑠𝑖𝑛 𝛼

𝜋
2⁄

0

2𝜋

0

𝑑𝛼𝑑𝛽] 𝜀𝑚                                  (10) 

 

〈σr〉 = [∫ ∫ p(α, β)[CrA(α, β)Cm
−1] sin α

π
2⁄

0

2π

0

dαdβ] σm                            (11) 

The angle brackets 〈 〉 represent the average over special orientations. Using the average 
theorems σ = fmσm + fr〈σr〉 and ε = fmεm + fr〈σr〉 in conjunction with the effective constitutive 
relation σ = Cε, the effective mechanical proprieties of the nanocomposite are given by  

𝐸 =
9𝐾𝐺

3𝐾 − 𝐺
,         𝜐 =

3𝐾 − 2𝐺

6𝐾 + 2𝐺
, (12) 

For nanocomposite with CNTS randomly oriented the bulk modulus K and shear modulus G are 
derived as 

𝐾 = 𝐾𝑚 +
𝑐𝑟(𝛿𝑟 − 3𝐾𝑚𝛼𝑟)

3(𝑐𝑚 + 𝑐𝑟𝛿𝑟)
, 𝐺 = 𝐺𝑚 +

𝑐𝑟(𝜂𝑟 − 2𝐺𝑚𝛽𝑟)

2(𝑐𝑚 + 𝑐𝑟𝛽𝑟)
,  (13) 

Where; 

𝛼𝑟 =
3(𝐾𝑚 + 𝐺𝑚) + 𝑘𝑟 − 𝑙𝑟

3(𝑘𝑟 + 𝐺𝑚)
,

𝛽𝑟 =
1

5
{
4𝐺𝑚 + 2𝑘𝑟 + 𝑙𝑟

3(𝑘𝑟 + 𝐺𝑚)
+

4𝐺𝑚

(𝑝𝑟 + 𝐺𝑚)
+

2[𝐺𝑚(3𝐾𝑚 + 𝐺𝑚) + 𝐺𝑚(3𝐾𝑚 + 7𝐺𝑚)]

𝐺𝑚(3𝐾𝑚 + 𝐺𝑚) + 𝑚𝑟(3𝐾𝑚 + 7𝐺𝑚)
}

𝛿𝑟 =
1

3
[𝜂𝑟 + 2𝑙𝑟 +

(2𝑘𝑟 − 𝑙𝑟)(3𝐾𝑚 + 2𝐺𝑚 − 𝑙𝑟)

𝑘𝑟 + 𝐺𝑚
] ,

𝜂𝑟 =
1

5
[
2(𝜂𝑟−𝑙𝑟)

3
+

8𝐺𝑚𝑝𝑟

(𝑝𝑟 + 𝐺𝑚)
+

8𝐺𝑚𝑚𝑟(3𝐾𝑚 + 4𝐺𝑚)

3𝐾𝑚(𝑚𝑟 + 𝐺𝑚) + 𝐺𝑚(7𝑚𝑟 + 𝐺𝑚)
] +

2(𝑘𝑟 − 𝑙𝑟)(2𝐺𝑚 + 𝑙𝑟)

3(𝑘𝑟 + 𝐺𝑚)

 (14) 
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In which the bulk modulus Km and shear modulus Gm of the matrix, which are defined by  

𝐾𝑚 =
𝐸𝑚

3(1 − 2𝜐𝑚)
, 𝐺𝑚 =

𝐸𝑚

2(1 − 𝜐𝑚)
,  (15) 

3. Governing Equations  

By applying the Euler-Bernoulli beam theory to a beam, the governing equation of motion can be 
derived. The governing differential equation for forced vibrations of a simply supported beam 

𝐸𝐼
𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
+ 𝜌𝐴

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
= 𝐹(𝑥, 𝑡),    

(16) 

The beam considered is a simply supported nanocomposite with a length l, width b, thickness ℎ, 
Young’s modulus, density ρ, transverse deflection w and external load 𝐹(𝑥, 𝑡) = 𝐹0 sin𝜔𝑡 harmonic 
force as shown in Fig. 1. 

 
Fig. 1. Geometry of nanocomposite beams reinforced by SWCNTs 

The solution of the forced-vibration of a beam can be determined by using the mode superposition 
principle 

𝑤(𝑥, 𝑡) =  ∑𝜑𝑖(𝑥)

∞

𝑖=1

𝑞𝑖(𝑡),  (17) 

where 𝑞𝑖(𝑡)are generalized modal coordinate,𝜑𝑖(𝑥) are mode shapes. By multiplying Eq. (9) 
throughout by𝜑𝑖(𝑥),integrating from 0 to l, and using the orthogonally condition, we obtain [26] 

𝑞𝑖(𝑡) =
∫ 𝜑𝑖(𝑥)𝑤(𝑥, 𝑡)𝑑𝑥

𝑙

0

∫ 𝜑𝑖(𝑥)𝜑𝑖(𝑥)𝑑𝑥
𝑙

0

 (18) 

By Substitution eq. (10) in eq. (9) and ,integrating from 0 to l, the result is as flows: 

𝐸𝐼 𝑞𝑖(𝑡)∫𝜑𝑖(𝑥)
𝑑4𝜑𝑖(𝑥)

𝑑𝑥4
𝑑𝑥

𝑙

0

+ 𝜌𝐴
𝑑2𝑞𝑖(𝑡)

𝑑𝑡2
∫𝜑𝑖

2(𝑥)𝑑𝑥

𝑙

0

= 𝐹(𝑥, 𝑡),    (19) 

The general expression of 𝜑𝑖(𝑥) for the four boundary conditions is given by the following equation 

𝜑𝑖(𝑥) = 𝐶1(𝑐𝑜𝑠 𝛽𝑥 + 𝑐𝑜𝑠ℎ 𝛽𝑥) + 𝐶2(𝑐𝑜𝑠 𝛽𝑥 − 𝑐𝑜𝑠ℎ 𝛽𝑥) + 𝐶3(𝑠𝑖𝑛 𝛽𝑥 + 𝑠𝑖𝑛ℎ 𝛽𝑥)
+ 𝐶4(𝑠𝑖𝑛 𝛽𝑥 − 𝑠𝑖𝑛ℎ 𝛽𝑥) 

(20) 

where C1, C2, C3 and C4are constants, which can be found from the boundary conditions Clamped-
Clamped (C-C), Clamped-Free (C-F), Clamped-Supported (C-S) and Simply Supported (S-S) as 
shown in Table 1. For simply supported beam  𝜑𝑖(𝑥) = 𝑠𝑖𝑛(𝑖𝜋𝑥 𝑙⁄ ), we obtain after integration  

𝑑2𝑞𝑖(𝑡)

𝑑𝑡2
+ 𝜔𝑖

2𝑞𝑖(𝑡) =
2

𝜌𝐴𝑙
𝐹(𝑥, 𝑡) 𝑎𝑛𝑑 𝜔𝑖 = (

𝑖𝜋

𝑙
)
2

√
𝐸𝐼

𝜌𝐴
    𝑖 = 1, 2, … (21) 
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Using the Duhamel integral, the solution of Eq. (13) can be expressed as 

𝑞𝑖(𝑡) =
2𝐹0

𝜌𝐴𝑙
∑

1

𝜔𝑖
2 − 𝜔2

∞

𝑖=1

𝑠𝑖𝑛
𝑛𝜋𝑎

𝑙
𝑠𝑖𝑛 𝜔𝑡 (22) 

Thus, the response of the beam is: 

𝑤(𝑥, 𝑡) =
2𝐹0

𝜌𝐴𝑙
∑

1

𝜔𝑖
2 − 𝜔2

∞

𝑖=1

𝑠𝑖𝑛
𝑛𝜋𝑎

𝑙
𝑠𝑖𝑛 𝜔𝑡 𝑠𝑖𝑛

𝑛𝜋𝑥

𝑙
 (23) 

Table 1. Different boundary conditions 

Beam configuration C-C C-F C-S S-S 

at 𝑥 = 0 𝑤 = 0,𝑤𝑥
′ = 0 𝑤 = 0,𝑤𝑥

′ = 0 𝑤 = 0,𝑤𝑥
′ = 0 𝑤 = 0,𝑤𝑥

′′ = 0 

at 𝑥 = 1 𝑤 = 0,𝑤𝑥
′ = 0 𝑤𝑥

′′ = 0,𝑤𝑥
′′′ = 0 𝑤 = 0,𝑤𝑥

′′ = 0 𝑤 = 0,𝑤𝑥
′′ = 0 

4. Results and Discussions 

A MATLAB code was developed to solve the governing equations of motion. The algorithm involves 
a Computing the effective material property of the nanocomposite using the Mori–Tanaka scheme, 
substituting these properties into the Euler–Bernoulli beam model, applying boundary conditions 
to obtain eigenvalue solutions for natural frequencies and to determine the dynamic response 
under harmonic loading. The code was validated by comparing the natural frequencies of isotropic 
beams with benchmark results from Ref. [11]and [13]. 

4.1. Engineering Constants of Nanocomposite Beams 

Before analyzing the free and forced vibration results of CNT-reinforced composite beams, the 
engineering constants of these beams were evaluated as a function of Cr.  The Young's modulus and 
Poisson's ratio of polystyrene (matrix) 𝐸𝑚 = 1.9 (𝐺𝑃𝑎) and𝑣𝑚 = 0.3, respectively, as well as the 
Hill elastic moduli of the reinforcement: 𝑘𝑟 = 30 GPa, 𝑙𝑟 = 10 GPa,𝑚𝑟 = 1 GPa, 𝑛𝑟 = 450 GPa, 𝑝𝑟 =
1 GPa, are taken from the Ref. [26].  Figures 2 and 3 show the relationship between the longitudinal 
Young's moduli with increasing volume fraction of aligned CNT’s and randomly oriented CNTs 
respectively.  

 
Fig. 2. Young’s modulus of aligned 
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Fig. 3 Young's modulus of randomly oriented 

Figure 2 demonstrate a strong dependence of the effective Young’s modulus on the volume fraction 
of CNTs when they are uniformly aligned. A nearly linear or super-linear growth is observed as CNT 
content increases, highlighting the efficiency of directional reinforcement. The load transfer 
between matrix and nanotubes is maximized in this configuration, resulting in a substantial 
improvement in stiffness even at relatively low volume fractions. This behavior confirms that 
controlled alignment is the most effective strategy for tailoring elastic properties in nanocomposite 
beams. Figure 3 shows a much weaker enhancement of Young’s modulus for randomly oriented 
CNTs. Although the modulus still increases with CNT fraction, the slope of improvement is 
significantly lower compared to the aligned case. Random dispersion reduces the reinforcement 
efficiency because nanotubes contribute equally in all directions, diluting their impact along the 
beam axis where stiffness is most critical. This isotropic-like effect explains why improvements 
remain modest and nonlinear, even with higher CNT fractions. The longitudinal Young's modulus 
of aligned CNT’s increases more rapidly with increasing volume fraction of nanotubes than the 
Young's modulus of randomly oriented CNT’s. The maximum improvement in the elastic modulus 
of carbon nanotube reinforced composites (CNTRCs) is achieved when the carbon nanotubes are 
uniformly aligned 

4.2. Free Vibration  

For validation, the present frequencies of isotropic homogeneous beams with material properties 
(steel) of beam E = 210 GPa and 𝜌 = 7800 𝑘𝑔 𝑚3⁄ , are numerically validated by comparing with 
available frequencies based on the Euler-Bernoulli beam theory as shown Table 2 to check a 
written programs for a comparison study is done. The parameters of the beam are width b= 0.4 m, 
thickness h = 1 m, length L = 20 m.  Table 2 compares the first four nondimensional frequencies of 
simply–simply (S–S) with available results in [13]. As can be seen, the present results agree very 
well with the results available in Ref. [13].  

Table 2. First four frequencies 

Present work Ref. [13] 

4.4435 4.3425 
8.8855 8.6716 

13.3290 12.975 
17.7710 17.239 

 

First three frequency parameters of simply supported FG SWNT/Al-alloy beams for (𝐿/ℎ = 5) and 
5 % and 10 %SWNT are compared with [11], The material properties E= 84.28 GPA, 𝜌 =
2631.5 𝑘𝑔 𝑚3⁄  and E= 98.33 GPA, 𝜌 = 2563 𝑘𝑔 𝑚3⁄ ,respectively. 
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Table 3. First two frequencies [11] 

SWNT Present work Ref. [11] 

5  % 3.168251 
12.673005 

3.3007 
12.614 

10 % 3.467590 
13.870360 

3.6125 
13.8058 

 

For analysis, we used CNTRC beam reinforced with properties available in Ref. [14] the (10,10) the 
single-walled carbon nanotube (SWCNT) at temperature 300 (K): 𝜌𝐶𝑁𝑇 = 1400 𝐾𝑔/𝑚3, 
longitudinal modulus 𝐸11

𝐶𝑁𝑇 = 5646.6 𝐺𝑃𝑎, transverse modulus 𝐸22
𝐶𝑁𝑇 = 7080  𝐺𝑃𝑎, shear modulus 

𝐺12
𝐶𝑁𝑇 = 1944. 5 𝐺𝑃𝑎 and Poisson’s ratio 𝜐12 = 0.175 with the volume fraction of the fiber is 𝑐𝑟 =

0.075. As well as the material properties of the matrix are 𝜌𝑚 = 1190𝐾𝑔 𝑚3⁄ , 𝐸𝑚 = 2.5 𝐺𝑃𝑎 
and 𝑣𝑚 = 0.3, modulus of matrix and Poisson’s ratio of matrix, respectively.  

Fig. 4 indicate the first mode shapes of CNTRC beams with S–S boundary conditions under different 
carbon nanotubes (CNT) distribution patterns. The results indicate that variations in CNT 
distribution have only a minimal impact on the mode shapes. The intensity of curvature varies 
depending on how the CNTs are aligned. Optimized alignment along the beam axis enhances 
stiffness, leading to a slightly steeper mode shape with reduced amplitude. In contrast, less effective 
distributions produce a softer response with greater deflection. This confirms that CNT alignment 
influences the modal stiffness and frequency without altering the overall shape of the fundamental 
mode. And an increase in the volume fraction of carbon nanotubes (CNTs) further reduces the beam 
deflection, which is logical because there is an increase in beam stiffness with increasing carbon 
fiber content. Fig. 5 shows the first five modes of S-S beam aligned CNTs.  

The first four natural frequencies of CNT-reinforced composites are summarized in Table 4 for 
varying CNT volume fractions and boundary conditions. Across all cases, beams with aligned CNTs 
consistently exhibit much higher natural frequencies than those with randomly oriented CNTs, 
highlighting the superior load transfer efficiency of alignment, which maximizes stiffness along the 
reinforcement direction. In contrast, random orientation reduces effectiveness due to isotropic 
dispersion. As the CNT volume fraction increases from 0.12 to 0.28, natural frequencies rise 
steadily, with aligned distributions showing significantly larger gains. This confirms that 
directional reinforcement strongly amplifies the structural response to added CNT content, 
whereas in randomly oriented composites, the improvements remain modest and volume fraction 
alone cannot fully compensate for the lack of alignment. Regarding boundary conditions, the 
highest frequencies are observed in the clamped–clamped (C–C) case, where beam ends are fully 
constrained. 

 
Fig. 4. 1st mode of S-S beam with different distributions of aligned CNTs 
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Fig. 5. First five mode of S-S beam aligned CNTs 

Intermediate values appear in clamped–simply supported (C–S) and clamped–free (C–F) 
conditions, while the lowest occur in the simply supported (S–S) case due to its higher flexibility. 
This frequency hierarchy holds for both aligned and random CNT distributions, though the 
performance gap is much wider under stiffer constraints. Notably, in the C–C configuration at 
higher volume fractions, aligned CNTs can produce up to three times the frequencies of random 
CNT beams, whereas in the S–S case the relative difference diminishes because the flexible supports 
limit the benefits of alignment.  

 Table 4. First four frequencies under the Effect of volume fraction 

 Aligned CNT’s. Randomly oriented CNT’s. 

𝑐𝑟 0.12         0.17    0.28  0.12    0.17  0.28 

C-C 

19.0843    20.7602    23.3789    7.9375    8.0034    8.04480    
31.6847    34.4671    38.8149    13.1783    13.2877    13.3564    
44.3659    47.1278 54.3498    18.4526    18.6058    18.7020 
57.0389    62.0479    69.8747    23.7236    23.9206    24.0442    

C-F 

7.56510    8.2295    9.2675    3.14650     3.1726     3.18900 
18.9390    20.6022    23.2010    7.87710    7.9425    7.98360    
31.6928    34.4759    38.8248    13.1816    13.2911    13.3598    
44.3659    48.2619    54.3498    18.4526    18.6058    18.7020    

C-S 

15.8444     17.2358    19.4099    6.59000    6.6447    6.67900 
28.5215    31.0261    34.9398    11.8626    11.9611    12.0230 
41.1946   44.8121    50.4648    17.1336    17.2759    17.3652    
53.8717    58.6025    65.9947    22.4062    22.5923    22.7091    

S-S 

12.6771    13.7904    15.5299    5.27260    5.3164    5.34390    
25.3502    27.5764    31.0549    10.5436    10.6312    10.6861    
38.0273    41.3667    46.5848    15.8163    15.9476    16.0300    
50.7004    55.1527    62.1098    21.0872    21.2624    21.3723    

 

Figs. 6 show the natural frequencies of CNTRC beams with uniformly aligned carbon nanotubes and 
randomly oriented CNTs in function of volume fraction and boundary conditions different. During 
design, we aim to maximize the natural frequencies. In our case, the natural frequencies increase 
with the carbon fiber content of the structure. This is logical because stiffness increases with the 
fiber content in the beam. For all beams with different boundary conditions, the frequency has the 
maximum value when 𝑐𝑟=0.28. This effect is more pronounced in the case of uniformly aligned 
CNTs, where load transfer efficiency is maximized due to directional reinforcement in contrast, 
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randomly oriented CNTs show a slower and less consistent improvement, reflecting their lower 
efficiency in enhancing the mechanical properties.  

The C-C (clamped–clamped) condition yields the highest natural frequencies due to maximum 
structural stiffness .and Intermediate values are observed for C-S (clamped–simply supported) and 
C-F (clamped–free) cases, where partial constraints provide moderate dynamic stiffness. The S-S 
(simply supported–simply supported) condition produces the lowest natural frequencies, as it 
represents the least restrictive boundary condition. The difference between aligned and random 
CNT distributions is most significant under the C-C condition, where the benefits of directional 
reinforcement are maximized. And for more flexible cases like S-S, the gap between the two 
distributions diminishes, since the overall structural stiffness is already limited. However, for 
different boundary conditions, we observe that case (b) Clamped-Free yields maximum 
frequencies compared to the other cases. Regarding the two configurations of CNTRC beams, used 
with randomly oriented CNTs and uniformly aligned carbon nanotubes, the latter configuration 
gives better results, i.e., maximum frequencies compared to the first configuration. This is evident, 
since the configuration of the beams with fibers aligned in the direction of the beam axis always 
gives maximum stiffness in the transverse direction of the beam. 

 
(a) C-C 

 
(a) C-C 

 
(b) C-F 

 
(b) C-F 

 
(c) C-S 

 
(c) C-S 
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(d) S-S 

 
(d) S-S 

Fig. 6. Natural frequencies of CNTRC beams with uniformly aligned carbon nanotubes and 
randomly oriented CNTs in function of volume fraction and boundary conditions different.  

4.3. Forced Vibration  

In this section, we study the dynamic characteristics of S–S nanocomposite beams under the action 
of harmonic force 𝐹 =  𝐹0𝑠𝑖𝑛 sin𝜔𝑡. The deflection is highest when the force 𝐹0 = −10 𝑘𝑁  and 
frequency  𝜔 = 10 are applied closer to the middle of the beam, particularly at x/L=0.25.  Fig. 7 
clearly shows that the maximum dynamic response occurs at the position of the applied moving 
load, which is the mid-span of the beam of the beam (x/L=0.5). Positions closer to the center 
experience larger deflections, while positions farther away, such as (x/L=0.25 and 0.75), exhibit 
smaller and nearly similar displacement amplitudes. Although the amplitude varies with position, 
the oscillation frequency remains identical for all cases, indicating that the moving load excites the 
same natural frequency regardless of location. This confirms that the dominant response is 
governed by the first bending mode, which has its maximum displacement at mid-span. 
Additionally, the similarity of amplitudes at x/L=0.25 and 0.75 reflects the symmetry of the mode 
shape, reinforcing the fact that boundary conditions and load position strongly control the 
vibration pattern  

 

Fig. 7. Transverse displacements of a beam due to x/l position at 𝑐𝑟 = 0.12 

Fig. 8 presents the variation in deflection for beams with different slenderness ratios 
(L/h=20,40,60,80) at a CNT distribution of 𝑐𝑟 =0.12. The results demonstrate that as the 
slenderness ratio increases, the beam undergoes larger deflections due to reduced stiffness and 
higher flexibility. This behavior highlights the geometric influence on dynamic response that 
slender beams are more vibration sensitive, making them more prone to resonance under loads. In 
contrast, thicker beams (small L/h) resist deflection more effectively, though they may transfer 
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larger vibration forces to the supports. Moreover, the results suggest that increasing slenderness 
not only amplifies displacement but also reduces the structural damping efficiency, since vibrations 
in slender beams decay more slowly. This points to a critical design consideration that slender 
beams require additional damping or reinforcement to avoid excessive oscillations and resonance 
problems in dynamic environment. 

 

Fig. 8. Effect of beam’s slender ratio on the deflection at 𝑐𝑟 =0.12 

Fig.9 illustrates the variation in the dynamic response of the beam with respect to the load position 
for different CNT volume fractions. The beam with the lowest fraction (𝑐𝑟=0.075) shows the largest 
displacement, while higher fractions lead to a clear reduction in amplitude. This confirms that an 
increase in CNT content enhances the effective stiffness of the nanocomposite and improves its 
resistance to dynamic deflection. Moreover, the frequency of oscillation remains nearly unchanged 
across the cases, indicating that CNT volume fraction mainly affects the amplitude rather than the 
vibration frequency. An additional observation is that the rate of reduction in deflection becomes 
less pronounced at higher fractions, which suggests a diminishing reinforcement effect due to 
matrix–CNT interaction limits. This behavior is important for design, since it shows that beyond a 
certain volume fraction, additional CNTs may not significantly improve the dynamic responds. 

 

Fig. 9. Transverse displacements of a beam due to x/l position at 

Fig. 10 presents a comparison between beams reinforced with aligned and oriented CNTs at a 
volume fraction of 𝑐𝑟 =0.075. The aligned configuration exhibits much smaller deflections than the 
oriented one, highlighting the strong influence of CNT alignment on stiffness. The superior 
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performance of aligned CNTs can be attributed to their effective load-transfer mechanism along the 
beam axis, which is less efficient in the oriented distribution. Furthermore, the aligned case shows 
a more stable and smoother vibration pattern, whereas the oriented configuration produces higher 
and more irregular deflections. This implies that manufacturing techniques that control CNT 
alignment can play a decisive role in optimizing the dynamic performance of nanocomposite beams 
under moving load. 

 

Fig. 10. Effect of beam’s slender ratio on the deflection 

Fig.11 illustrates the dynamic deflection response of the beam under harmonic excitation at a 
damping ratio of  𝑐𝑟 =0.12. The results show that the peak deflection amplitude increases with the 
load position, reaching its maximum a=0.75 and a=0.50, while the smallest response is observed 
a=0.25. This trend indicates that the regions near the mid-span and three-quarter span are more 
flexible, whereas the quarter span is relatively stiffer. Consequently, the displacement amplitude is 
strongly influenced by the spatial location along the beam. Overall, the response exhibits a 
sinusoidal pattern, consistent with the applied harmonic loading, and the amplitude of vibration 
varies significantly with position along the beam length 

 

Fig. 11.  Transverse displacements of a beam due to x/l position at 𝑐𝑟 = 0.12 
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5. Conclusions 

This study investigates the free and forced vibration characteristics, along with the dynamic 
response, of a functionally graded beam. The analysis covers beams reinforced with CNTs, 
exploring various material distributions, boundary conditions, and CNT arrangements. The 
findings suggest that enhancing the vibrational performance of CNT-reinforced composites is 
highly dependent on achieving the CNT’s uniform alignment throughout the nanocomposite the 
dynamic of the beams, particularly their frequencies and deflections. Beams with aligned CNTs, 
especially the 0.28 distribution, gives the higher natural frequencies and smaller deflections under 
static harmonic loads, indicating better mechanical performance. Noticing beams with a 0.075 CNT 
distribution showed the largest deflections, suggesting that CNT distribution plays a crucial role in 
improving stiffness and reducing deformation. CNT alignment plays a dominant role in vibration 
performance. Uniformly aligned CNTs yield higher natural frequencies and significantly lower 
deflections compared with randomly oriented CNTs. In contrast, random CNTs yield only modest 
improvements, with lower stiffness gains and larger vibration amplitudes, even at higher volume 
fractions. This improvement is attributed to the efficient load transfer enabled by the high axial 
stiffness of CNTs Boundary conditions strongly affect the vibrational behavior. Beams with 
clamped–clamped supports consistently exhibit the highest natural frequencies. with frequency 
gains up to threefold compared to random distributions, whereas simply supported beams dilute 
these advantages due to their inherent flexibility. Slenderness ratio influences forced vibration 
responses that longer beams show larger deflections, whereas shorter beams are more stable.    
Overall, the findings highlight the importance of CNT distribution in nanocomposite beams for 
improved vibrational performance, making them promising for advanced structural applications 
where weight, stiffness, and vibrational characteristics are critical. Future work could extend this 
investigation to Extend analysis to post buckling and nonlinear vibration regimes, especially under 
large harmonic excitations or moving loads. 

List of Symbols 

 

𝐸11 The elastic moduli parallel for the nanocomposite reinforced by aligned CNTs 
𝐸22 The elastic moduli normal for aligned CNTs 
 𝜈12 Poisson's ratio 
𝐺12  

n, l, k, m, n, The Hill’s elastic moduli 
𝑘𝑟 , 𝑙𝑟 , 𝑚𝑟 , 𝑛𝑟 , 𝑝𝑟 The elastic moduli of the fiber  

𝐸 The elastic moduli of randomly oriented 
 𝑐𝑟  the volume fractions for carbon 
𝑐𝑚 the volume fractions for matrix 
𝐸𝑚 the matrix Young’s modulus 
𝑣𝑚 the Poison’s ratio 
G The shear modulus of the nanocomposite  
K the bulk modulus of the nanocomposite  

𝛼𝑟, 𝛽𝑟, 𝜂𝑟 The effective coefficients CNT reinforced composite 
 

𝐾𝑚 the bulk modulus of the matrix 
𝐺𝑚 The shear modulus of the matrix 

𝑤(𝑥, 𝑡) transverse deflection 
L The Length of the beam  
b The width of the beam  
ℎ The thickness of the beam 
ρ The density of the beam 

𝐹(𝑥, 𝑡) The harmonic force 
 𝑞𝑖(𝑡) The generalized modal coordinateare  
𝜑𝑖(𝑥) The mode shapes. 

𝜔 The Natural frequency 
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