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Article Info  Abstract 

Article History:  This paper aims to analyze the forced vibration (FV) behavior of polymer matrix 
(PM) composite material beams (PMCBs), incorporating functionally graded 
boron nitride nanotubes (FG-BNNT) and carbon fibers (CF) reinforcements, 
supported on viscoelastic foundations (VEFs). The PMCBs are subjected to 
dynamic mechanical loading (DMLs) under various boundary conditions (BCs). 
The viscoelastic foundations supporting the PMCBs are used to simulate the 
interaction between the composite beams and their surrounding media. The Visco-
Winkler-Pasternak (VWP) elastic foundation model is adopted to represent these 
foundations. The structural behavior of PMCBs is analyzed based on the first-order 
shear deformation theory (FSDT). The effective material properties are 
determined through a combination of the modified Halpin-Tsai model (MHTM), 
the rule of mixtures (ROM), and a fiber micromechanics method (FMM). The 
governing equations of motion are derived using Hamilton's principle (HP) and 
solved numerically via the finite element method (FEM) combined with the 
Newmark implicit time integration numerical method (NITINM). After validation 
studies, parametric analyses are conducted to analyze the impact of multiple 
factors on the dynamic behavior of FG-BNNT/CF-reinforced PMCBs. This study 
highlights the vibration behavior of advanced composite structures and their 
potential use in designing and controlling smart materials and structures. 
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1. Introduction 

The vibrational behavior of structural elements, such as beams made from advanced composite 
materials under dynamic loads and resting on viscoelastic foundations, can be observed in various 
engineering applications [1-2], including the manufacturing of aircraft components, building 
foundations, automotive suspension systems, and many others. Particularly in the modeling of 
turbine blades in aircraft engines [3], they are subjected to extreme operating conditions, including 
high vibrations, thermal loads, and significant mechanical dynamic loads [8]. Moreover, significant 
efforts have been devoted to the analysis of the vibrational characteristics of plates and beams with 
varying boundary conditions and geometric parameters [9]. 
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Nanocomposites represent an advanced class of composite materials [10], consisting of a matrix 
reinforced with nanoscale fillers [11]. However, their primary challenge lies in the dispersion and 
agglomeration of the nanofillers within the matrix [12]. Due to their small size, these fillers tend to 
cluster, leading to an uneven distribution throughout the composite material, which may 
significantly degrade its mechanical performance. To overcome the problem of filler 
agglomeration, reinforcements are applied simultaneously at both macro and nanoscale levels [9]. 
The integration of reinforcement elements across multiple scales in these composite materials can 
greatly enhance their mechanical and functional performance. In the literature, such materials are 
commonly known as multi-scale hybrid composites [10]. 

Multi-scale hybrid composites represent an emerging class of materials, with their mechanical 
response to various loading conditions having been extensively studied over the past decade [11-
13]. He et al. [14] investigated the nonlinear free and forced vibration characteristics of laminated 
multiscale composite beams reinforced with carbon nanotubes (CNTs) and carbon fibers (CF) 
embedded in a polymer matrix, within the framework of the classical beam theory. Ahmadi et al. 
[15] investigated the bending, buckling, and free vibration of hybrid composites with a polymer 
matrix reinforced with CF/CNT using FEM. In a related investigation, Ebrahimi and Dabbagh [16] 
analyzed the vibrational response of multiscale hybrid nanocomposite plates employing the Halpin 
Tsai model. Their findings revealed that such hybrid configurations exhibit enhanced natural 
frequencies compared to conventionally reinforced composite counterparts. 

Carbon-based fillers such as carbon nanotubes, graphene nanoplatelets, and graphene oxide 
powders are the most commonly used for matrix reinforcement in nanocomposites and multi-scale 
hybrid composites. Recently, boron nitride nanotubes (BNNTs) have emerged as promising 
alternative nanoscale fillers. BNNTs are a novel type of advanced reinforcement with advantageous 
applications in polymer nanocomposites, owing to their chemical compatibility with polymers and 
their remarkable mechanical, thermal, magnetic, and electrical properties. These nanotubes 
enhance the tensile strength, modulus of elasticity, and thermal properties of polymer 
nanocomposites. In addition, BNNTs are highly attractive as a nanofiller for high-temperature 
integrated and structural applications due to their extreme thermal stability and excellent 
mechanical properties [17]. Despite the numerous advantages of BNNTs, their integration with 
carbon fibers remains limited. Therefore, one of the objectives of this work is to combine BNNTs 
with carbon fibers to enhance the mechanical properties of matrix materials. 

In many real-world applications, polymer matrix composite beams PMCBs interact with 
surrounding materials. Therefore, for effective maintenance and optimal production of PMCBs, it 
is essential to consider the effects of these interactions with a viscoelastic medium. Various 
foundation models have been proposed to simulate the interaction between PMCBs and 
viscoelastic foundations. The earliest model is the Winkler-type viscoelastic foundation. A more 
advanced model is the Pasternak-type viscoelastic foundation, which accounts for the interaction 
between discrete springs, unlike the Winkler model. The study of the mechanical behavior of 
PMCBs resting on elastic and viscoelastic foundations has garnered significant attention [18 -21]. 

The existing literature on the dynamic response of two-phase and three-phase carbon-based 
composite beams has predominantly focused on systems reinforced with carbon nanotubes (CNTs) 
and graphene platelets (GPLs) as nanoscale fillers, combined with carbon fibers (CFs) as 
macroscale reinforcements. However, only a limited number of studies have investigated the 
influence of viscoelastic foundations on the dynamic behavior of such nanocomposites. Moreover, 
recent findings have highlighted the limitations inherent in relying solely on carbon-based fillers, 
motivating the exploration of alternative nanostructures with superior mechanical and thermal 
characteristics. Among the reviewed works, most have concentrated on plate structures, leaving 
beam configurations comparatively underexplored.  

In light of these gaps, investigating the dynamic response of composite structures reinforced with 
CFs in combination with alternative nanoscale fillers emerges as a promising and novel research 
direction. Accordingly, the primary objective of the present study is to analyze the dynamic 
response of functionally graded (FG) boron nitride nanotube (BNNT)/CF-reinforced polymer 
matrix composite beams resting on viscoelastic foundations under dynamic loading.  In this work, 
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the first-order shear deformation theory (FSDT) is used for structural modeling of PMCBs. The 
effective material properties are determined through the modified Halpin-Tsai model (MHTM) and 
the rule of mixtures (ROM), combined with a fiber micromechanics method (FMM). The equations 
of motion are derived using Hamilton's principle (HP) and are solved using the finite element 
method (FEM) along with the Newmark-𝛽 method. To the best of the authors’ knowledge, no 
previous work has addressed the integration of FG-BNNTs with CFs as hybrid reinforcements in 
composite beams supported by viscoelastic foundations and subjected to dynamic excitation. The 
present work distinguishes itself through the following key contributions: 

• Integration of functionally graded boron nitride nanotubes (FG-BNNTs) and carbon fibers 
(CFs) within a polymer matrix to achieve a multi-scale reinforcement architecture. 

• Comprehensive analysis of the linear vibration response of the composite beams under 
dynamic loading for various boundary conditions. 

• Advanced modeling of the viscoelastic foundation using the Pasternak-type formulation, 
incorporating both shear layer effects and damping characteristics. 

• Hybrid use of micromechanical modeling and the finite element method (FEM) to determine 
the effective material properties and evaluate the structural response with high fidelity. 

The remainder of this paper is structured as follows. Section 2 presents a comprehensive 
mathematical formulation of the problem under consideration. In section 3, the numerical solution 
strategy is elaborated, employing the FEM in conjunction with the NITINM scheme. Section 4 is 
devoted to the validation of the developed numerical model, followed by an in-depth parametric 
analysis. Finally, Section 5 concludes the study by summarizing the principal findings and insights. 

2. Mathematical Formulation 

To further highlight these contributions and position the present study within the existing body of 
research, a comparative synthesis is provided in Table 1. The table highlights the main types of 
reinforcements, foundations, methods, analyzed vibration types, and limitations or gaps of 
previous studies 

Table 1. Comparison of existing studies on multi-scale hybrid composite beams and the present 
work. 

Reference 
Type of 

Reinforcement 
Foundation 

Model 
Theory / 
Method 

Type of 
Vibration 
Analyzed 

Main Limitation 
/ Research Gap 

He et al. 
[10] 

CNT + CF (multi-
scale) 

No 
foundation 

Classical Beam 
Theory 

Free and 
forced 

nonlinear 
vibration 

Excludes BNNT 
reinforcement 

and viscoelastic 
effects 

Ebrahimi 
& 

Dabbagh 
[9] 

CNT + CF + 
viscoelastic phase 

Viscoelastic 
Refined Beam 

Theory 
Free 

vibration 

No FG-BNNTs or 
graded material 

distribution 

Yang et 
al. [17] 

Homogeneous 
material 

Viscoelastic 
Timoshenko 
Beam Theory 

Dynamic 
response 
to moving 

load 

No composite 
reinforcement or 

FG concept 

Abdollahi 
& Yas 
[21] 

BNNT reinforced 
polymer 

Elastic 
Timoshenko 
Beam Theory 

Free 
vibration 

No hybrid 
CF/BNNT 

reinforcement or 
viscoelastic 
foundation 
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2.1. Problem Description 

The structures considered in this examination are straight, slender composite beams with length 𝐿, 
and rectangular cross-sections of area S = b × h where 𝑏, and ℎ represent the width and thickness 
of the beams, respectively. The composite beams under study are assumed to be subjected to 
transverse sudden dynamic loads 𝑝𝑧 = 𝑝3(𝑥, 𝑡) with various boundary conditions. These beams are 
supported by viscoelastic foundations (𝑉𝐸𝐹𝑠), modeled using the Visco-Winkler-Pasternak (𝑉𝑊𝑃) 
elastic foundation model, which is characterized by the material properties 𝐾𝑤 ,𝐾𝑝, and  𝐷𝑐 , as 

shown in Fig.1. 

 
Fig. 1. Geometry of FG-BNNT/CF-reinforced polymer matrix composite beams supported by 
viscoelastic foundations, featuring various BNNT reinforcement patterns and subjected to 

external transverse dynamic loads and boundary conditions (right), and polymer matrix cross-
sections with hybrid FG-BNNT and CF fillers (left) 

The composite beams analyzed in this study are made of a polymer matrix (PM) material reinforced 
with a combination of both macro-sized carbon fiber (CF) reinforcements and nano-sized BNNT 
fillers, as shown in Fig. 1. The BNNT distribution is assumed to follow different functional grading 
patterns, such as (FG-V-BNNT), (FG-O-BNNT), and (FG-X-BNNT), as well as a uniform distribution 
(UD-BNNT) across the composite beam's thickness. The CF fillers are considered to be uniformly 
dispersed (UD) within the polymer matrix. 

2.2. Material Properties of the FG-BNNT/CF Reinforced PM Composite Beams 

A homogenization procedure (HP) is utilized to determine the effective material properties of 

the structure under investigation, as shown in Fig. 2. The homogenization procedure used is 
developed through a two-step process, integrating a modified Halpin-Tsai model [22-23] with a 
fiber micromechanical approach [24]. 

 

Merzouki 
et al. [3] 

FG porous 
nanocomposite 

Elastic 

Trigonometric 
shear 

deformation 
beam theory 

Linear 
vibration 

Focus on 
nonlocal effects, 
not viscoelastic 

damping 

Present 
work 

CF + FG-BNNT 
hybrid 

nanocomposite 
Viscoelastic 

Timoshenko 
Beam Theory 

Linear 
forced 

vibration 
under 

various 
BCs 

Introduces 
multi-scale FG-

BNNT/CF 
hybridization 
and advanced 

viscoelastic 
foundation 
modeling 
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Fig. 2. Flowchart depicting the arrangement of materials in the formation of multi-scale hybrid 

nanocomposites 

2.2.1 Modified Halpin-Tsai Model for Predicting BNNT/PM Material Properties 

Using the modified Halpin-Tsai model, the effective Young's modulus 𝐸𝐵𝑁𝑁𝑇/𝑃𝑀(𝑧) of the FG-BNNT-

reinforced PM is given as follows: 

𝐸𝐵𝑁𝑁𝑇/𝑃𝑀(𝑧) = 𝛼𝐿𝐸𝐿(𝑧) + 𝛼𝑇𝐸𝑇(𝑧) (1) 

Here, 𝛼𝐿 = 3/8 and 𝛼𝑇 = 1 − 𝛼𝐿 , where 𝐸𝐿(𝑧) and 𝐸𝑇(𝑧) represent the axial and transverse Young's 
moduli of the FG-BNNT-reinforced PM, respectively. They are calculated as follows: 

𝐸𝐿(𝑧) =
1 + 𝜉𝐿𝜂𝐿𝑉𝐵𝑁𝑁𝑇(𝑧)

1 − 𝜂𝐿𝑉𝐵𝑁𝑁𝑇(𝑧)
𝐸𝑃𝑀 ;  𝐸𝑇(𝑧) =

1 + 𝜉𝑇𝜂𝑇𝑉𝐵𝑁𝑁𝑇(𝑧)

1 − 𝜂𝑇𝑉𝐵𝑁𝑁𝑇(𝑧)
𝐸𝑃𝑀 (2) 

With 𝜂𝐿 and 𝜂𝑇 are given by: 

𝜂𝐿 =
(𝐸𝐵𝑁𝑁𝑇/𝐸𝑃𝑀) − 1

(𝐸𝐵𝑁𝑁𝑇/𝐸𝑃𝑀) + 𝜉𝐿
 ;  𝜂𝑇 =

(𝐸𝐵𝑁𝑁𝑇/𝐸𝑃𝑀) − 1

(𝐸𝐵𝑁𝑁𝑇/𝐸𝑃𝑀) + 𝜉𝑇
 (3) 

In which 𝐸𝑃𝑀 , and 𝐸𝐵𝑁𝑁𝑇 represent the Young's moduli of the PM material and BNNT nanofillers, 
respectively. The geometric parameters 𝜉𝐿 and 𝜉𝑇 are determined as follows: 

𝜉𝐿 = 2𝛽𝐿 ;  𝜉𝑇 = 2 (4) 

Where 𝛽𝐿  refers to the filler's aspect ratio determined as 𝛽𝐿 =
𝐿𝐵𝑁𝑁𝑇

𝑑𝐵𝑁𝑁𝑇
= 300, with 𝐿𝐵𝑁𝑁𝑇  and 𝑑𝐵𝑁𝑁𝑇  

representing the length and diameter of the BNNT fillers, respectively. The volume fraction 
𝑉𝐵𝑁𝑁𝑇(𝑧) for the four FG distribution patterns is calculated as follows: 

𝑉𝐵𝑁𝑁𝑇(𝑧) =

{
 
 
 

 
 
 
𝑉𝐵𝑁𝑁𝑇
∗  for  (UD-BNT) 

(1 +
2𝑧

ℎ
)𝑉𝐵𝑁𝑁𝑇

∗  for  (FG-V-BNT) 

2 (1 −
2|𝑧|

ℎ
)𝑉𝐵𝑁𝑁𝑇

∗  for  (FG-O-BNT) 

2 (
2|𝑧|

ℎ
)𝑉𝐵𝑁𝑁𝑇

∗  for  (FG-X-BNT) 

 (5) 

Where 𝑉𝐵𝑁𝑁𝑇
∗  denotes the total volume fraction of BNNT, which can be approximated as: 
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𝑉𝐵𝑁𝑁𝑇
∗ =

𝑊𝐵𝑁𝑁𝑇

𝑊𝐵𝑁𝑁𝑇 + (𝜌𝐵𝑁𝑁𝑇/𝜌𝑃𝑀)(1 −𝑊𝐵𝑁𝑁𝑇)
 (6) 

In which 𝜌𝑃𝑀 , and 𝜌𝐵𝑁𝑁𝑇 represent the mass densities of the PM and BNNT reinforcements, 
respectively, and 𝑊𝐵𝑁𝑁𝑇 denotes the weight fraction of the BNNT. The effective Poisson's ratio 
𝑣𝐵𝑁𝑁𝑇/𝑃𝑀(𝑧) of the PMCBs is calculated using the ROM as follows: 

𝑣𝐵𝑁𝑁𝑇/𝑃𝑀(𝑧) = 𝑣𝐵𝑁𝑁𝑇𝑉𝐵𝑁𝑁𝑇(𝑧) + 𝑣𝑃𝑀𝑉𝑃𝑀(𝑧) (7) 

Where 𝑉𝑃𝑀(𝑧) and 𝑉𝐵𝑁𝑁𝑇(𝑧) denote the volume fractions of the PM and BNNT reinforcement, 
respectively. The volume fraction of the PM is provided by the following relation: 

𝑉𝑃𝑀(𝑧) = 1 − 𝑉𝐵𝑁𝑁𝑇(𝑧) (8) 

The mass density 𝜌𝐵𝑁𝑁𝑇/𝑃𝑀 of the FG-BNNT reinforced PM composite beams is determined by: 

𝜌𝐵𝑁𝑁𝑇/𝑃𝑀(𝑧) = 𝜌𝐵𝑁𝑇𝑉𝐵𝑁𝑇(𝑧) + 𝜌𝑃𝑀𝑉𝑃𝑀(𝑧) (9) 

The effective shear modulus 𝐺𝐵𝑁𝑁𝑇/𝑃𝑀  of the FG-BNNT-reinforced PM composite beams can be 

calculated as follows: 

𝐺𝐵𝑁𝑁𝑇/𝑃𝑀(𝑧) =
𝐸𝐵𝑁𝑁𝑇/𝑃𝑀(𝑧)

2(1 + 𝑣𝐵𝑁𝑁𝑇/𝑃𝑀(𝑧))
 (10) 

2.2.2. Micromechanical Scheme for Determining the Material Properties Of FG-BNNT/CF           
Reinforced PM 

The effective mechanical properties of the FG-BNNT/CF-reinforced PM are determined using the 
micromechanical approach as follows: 

{
 
 

 
 
𝐸𝑒𝑓𝑓(𝑧) = 𝑉𝐶𝐹(𝑧)𝐸𝐶𝐹 + 𝑉𝐵𝑁𝑁𝑇/𝑃𝑀(𝑧)𝐸𝐵𝑁𝑁𝑇/𝑃𝑀(𝑧)

𝐺𝑒𝑓𝑓(𝑧) = (
𝑉𝐶𝐹(𝑧)

𝐺𝐶𝐹
+
𝑉𝐵𝑁𝑁𝑇/𝑃𝑀(𝑧)

𝐺𝐵𝑁𝑁𝑇/𝑃𝑀(𝑧)
)

−1

𝜌𝑒𝑓𝑓(𝑧) = 𝑉𝐶𝐹(𝑧)𝜌𝐶𝐹 + 𝑉𝐵𝑁𝑁𝑇/𝑃𝑀(𝑧)𝜌
𝐵𝑁𝑁𝑇/𝑃𝑀(𝑧)

𝑣𝑒𝑓𝑓(𝑧) = 𝑉𝐶𝐹(𝑧)𝑣𝐶𝐹 + 𝑉𝐵𝑁𝑁𝑇/𝑃𝑃𝑀(𝑧)𝑣𝐵𝑁𝑁𝑇/𝑃𝑀

 (11) 

Where 𝐸, 𝐺, 𝜌 denote the Young's modulus, shear modulus, Poisson's ratio, and mass density, 
respectively. In Eq. (11), the superscripts CF and BNNT/PM refer to carbon fiber and BNNT 
reinforced PM, respectively. Additionally, 𝑉𝐶𝐹  and 𝑉𝐵𝑁𝑁𝑇/𝑃𝑀 represent the volume fractions of 

carbon fiber and the polymer matrix reinforced with signle walled BNNT, respectively, and they 
are related as follows: 

𝑉𝐶𝐹 + 𝑉𝐵𝑁𝑁𝑇/𝑃𝑀 = 1 (12) 

The material properties of the PM, BNNT, and CF are listed in Table 2. 
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Table 2. Material properties of the BNNT, PM, and CF [21, 22] 

Parameter Values 

𝐸𝑃𝑀(GPa) 2.5 

𝑣𝑃𝑀 0.3 

𝜌𝑃𝑀(kg/m
3) 1190 

𝐸𝐵𝑁𝑁𝑇(TPa) 1.064 

𝑣𝐵𝑁𝑁𝑇 0.14 

𝜌𝐵𝑁𝑁𝑇( kg/m
3) 2270 

𝐸𝐶𝐹(GPa) 233.05 

𝐺𝐶𝐹(GPa) 8.96 

𝑣𝐶𝐹 0.2 

𝜌𝐶𝐹(kg/m
3) 1750 

 

2.3. Displacement Field 

By applying the 1D-FSDT for beams, the displacement field at a given point ( 𝑥, 𝑧 ) within the beam 
at time 𝑡 can be expressed as: 

{
𝑈1 = 𝑢1 + 𝑧𝜃1
𝑈3 = 𝑢3

 (13) 

Here, 𝑈1 and 𝑈3 are the global displacements of the beam, while 𝑢1, 𝑢3, and 𝜃1 denote the mid-plane 
axial, vertical displacements, and rotation about the 𝑦-axis, respectively. 

2.4. Strain Field 

The vector of reduced strain for the FG-BNNT/CF-reinforced PMCBs is expressed as: 

{
𝜀11 = 𝑒11 + 𝑧𝜅11
𝛾13 = 𝜒13

 (14) 

Where 𝑒11, 𝜅11 and 𝜒13 denote the generalized membrane strain, curvature strain, and transverse 
shear strain, respectively, and are defined as follows: 

{
 
 

 
 𝑒11 =

𝜕𝑢1
𝜕𝑥

𝜅11 =
𝜕𝜃1
𝜕𝑥

𝜒13 =
𝜕𝑢3
𝜕𝑥

+ 𝜃1

 (15) 

2.5. Constitutive Equations 

The vector of reduced stresses for the FG-BNNT/CF-reinforced PMCBs is described as: 

{
𝜎11 = 𝑄11𝜀11
𝜏13 = 𝑄55𝛾13

 (16) 

Where 𝜎11 and 𝜏13 represent the axial stress and transverse shear stress, respectively. The formulas 
for the stiffness coefficients 𝑄11 and 𝑄55 are: 
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𝑄11 =
𝐸𝑒𝑓𝑓

1 − 𝑣𝑒𝑓𝑓
2  ;  𝑄55 = 𝐺𝑒𝑓𝑓 (17) 

The generalized membrane stress 𝑁11, bending stress 𝑀11, and transverse shear stress 𝑁13 are 
defined as follows: 

{
 
 
 

 
 
 𝑁11 = ∫  

𝑏/2

−𝑏/2

 ∫  
ℎ/2

−ℎ/2

  (𝜎11)𝑑𝑧𝑑𝑦 = 𝐴𝑒11 + 𝐵𝜅11

𝑀11 = ∫  
𝑏/2

−𝑏/2

 ∫  
ℎ/2

−ℎ/2

  (𝑧𝜎11)𝑑𝑧𝑑𝑦 = 𝐵𝑒11 + 𝐷𝜅11

𝑁13 = ∫  
𝑏/2

−𝑏/2

 ∫  
ℎ/2

−ℎ/2

  (𝜏13)𝑑𝑧𝑑𝑦 = 𝑆𝜒13

 (18) 

With, 𝐴, 𝐵, 𝐷, and 𝑆 denote the axial, coupling, bending, and shear rigidities, respectively. 

(𝐴, 𝐵, 𝑆, 𝐷) = ∫  
𝑏/2

−𝑏/2

∫  
ℎ/2

−ℎ/2

(𝑄11, 𝑧𝑄11, 𝑘𝑠𝑄55, 𝑧
2𝑄11)𝑑𝑧𝑑𝑦 (19) 

where 𝑘𝑠 = 5/6 denotes the shear modification parameter. 

2.6. Weak-Form Dynamical Equation 

The equations of motion for the FG-BNNT/CF-reinforced PMCBs follow from Hamilton's principle 
[23]: 

∫  
𝑡2

𝑡1

(𝛿𝑊𝑖𝑛𝑡 + 𝛿𝑊𝑓 − 𝛿𝑊𝑒𝑥𝑡 − 𝛿𝑊𝑘)𝑑𝑡 = 0 (20) 

where 𝑊int ,𝑊𝑓 ,𝑊ext , and 𝑊𝑘 denote the internal strain energy, foundation strain energy, external 

work, and kinetic energy of the FG-BNNT/CF beam, respectively, defined as: 

{
 
 
 
 
 

 
 
 
 
 𝛿𝑊𝑖𝑛𝑡 = ∫  

𝐿

0

  (𝑁11𝛿𝑒11 +𝑀11𝛿𝜅11 + 𝑁13𝛿𝜒13)𝑑𝑥

𝛿𝑊𝑓 = ∫  
𝐿

0

 ∫ (𝑢3𝐾𝑤𝛿𝑢3 +
𝜕𝑢3
𝜕𝑥

𝐾𝑝
𝛿𝜕𝑢3
𝜕𝑥

+ 𝑢̇3𝐷𝑐𝛿𝑢3)
+𝑏/2

−𝑏/2

𝑑𝑦𝑑𝑥

𝛿𝑊𝑒𝑥𝑡 = ∫  
𝐿

0

  ∫ 𝑝3𝛿𝑢3

+𝑏/2

−𝑏/2

𝑑𝑦𝑑𝑥

𝛿𝑊𝑘 = ∫  
𝐿

0

  (𝑢̇1𝐼0𝛿𝑢̇1 + 𝑢̇1𝐼1𝛿𝜃̇1 + 𝜃̇1𝐼1𝛿𝑢̇1 + 𝜃̇1𝐼2𝛿𝜃̇1 + 𝑢̇3𝐼0𝛿𝑢̇3)𝑑𝑥

 (21) 

With dot above a function signifies partial differentiation with respect to the time variable 𝑡. The 
inertia resultants 𝐼0, 𝐼1 and 𝐼2 are defined as follows: 

(𝐼0, 𝐼1, 𝐼2) = ∫  
𝑏/2

−𝑏/2

∫  
ℎ/2

−ℎ/2

(𝜌(𝑧), 𝑧𝜌(𝑧), 𝑧2𝜌(𝑧))𝑑𝑧𝑑𝑦 (22) 
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3. Solution Procedure Based on The FEM With The NITINM 

In this section, the FEM [28,29] and the NITINM [30] are applied to solve the governing equations. 

 3.1. Spatial approximation using FEM 

In this study, two-noded 𝐶0 beam elements with a length of 𝑙(𝑒) and three degrees of freedom per 
node are employed to discretize the kinematic variables. The axial displacement 𝑢1, deflection 𝑢3, 
and rotation 𝜃1 are interpolated using linear Lagrangian shape functions as follows: 

{

𝑢1(𝜉) =< 𝑁𝑎(𝜉) > {𝑑
(𝑒)}

𝑢3(𝜉) =< 𝑁𝑑(𝜉) > {𝑑
(𝑒)}

𝜃1(𝜉) =< 𝑁𝑟(𝜉) > {𝑑(𝑒)}

 (23) 

Where {𝑑(𝑒)} represents the nodal displacement vector for the 𝑒 th element, defined as: 

{𝑑(𝑒)} =< 𝑢1
1, 𝑢3

1, 𝜃1
1, 𝑢1

2, 𝑢3
2, 𝜃1

2 >𝑇 (24) 

Where 𝑢1
1, 𝑢3

1, 𝜃1
1, 𝑢1

2, 𝑢3
2, and 𝜃1

2 denote the axial displacement, deflection, and rotation at nodes 1 
and 2 of the eth element, respectively. The vectors ⟨𝑁𝑎⟩, ⟨𝑁𝑑⟩ and ⟨𝑁𝑟⟩ are row vectors consisting of 
𝐶0 shape functions, and are defined as follows: 

{

⟨𝑁𝑎(𝜉)⟩ = ⟨𝑁1(𝜉),0,0, 𝑁2(𝜉),0,0⟩

⟨𝑁𝑑(𝜉)⟩ = ⟨0, 𝑁1(𝜉),0,0, 𝑁2(𝜉),0⟩

⟨𝑁𝑟(𝜉)⟩ = ⟨0,0, 𝑁1(𝜉),0,0, 𝑁2(𝜉)⟩
 (25) 

Where 𝑁1(𝜉) and 𝑁2(𝜉) are the standard linear shape functions, defined as: 

{
𝑁1(𝜉) = (1 − 𝜉)/2
𝑁2(𝜉) = (1 + 𝜉)/2

 (26) 

Where 𝜉 ∈ [−1,1] represents the natural coordinates, expressed as 𝜉(𝑥) = −1 + 2𝑥/𝑙(𝑒). By 
applying Eqs. (15) And (23), the generalized strains 𝑒11, 𝜅11 and 𝜒13 can be expressed in terms of 
the nodal degrees of freedom as: 

{

𝑒11(𝜉) =< 𝐵𝑚(𝜉) > {𝑑(𝑒)}

𝜅11(𝜉) =< 𝐵𝑏(𝜉) > {𝑑
(𝑒)}

𝜒13(𝜉) =< 𝐵𝑠(𝜉) > {𝑑
(𝑒)}

 (27) 

Where the kinematic vectors ⟨𝐵𝑚⟩, ⟨𝐵𝑏⟩ and ⟨𝐵𝑠⟩ are defined as: 

{
  
 

  
 ⟨𝐵𝑚⟩ =

𝑑𝜉

𝑑𝑥
⟨
𝑑𝑁𝑎
𝑑𝜉

⟩

⟨𝐵𝑏⟩ =
𝑑𝜉

𝑑𝑥
⟨
𝑑𝑁𝑟
𝑑𝜉

⟩

⟨𝐵𝑠⟩ =
𝑑𝜉

𝑑𝑥
⟨
𝑑𝑁𝑑
𝑑𝜉

⟩ + ⟨𝑁𝑟⟩

 (28) 

Where 
𝑑𝜉

 𝑑𝑥
= 1/det(𝐽), with det(𝐽) being the Jacobian, equal to 𝑙(𝑒)/2. By applying Eqs. (20), (21), 

(23), and (27), the discretized governing equation is derived as: 

[𝑀𝑔]{𝑈̈𝑔(𝑡)} + [𝐶𝑔]{𝑈̇𝑔(𝑡)} + [𝐾𝑔]{𝑈𝑔(𝑡)} = {𝐹𝑔(𝑡)} (29) 



Ouassim et al. / Research on Engineering Structures & Materials x(x) (xxxx) xx-xx 
 

10 

Here,[𝑀𝑔], [𝐶𝑔], [𝐾𝑔], and {𝐹𝑔} denote the global mass, damping, stiffness matrices, and external 
force vector, respectively, assembled as follows: 

([𝑀𝑔], [𝐶𝑔], [𝐾𝑔], {𝐹𝑔}, {𝑈𝑔}) = ∑  

𝑒=𝑁elem 

𝑒=1

([𝑀(𝑒)], [𝐶(𝑒)], [𝐾(𝑒)], {𝐹(𝑒)}, {𝑈(𝑒)}) (30) 

With 

{
[𝐾(𝑒)] = [𝐾𝑚𝑚𝑒] + [𝐾𝑏𝑏𝑒] + [𝐾𝑠𝑠𝑒] + [𝐾𝑤𝑓𝑒] + [𝐾𝑝𝑓𝑒]

[𝑀(𝑒)] = [𝑀𝑚𝑚𝑒] + [𝑀𝑏𝑏𝑒] + [𝑀𝑠𝑠𝑒]
 (31) 

Where the element matrices are defined as: 

{
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 [𝐾𝑚𝑚𝑒] = ∫  

𝑙(𝑒)

0

  {𝐵𝑚}𝐴 < 𝐵𝑚 > 𝑑𝑥 + ∫  
𝑙(𝑒)

0

  {𝐵𝑚}𝐴 < 𝐵𝑏 > 𝑑𝑥 + ∫  
𝑙(𝑒)

0

  {𝐵𝑏}𝐴 < 𝐵𝑚 > 𝑑𝑥

[𝐾𝑏𝑏𝑒] = ∫  
𝑙(𝑒)

0

  {𝐵𝑏}𝐷 < 𝐵𝑏 > 𝑑𝑥

[𝐾𝑠𝑠𝑒] = ∫  
𝑙(𝑒)

0

  {𝐵𝑠}𝐶 < 𝐵𝑠 > 𝑑𝑥

[𝐾𝑤𝑓𝑒] = ∫  
𝑙(𝑒)

0

  {𝑁𝑑}𝑏𝐾𝑤 < 𝑁𝑑 > 𝑑𝑥

[𝐾𝑝𝑓𝑒] = ∫  
𝑙(𝑒)

0

 
𝑑𝜉

𝑑𝑥
{
𝑑𝑁𝑑
𝑑𝜉

} 𝑏𝐾𝑝
𝑑𝜉

𝑑𝑥
<
𝑑𝑁𝑑
𝑑𝜉

> 𝑑𝑥

[𝑀𝑚𝑚𝑒] = ∫  
𝑙(𝑒)

0

  {𝑁𝑎}𝐼0 < 𝑁𝑎 > 𝑑𝑥 +∫  
𝑙(𝑒)

0

  {𝑁𝑎}𝐼1 < 𝑁𝑟 > 𝑑𝑥 + ∫  
𝑙(𝑒)

0

  {𝑁𝑟}𝐼1 < 𝑁𝑎 > 𝑑𝑥

[𝑀𝑏𝑏𝑒] = ∫  
𝑙(𝑒)

0

  {𝑁𝑟}𝐼2 < 𝑁𝑟 > 𝑑𝑥

[𝑀𝑠𝑠𝑒] = ∫  
𝑙(𝑒)

0

  {𝑁𝑑}𝐼0 < 𝑁𝑑 > 𝑑𝑥

[𝐶(𝑒)] = ∫  
𝑙(𝑒)

0

  {𝑁𝑑}𝑏𝐶𝐷 < 𝑁𝑑 > 𝑑𝑥

{𝐹(𝑒)} = ∫  
𝑙(𝑒)

0

 𝑏{𝑁𝑑}𝑝3𝑑𝑥

 (32) 

The equation of motion (Eq. 29) is completed by the essential boundary conditions, which are given 
in the next section (Eqs. 38, 39, and 40). 

3.2. Temporal Approximation Using The NITINM 

In this study, the NITINM is employed to solve Eq. (29). This method allows the approximation of 
the velocity {𝑈̇𝑔(𝑡 + Δ𝑡)} and acceleration {𝑈̇𝑔(𝑡 + Δ𝑡)} vectors at time 𝑡 + Δ𝑡 as follows [30]: 

{
{𝑈̈𝑔(𝑡 + Δ𝑡)} = 𝑎0

𝑁({𝑈𝑔(𝑡 + Δ𝑡)} − {𝑈𝑔(𝑡)}) − 𝑎2
𝑁{𝑈̇𝑔(𝑡)} − 𝑎3

𝑁{𝑈̈𝑔(𝑡)}

{𝑈̇𝑔(𝑡 + Δ𝑡)} = {𝑈̇𝑔(𝑡)} + 𝑎6
𝑁{𝑈̈𝑔(𝑡)} + 𝑎7

𝑁{𝑈̈𝑔(𝑡 + Δ𝑡)}
 (33) 

Where Δ𝑡 is the time step, the coefficients 𝑎0
𝑁 , 𝑎1

𝑁 , 𝑎2
𝑁 , 𝑎3

𝑁 , 𝑎4
𝑁 , 𝑎5

𝑁 , 𝑎6
𝑁 , and 𝑎7

𝑁 are defined as: 
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{
 
 
 
 

 
 
 
 
𝑎0
𝑁 = 1/(𝛼𝑁Δ𝑡2)

𝑎1
𝑁 = 𝛿𝑁/(𝛼𝑁Δ𝑡)

𝑎2
𝑁 = 1/(𝛼𝑁Δ𝑡)

𝑎3
𝑁 = 1/(2𝛼𝑁) − 1

𝑎4
𝑁 = 𝛿𝑁/𝛼𝑁 − 1

𝑎5
𝑁 = (Δ𝑡/2)(𝛿𝑁/𝛼 − 2)

𝑎6
𝑁 = Δ𝑡(1 − 𝛿𝑁)

𝑎7
𝑁 = 𝛿𝑁Δ𝑡

 (34) 

Where 𝛿𝑁 and 𝛼𝑁 are the Newmark parameters, selected as 0.5 and 0.25, respectively. Applying 
Eq. (33), the resulting algebraic equations are: 

{[𝐾̂𝑔]
𝑡+Δ𝑡

{𝑈𝑔(𝑡 + Δ)} = {𝐹̂}𝑡,𝑡+Δ𝑡 (35) 

Where {𝑈𝑔(𝑡 + Δ)} represents the global generalized displacement at time 𝑡 + Δ. The effective 

stiffness matrix [𝐾̂𝑔]
𝑡+Δ𝑡

 and the load vector {𝐹̂}𝑡,𝑡+Δ𝑡 at time 𝑡 + Δ𝑡 are defined as: 

{

[𝐾̂𝑔]
𝑡+Δ𝑡

= [𝐾𝑔]𝑡+Δ𝑡 + 𝑎0
𝑁[𝑀𝑔]𝑡+Δ𝑡 + 𝑎1

𝑁[𝐶𝑔]𝑡+Δ𝑡

{𝐹̂}𝑡,𝑡+Δ𝑡 = {𝐹}𝑡+Δ𝑡 + [𝑀
𝑔]𝑡+Δ𝑡(𝑎0

𝑁{𝑈𝑔(𝑡)} + 𝑎2
𝑁{𝑈̇𝑔(𝑡)} + 𝑎3

𝑁{𝑈̈𝑔(𝑡)})

+[𝐶𝑔]𝑡+Δ𝑡(𝑎1
𝑁{𝑈𝑔(𝑡)} + 𝑎4

𝑁{𝑈̇𝑔(𝑡)} + 𝑎5
𝑁{𝑈̈𝑔(𝑡)})

 (36) 

The acceleration vector {𝑈̈𝑔(0)} is determined at 𝑡 = 0 as follows: 

{𝑈̈𝑔(0)} = [𝑀̂𝑔]
−1
({𝐹̂}0 − [𝐶̂

𝑔]{𝑈̇𝑔(0)} − [𝐾̂𝑔]{𝑈𝑔(0)}) (37) 

4. Results and Discussion 

This section examines the linear forced vibration characteristics of polymer matrix composite 
beams (PMCBs) reinforced with hybrid functionally graded boron nitride nanotubes and carbon 
fiber (FG-BNNT/CF). The FG-BNNT/CF reinforced PMCBs are subjected to a vertical sudden 
dynamic load and analyzed under two types of boundary conditions, supported by viscoelastic 
foundations as shown in Figure 1. Four different BNNT distribution patterns are considered, with 
carbon fiber uniformly distributed. The study investigates how the BNNT weight fraction, BNNT 
distribution patterns, carbon fiber volume fraction, elastic foundation stiffness, and boundary 
conditions affect the dynamic behavior of FG-BNNT/CF reinforced PMCBs. 

 4.1. Preliminary Remarks 

Unless stated otherwise, the geometric properties of the PMCBs are provided in Table 3. 

Table 3. Geometric characteristics of the PMCBs 

Parameter Values 

𝐿(𝑚) 1 

𝑏(𝑚) 1 

ℎ(𝑚) 0.01 
 

The analysis considers only a sudden vertical dynamic load, 𝑝3(𝑥, 𝑡) = 1 N/m, as indicated in 
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Fig. 3. The sudden transverse dynamic load applied to the FG-BNNT/CF reinforced polymer 

matrix composite beams 

Three types of boundary conditions, which are clamped-clamped (C-C), simply supported-simply 
supported (S-S), and clamped-free (C-F) are considered in this paper: 

(𝐶 − 𝐶): {
𝑢1 = 𝑢3 = 𝜃1 = 0 at 𝑥 = 0
𝑢1 = 𝑢3 = 𝜃1 = 0 at 𝑥 = 𝐿

 (38) 

(𝑆 − 𝑆): {
𝑢1 = 𝑢3 = 0 at 𝑥 = 0
𝑢1 = 𝑢3 = 0 at 𝑥 = 𝐿

 (39) 

(𝐶 − 𝐹): 𝑢1 = 𝑢3 = 𝜃1 = 0 at 𝑥 = 0 (40) 

4.2. Numerical Convergence and Comparative Validation 

To evaluate the accuracy and validity of the current numerical model using FEM with NITINM based 
FSDT, convergence studies were first performed on a C-C elastic homogeneous isotropic beam. The 
beam's geometric and material specifications are specified as follows [27]: 

𝐿1 = 1 m ; 𝐿2 = 1 m ; ℎ = 0.01 m (41) 

The external force vector is assumed to be null, and the beam is initialized with the following 
conditions: 

{
 

 
𝑢3(𝑥, 0) = sin (𝜋𝑥) − 𝜋𝑥(1 − 𝑥)  for 𝑥 ∈ [0, 𝐿]
𝑢̇3(𝑥, 0) = 0  for 𝑥 ∈ [0, 𝐿]
𝜃1(𝑥, 0) = −𝜋cos (𝜋𝑥) + 𝜋(1 − 2𝑥)  for 𝑥 ∈ [0, 𝐿]

𝜃̇1(𝑥, 0) = 0  for 𝑥 ∈ [0, 𝐿]

 (42) 

The Newmark integration parameters are chosen as 𝛿𝑁 = 1/2, 𝛼𝑁 = 1/4, with a time increment of 
Δ𝑡 = 0.005𝑠. Figure 4 illustrates the time history of the transverse displacement at the beam's mid-
span for various element discretizations 𝑁elem . 

Figure 4 indicates that the optimal number of elements is 100. Consequently, this value will be 
utilized for the subsequent numerical analyses. The comparison in Table 6 highlights the accuracy 
of the proposed method against reference FEM solutions based on Euler-Bernoulli beam theory 
(EBT) and Timoshenko beam theory (TBT). The displacement histories obtained from the present 
approach exhibit almost perfect agreement with both reference models. The maximum deviation 
with respect to FEM (EBT) is less than 0.2%, while the deviation with respect to FEM (TBT) remains 
below 1.3% throughout the entire time interval. Such small errors confirm that the present 
formulation can reliably capture the dynamic response of beams, while maintaining computational 
efficiency. These results provide strong validation of the proposed methodology and demonstrate 
its consistency with established finite element solutions. 
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Fig.4. Central transverse displacement 𝑢3(0.5, 𝑡)  versus time 𝑡 with different numbers of 
elements 𝑁𝑒𝑙𝑒𝑚 for a C-C isotropic homogeneous elastic beam. 

Table 4. Quantitative validation of the present method through comparison with FEM (EBT and 
TBT) solutions, including relative percentage errors 

 
Time 

Method 
 

𝑢3(𝑃𝑟𝑒𝑠𝑒𝑛𝑡) 
 

𝑢3(𝐸𝐵𝑇) 
 

𝑢3(𝑇𝐵𝑇) 
 

 
Err vs EBT  

(%) 

 
Err vs TBT 

(%) 
0 2.1460 2.146 2.146 0.000 0.000 
0.01 2.0974 2.098 2.100 0.029 0.124 
0.02 1.9504 1.951 1.953 0.031 0.133 
0.03 1.6978 1.698 1.695 0.012 0.165 
0.04 1.3501 1.350 1.342 0.007 0.604 
0.05 0.9363 0.935 0.929 0.139 0.786 
0.06 0.4844 0.483 0.484 0.290 0.083 
0.07 0.0184 0.018 0.016 2.222 15.000 
0.08 −0.4536 −0.455 −0.469 0.308 3.284 
0.09 −0.9140 −0.916 −0.937 0.218 2.455 
0.10 −1.3330 −1.336 −1.349 0.225 1.186 
0.11 −1.6799 −1.682 −1.680 0.125 0.006 
0.12 −1.9307 −1.932 −1.931 0.067 0.016 
0.13 −2.0864 −2.087 −2.100 0.029 0.648 
0.14 −2.1478 −2.148 −2.168 0.009 0.932 
0.15 −2.1105 −2.111 −2.116 0.024 0.260 

 

Figure 5 demonstrates the time-step sensitivity of the Newmark integration scheme for the central 
deflection of the homogeneous isotropic beam. The results for Δ𝑡 = 0.005 s and finer ( Δ𝑡 = 0.0005 
and 0.00005 s) are indistinguishable, while Δ𝑡 = 0.01 s introduces only a negligible deviation in 
amplitude. This confirms that Δ𝑡 = 0.005 s is adequate for the homogeneous validation cases. For 
the composite parametric study, a smaller increment Δ𝑡 = 0.0005 s was adopted to safely capture 
the higher-frequency response. For the first validation study, we consider the free vibration 
response of functionally graded beams with the following geometric and material parameters: 
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𝐿 = 3.52 × 10−4𝑚 ; 𝑏 = 3.52 × 10−5𝑚 ; ℎ = 17.6 × 10−6 m 

𝐸1 = 14.4 GPa ; 𝐸2 = 1.44 GPa ;  𝜈 = 0.38 ; 𝐾𝑠 =
5(1 + 𝜈)

6 + 5𝜈
 

𝜌1 = 1.22 × 10
4𝑘𝑔/𝑚 ; 𝜌2 = 1.22 × 10

3 𝑘𝑔/𝑚 

(43) 

The rotary inertia is included in the present study. Table 5 contains the results for homogeneous ( 
𝑛 = 0 ) and functionally graded ( 𝑛 ≠ 0 ) compared to the same given by Reddy [27]. 

 
Fig. 5. Central transverse displacement 𝑢3(0.5, 𝑡)  versus time 𝑡 with different time steps ∆𝑡 for 

a C-C isotropic homogeneous elastic beam. 

Table 5. First three natural frequencies (𝜔‾𝑛 = 𝜔𝑛𝐿
2/√𝜌2𝐴0/𝐸2) of simply-supported FGM beams 

𝑛 𝜔‾1 𝜔‾2 𝜔‾3 

ref [27] Present ref [27] Present ref [27] Present 

0 9.83 9.8353 38.82 38.9412 85.63 86.2024 

1 8.67 8.6730 34.29 34.3826 75.79 76.0537 

10 10.28 10.2898 40.47 40.5756 88.80 88.2976 
 

A close agreement between the two solutions demonstrates the accuracy and reliability of the 
present approach. For the second validation study, we consider an isotropic, homogeneous elastic 
beam with the following initial conditions: 

{
 

 
 

𝑢3(𝑥, 0) = cosh (𝜆𝑥) − cos (𝜆𝑥) − (cos (𝜆𝐿) + cosh (𝜆𝐿))/(sin (𝜆𝐿)  for 𝑥 ∈ [0, 𝐿]

                                            +sinh (𝜆𝐿))(sinh (𝜆𝑥) − sin (𝜆𝑥))  

𝜃1(𝑥, 0) = 𝜆(sinh (𝜆𝑥) + sin (𝜆𝑥)) − (cos (𝜆𝐿) + cosh (𝜆𝐿))/(sin (𝜆𝐿) for 𝑥 ∈ [0, 𝐿]

                                            +sinh (𝜆𝐿))(cosh (𝜆𝑥) − cos (𝜆𝑥))𝜆

 (44) 

Where 𝜆 = 1.8751/𝐿. The geometric and material parameters are provided in Eq. (41). The 
analytical solution is given as: 

𝑢3(𝑥, 𝑡) = (cosh (𝜆𝑥) − cos (𝜆𝑥) − (cos (𝜆𝐿) + cosh (𝜆𝐿))/(sin(𝜆𝐿)
+ sinh (𝜆𝐿))(sinh (𝜆𝑥) − sin (𝜆𝑥)))cos (𝜔𝑡) (45) 

In which 𝜔 = 𝜆2√(𝐸𝐼/𝜌𝐴). Fig. 6 presents graphs of the central transverse displacement 𝑢3(0.5𝐿, 𝑡) 

versus time 𝑡 for both the current FEM-based numerical model and the exact solution (Eq. (44)). 
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Fig. 6. Central transverse displacement 𝑢3(0.5𝐿, 𝑡) versus time t obtained by FEM and 

compared to the exact solution 

Figure 6 demonstrates that our results closely align with the exact solution, confirming the 
accuracy and reliability of the current numerical model. In the final verification numerical 
experiment, a straight, thick ( 𝐿 = 2𝑚, 𝑏 = 0.2 m, ℎ = 0.6 m) elastic homogeneous isotropic beam 
was investigated where both rotary inertia and known shear deformation effects were considered. 
The beam's left boundary is fixed (i.e., 𝑢𝑥 = 𝑢𝑧 = 𝜃𝑥 = 0 at = 0 ), free at the right end ( 𝑥 = 𝐿1 ), 
and subjected to a uniformly distributed sudden dynamic transverse load of intensity 𝑝0 =
100kN/m. The material properties of the beam are: = 50GPa, 𝑣 = 0.2, 𝜌 = 2500 kg/m3, and since 
the FSDT is adopted, a shear correction factor of 5/6 is applied. The initial conditions are taken as 
zero displacement and zero velocity vectors. For the numerical analyses, the following parameters 
are employed: 𝑁elem = 100, the total duration of the simulation is 𝑇 = 0.05𝑠, the temporal step size 
is Δ𝑡 = 10−6𝑠, with 𝛿𝑁 = 1/2 and 𝛼𝑁 = 1/4. Figure 6 shows a comparison of the tip vertical 
displacement 𝑢3(𝐿1, 𝑡) as a function of time 𝑡, obtained using Abaqus and the proposed numerical 
approach. 

 
Fig. 7. Tip transverse displacement 𝑢3(𝐿, 𝑡) versus time 𝑡 obtained by FEM and compared to the 

Abaqus solution 

It is evident from Fig. 7 that the obtained results exhibit excellent agreement with those derived 
from the Abaqus software. Based on the presented numerical experiments, it can be concluded that 
the proposed approach accurately simulates the linear dynamic response of thick elastic beams. 
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To assess the accuracy and consistency of the adopted micromechanical modeling approaches, a 
comparative analysis is conducted between the Rule of Mixtures (ROM) and Mori–Tanaka (MT) 
homogenization schemes. 

Table 6. Comparison of Root Mean Square Errors (RMSE) between the adopted micromechanical 
model and the Mori–Tanaka (MT) homogenization approach under C–C boundary conditions, 
considering various distribution patterns, carbon fiber volume fractions, and BNNT weight 
fractions 

Distribution patterns VCF WrGO RMSE 

 
UD 

 
0.01 

0.5% 7.3241 × 10−9 
1% 5.7537 × 10−9 
2% 3.4636 × 10−9 

 
0.03 

0.5% 1.9260 × 10−8 
1% 1.6820 × 10−8 
2% 1.2020 × 10−8 

FG-X 

0.01 
0.5% 6.3670 × 10−9 
1% 4.2712 × 10−9 
2% 1.5103 × 10−9 

0.03 
0.5% 1.7238 × 10−8 
1% 1.3566 × 10−8 
2% 7.1389 × 10−9 

FG-O 

0.01 
0.5% 8.2724 × 10−9 
1% 7.5901 × 10−9 
2% 6.0033 × 10−9 

0.03 
0.5% 2.1208 × 10−8 
1% 2.0429 × 10−8 
2% 1.8197 × 10−8 

FG-V 

0.01 
0.5% 7.4346 × 10−9 
1% 6.0719 × 10−9 
2% 4.0710 × 10−9 

0.03 

0.5% 1.9400 × 10−8 
1% 1.7231 × 10−8 

2% 1.2995 × 10−8 
 

Table 6 presents a comparison of the Root Mean Square Error (RMSE) between the Rule of Mixtures 
(ROM) and Mori-Tanaka (MT) homogenization approaches for the case of C-C beam with different 
distribution patterns (UD, FG-X, FG-O, FG-V), carbon fiber volume fractions ( 𝑉𝐶𝐹  ), and BNNT 
weight fractions ( 𝑊𝐵𝑁𝑁𝑇 ). The RMSE values are consistently very low across all cases, generally in 
the order of 10−9 to 10−8, indicating excellent agreement between the two homogenization 
methods. These results confirm that both, the adopted micromechanical model and MT 
homogenization approaches yield highly consistent dynamic responses for nanocomposite beams, 
with differences that are negligible for engineering purposes. The choice of homogenization 
method can be guided by convenience and computational cost, particularly in cases with complex 
distribution patterns or high fiber contents. 

4.3. Parametric Analysis 

In this subsection, we present results to investigate the impact of various geometric and material 
parameters on the linear forced vibration response of FG-BNNT/CF reinforced polymer matrix 
composite beams. The geometric and material properties of the considered PMCBs are provided in 
Table 1. For the numerical analyses, the following parameters are used: the number of elements 
𝑁elem = 100, the total simulation time 𝑇 = 0.5 s, the time step Δ𝑡 = 0.0005𝑠, with 𝛿𝑁 = 1/2 and 
𝛼𝑁 = 1/4. Additionally, both the initial displacement and velocity vectors are assumed to be zero. 
In all the parametric studies conducted, C-C (Eq. (38)), S-S ((Eq. (39))), and C-F (Eq. (40)) boundary 
conditions are considered. 
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4.3.1. Influence of BNNT Weight Fraction 

In this study, the influence of the BNNT weight fraction ( 𝑊𝐵𝑁𝑁𝑇 ) on the dynamic behavior of FG-
BNNT/CF reinforced PMCBs without VEFs ( 𝐾𝑤 = 𝐾𝑝 = 𝐶𝐷 = 0 ) is evaluated. Different values of 

BNNT weight-fractions (0%, 0.5%, 1%, and 2% ) with a UD BNNT distribution are considered. The 
CF volume fraction is taken as 𝑉𝐶𝐹 = 0.01. Figs. 8(a), 8(b), and 8(c) present the central vertical 
displacements of C-C, S-S, and C-F FG-BNNT/CF reinforced PMCBs subjected to a vertical dynamic 
step load. 

 

(a) C-C FG-BNNT/CF reinforced PMCBs 

 

(b) S-S FG-BNNT/CF reinforced PMCBs 

 

(c) C-F FG-BNNT/CF reinforced PMCBs 

Fig. 8. Central transverse displacement 𝑢3(0.5𝐿, 𝑡) versus time 𝑡 for FG-BNNT/CF reinforced 
PMCBs with varying BNNT weight fractions under C-C (8(a)), S-S (8(b))  and C-F (8(c)) 

boundary conditions 

Figures 8(a), 8(b), and 8(c) show that increasing the BNNT/CF weight fraction 𝑊𝐵𝑁𝑁𝑇 affects the 
amplitude and period of the central vertical displacement in FG-BNNT/CF reinforced PMCBs 
because higher reinforcement content enhances the stiffness and mass distribution of the beam, 
increasing its resistance to bending and altering its natural frequency. Specifically, higher BNNT/CF 
weight fractions lead to a reduction in both amplitude and period, since the stiffer material reduces 
dynamic deflections and accelerates the vibrational response, effectively shortening the oscillation 
period. This effect is significant under both boundary conditions. Additionally, the maximum 
amplitude and period of the central vertical displacement are observed under S-S boundary 
conditions, compared to C-C BCs because simply-supported beams are less constrained, allowing 
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larger deflections and longer vibration periods, with the C-F beam consistently showing higher 
amplitudes and temporal periods compared to both C-C and S-S cases as the cantilever-free 
configuration is inherently more flexible, amplifying the impact of dynamic loads on both 
displacement magnitude and oscillation duration. 

4.3.2. Influence of BNNT Distribution Patterns 

To investigate the impact of BNNT distribution patterns on the time-history curve of central 
vertical displacement in FG-BNNT/CF reinforced PMCBs without a viscoelastic foundation, four 
BNNT distribution patterns (UD, FG-X, FG-O, and FG-V) are analyzed. The CF volume fraction is set 
at 𝑉𝐶𝐹 = 0.01 and the BNNT weight fraction is chosen as 𝑊𝐵𝑁𝑁𝑇 = 1%. Figures 9(a), 9( b), and 9(c) 
present the time-history curves of central vertical displacement for UD and three types of FG-BNNT 
reinforced PMCBs under a vertical dynamic step load, with C-C, S-S, and C-F boundary conditions, 
respectively. 

 

(a) C-C FG-BNNT/CF reinforced PMCBs 
 

(b) C-F FG-BNNT/CF reinforced PMCBs 

 

(c) S-S FG-BNNT/CF reinforced PMCBs 

 

Fig. 9. Central transverse displacement 𝑢3(0.5𝐿, 𝑡)over time 𝑡 for FG-BNNT/CF reinforced 
PMCBs with different BNNT distribution patterns under DL with C-F (9(a)), S-S(9(b) ) and S-S 
(9(c)) boundary conditions 

As shown in Figs. 9(a), 9(b), and 9(c) for both C-C, C-F, and S-S BCs, the FG-O-BNNT reinforced 
PMCBs exhibits the highest amplitude and period of central vertical displacement, whereas the FG-
X-BNNT configuration shows the lowest values because the O-type distribution concentrates the 
stiff BNNTs near the surfaces, increasing the bending rigidity and natural frequency, while the X-
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type distribution spreads the reinforcement more uniformly, reducing the beam’s ability to resist 
transverse deformation. Therefore, it can be concluded that distributing BNNT near the top and 
bottom surfaces of the FG-BNNT reinforced PMCBs is the optimal choice for enhancing the global 
rigidity of the PMCBs since this placement maximizes the moment of inertia and improves the 
beam’s resistance to bending under dynamic loads, effectively reducing vibration amplitude and 
period. The influence of the BNNT distribution patterns on the dynamic response is more 
significant for the C-F beams compared to the S-S and C-C cases because the initially flexible C-F 
beams experience larger dynamic deflections, making the effect of reinforcement heterogeneity 
more pronounced on their vibration characteristics. This is attributed to the enhanced flexibility of 
the C-F configuration, which amplifies the impact of material heterogeneity on the vibration 
characteristics. 

4.3.3. Influence of BNNT Geometrical Parameters 

To investigate the influence of BNNT geometrical parameters on the central vertical displacement 
of PMCBs reinforced with FG-BNNTs, the FG-X distribution model is adopted. The mass fraction of 
BNNTs is fixed at 𝑊𝐵𝑁𝑁𝑇 = 1%, while the volume fraction of carbon fibers is set to 𝑉𝐶𝐹 = 0.03. The 
viscoelastic foundation parameters, namely 𝐾𝑤( N/m

2), 𝐾𝑝( N/m), and 𝐷𝑐( N ⋅  s/m2), are assumed 

to be zero. Four aspect ratios, namely 100, 200, 300, and 400, are considered. The time-history 
curves of the central vertical displacement of FG-X-BNNT reinforced PMCBs, subjected to a step-
type vertical dynamic load, are presented in Figures 10(a),10(b), and 10(c) for the 𝐶 − 𝐶, 𝑆 − 𝑆, 
and 𝐶 − 𝐹 boundary conditions, respectively. 

The effect of the aspect ratio is clearly observed in the dynamic response of FG-BNNT reinforced 
PMCBs. As the aspect ratio increases from 100 to 400, both the amplitude and the oscillation period 
of the central vertical displacement decrease significantly, reflecting the higher global stiffness of 
slender beams. This trend is consistent across all boundary conditions, although the reduction is 
more pronounced for the C–F case due to its greater flexibility. Consequently, higher aspect ratios 
contribute to improved structural rigidity and vibration resistance, highlighting the crucial role of 
geometric parameters in optimizing the dynamic performance of FG-BNNT reinforced PMCBs. 

 

(a) C-C FG-BNNT/CF reinforced PMCBs 

 

(b) C-F FG-BNNT/CF reinforced PMCBs 
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(c) S-S FG-BNNT/CF reinforced PMCBs 

Fig. 10. Time-history curves of the central transverse displacement 𝑢3(0.5𝐿, 𝑡) of FG-BNNT/CF 
reinforced PMCBs with different BNNT aspect ratios under dynamic loading for (a) C–F, (b) S–S, 

and (c) C–C boundary conditions 

4.3.3. Influence of Viscoelastic Damping Coefficient  

To examine the effect of the viscoelastic damping coefficient on the central vertical displacement 
of FG-BNNT reinforced PMCBs, the FG-X distribution pattern is used. The BNNT weight fraction is 
set at 𝑊𝐵𝑁𝑁𝑇 = 1% with a CF volume fraction of 𝑉𝐶𝐹 = 0.01. The viscoelastic foundation 
parameters 𝐾𝑤(𝑁/𝑚

2) and 𝐾𝑝(𝑁/𝑚) are assumed to be zero, while the damping coefficient 

𝐷𝑐( N. s/m
2) varies from 0 to 5 × 102. The time-history curves of central vertical displacement for 

FG-X-BNNT reinforced PMCBs under a vertical dynamic step load are depicted in Figures 11(a), 
11(b), and 11(c) for C-C, S-S, and C-F BCs, respectively. 

Figs. 11(a), 11(b), and 11(c) illustrate that the damping parameter significantly affects the dynamic 
response of FGBNNT/CF reinforced PMCBs because damping dissipates vibrational energy, 
reducing the system’s kinetic energy and limiting the amplitude of oscillations. As the damping 
coefficient increases, the amplitude of central vertical displacement decreases exponentially since 
higher damping removes energy from the system more efficiently, shortening the duration and 
intensity of vibrations under dynamic loads. 

 

(a) C-C FG-BNNT/CF reinforced PMCBs 

 

(b) S-S FG-BNNT/CF reinforced PMCBs 
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(c) C-F FG-BNNT/CF reinforced PMCBs 

Fig. 11. Central transverse displacement 𝑢3(0.5𝐿, 𝑡) over time 𝑡 for FG-BNNT reinforced PMCBs 
with different viscoelastic damping coefficients 𝐷𝑐 under DL with C-C (9(a)), S-S (11(b)) and C-

F (11(c)) boundary conditions 

The damping effect is particularly prominent in the C-F configuration, where the initial high 
flexibility allows for greater energy dissipation compared to the more constrained C − C and S − S 
beams because flexible beams experience larger oscillations, which generate more strain energy 
that can be absorbed by the damping mechanism, leading to a stronger reduction in vibration 
amplitude. 

4.3.4. Influence of Winkler and Shear Viscoelastic Foundation Parameters 

The effects of Winkler and shear layer stiffness on the dynamic behavior of thin FG-BNNT/CF 
reinforced PMCBs with C-C and S-S boundary conditions under a transverse load of 1 N/m on a 
viscoelastic foundation are investigated. The BNNT weight fraction is set at 𝑊𝐵𝑁𝑁𝑇 = 1% with a CF 
volume fraction of 𝑉𝐶𝐹 = 0.01 and a damping coefficient of 𝐷𝑐 = 10 N. s/m3. We examine three 
values for the Winkler foundation stiffness 𝐾𝑤 = (0,1 × 10

4, 5 × 104) and the shear layer 
parameter 𝐾𝑝 = (0,1 × 10

3, 5 × 103). Figs. 12(a), 12(b), and 12(c) present the central transverse 

displacement versus time for various values of the elastic foundation coefficients. 

 

(a) C-C FG-BNNT/CF reinforced PMCBs 
 

(b) S-S FG-BNNT/CF reinforced PMCBs 
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(c) C-F FG-BNNT/CF reinforced PMCBs 

Fig. 12. Central transverse displacement 𝑢3(0.5𝐿, 𝑡)  versus time 𝑡 for FG-BNNT reinforced 
PMCBs with different viscoelastic coefficients (𝐾𝑊 and 𝐾𝑝) under DL with C-C (12(a)), S-S 

(12(b))  and C-F (12(c)) boundary conditions 

From Figs. 12(a), 12(b), and 12(c) it is observed that, as anticipated, that the central transverse 
displacement of the FG-BNNT/CF reinforced PMCBs decreases with increasing elastic foundation 
coefficients because a stiffer foundation provides higher reactive forces that counteract the 
dynamic bending of the beam, effectively increasing the system’s overall dynamic stiffness. This 
outcome aligns with expectations because higher elastic foundation stiffness typically results in 
greater resistance to deformation, thereby reducing the amplitude of transverse displacement 
under the applied load as the beam’s natural vibration is constrained by the foundation, leading to 
lower vibration amplitudes and modified dynamic response. The increase in Winkler and 
Pasternak foundation stiffness coefficients significantly suppresses the vibration amplitudes across 
all boundary conditions since the Winkler component resists local deflections while the Pasternak 
shear layer distributes the dynamic load more evenly, damping out oscillations. The C-F beams 
exhibit the most noticeable decrease in amplitude, reflecting their greater sensitivity to the elastic 
foundation parameters compared to the more rigid C − C and S − S beams because initially flexible 
beams experience larger dynamic displacements, so any increase in foundation stiffness has a 
proportionally stronger effect on their vibration suppression. 

  4.3.5. Influence of CF Volume Fraction 

To assess the impact of CF volume fraction 𝑉𝐶𝐹  on the central vertical displacement of FG-BNNT/CF 
reinforced PMCBs, we consider C-C and S-S BCs with a UD transverse step load of 1 N/m applied to 
PMCBs resting on VEF ( 𝐾𝑤 = 5 × 10

4, 𝐾𝑝 = 5 × 10
3, and 𝐷𝑐 = 10 ). The BNNT weight fraction is 

set at 𝑊𝐵𝑁𝑁𝑇 = 1% with an FGX distribution pattern. Figures 13(a), 13(b), and 13(c) display the 
central transverse displacement versus time for various CF volume fractions. 

From Figs. 13(a), 13(b), and 13(c) it is observed that as the CF volume fraction increases, the 
stiffness and strength of the PMCBs increase due to the enhanced load-bearing capacity of the CF, 
which improves the overall structural rigidity and resistance to deformation. This leads to a 
reduction in the amplitude of transverse displacement under given DMLs and BCs because the 
stiffer material can better resist bending and shear effects induced by dynamic loads. Conversely, 
a lower CF volume fraction results in a less stiff composite material. This lower stiffness means the 
beam is more flexible, leading to a larger amplitude of transverse displacement under the same 
loading conditions as the material offers less resistance to bending, allowing greater deflection 
under applied loads. However, the reduction is more substantial for the C-F beams due to their 
inherently lower stiffness, making them more sensitive to material reinforcement. 
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(a) C-C FG-BNNT/CF reinforced PMCBs 

 

(b) S-S FG-BNNT/CF reinforced PMCBs 

 

(c) C-F FG-BNNT/CF reinforced PMCBs 

Fig. 13. Central transverse displacement 𝑢3(0.5𝐿, 𝑡) as a function of time 𝑡 for C-C (13(a)), S-S 
(13(b))and C-F (13(c)) boundary conditions, for different values of CF volume fraction 

5. Conclusion 

A detailed analysis was presented in this paper of the linear forced vibration analysis behavior of 
polymer matrix composite structural beams strengthened with an assembly of functionally graded 
boron nitride nanotubes and car bon fibers, supported by viscoelastic foundations under dynamic 
loads. Through the use of the Visco-Winkler-Pasternak model, this work captures the complex 
interactions between the composite beams and their surrounding environments, accounting for 
shear layer deformation, compressive stiffness, and damping effects. The beam's vibration 
behavior under various boundary conditions, loadings, and material configurations is examined 
using a first-order shear deformation structural beam model, the FEM, and Newmark technique. 
The results provide valuable insights into the dynamic characteristics of advanced composite 
structures, highlighting the potential of FG-BNNT/CF reinforcements to enhance mechanical 
performance and vibration control. The results provide a deeper understanding of the vibration 
characteristics of advanced composite structures, with particular focus on the control of vibrations 
in dynamic environments. The combination of FG-BNNT and CF reinforcements offers promising 
possibilities for enhancing the mechanical performance of composite beams, particularly in 
applications where maintaining structural integrity and controlling vibrations are essential for 
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operational safety and longevity. These findings are particularly relevant for applications such as 
aerospace components, marine structures, and high-speed transportation systems, where 
lightweight materials with superior damping properties are essential for durability, safety, and 
comfort. Particularly, the findings can be used in concrete engineering problems such as the design 
of aerospace components, marine structures, and high-speed transportation systems, where 
lightweight materials with superior vibration damping characteristics are crucial for ensuring 
structural durability, passenger comfort, and operational safety. Moreover, the study lays the 
groundwork for future research on intelligent vibration control strategies, including adaptive and 
neural network-based approaches, to further optimize vibration reduction in complex dynamic 
environments and expand practical engineering applications. Further research could delve into the 
use of intelligent control strategies, including adaptive techniques and neural network-based 
controls, to optimize vibration reduction in more complex dynamic environments, broadening the 
scope for practical implementations in engineering systems.  

Nomenclature 

Table 7. List of Nomenclatures 

 

𝑳 
Length of the composite beam 

𝜶𝑳 
Longitudinal reinforcement 
efficiency factor of the Halpin–
Tsai model 

𝐛 
width of the composite beam 

𝜶𝑻 
Transverse reinforcement 
efficiency factor of the Halpin–
Tsai model 

𝐡 
thickness of the composite beam 

𝝃𝑳 
Longitudinal geometry parameter 
of the Halpin–Tsai model 

𝐒 
cross-sections of the composite beam 

𝝃𝑻 
Transverse geometry parameter 
of the Halpin–Tsai model 

x, y, z 
Cartesian coordinates along the beam  

𝜼𝑳 
Longitudinal efficiency factor of 
the Halpin–Tsai model 

x 
Longitudinal coordinate along the length of 

the composite beam 
𝜼𝑻 

Transverse efficiency factor of the 
Halpin–Tsai model 

y 
Transverse coordinate of the composite beam 

𝝆𝑩𝑵𝑵𝑻/𝑷𝑴 
mass density of the FG-BNNT 
reinforced PM 

z Vertical coordinate of the composite beam 𝝆𝑩𝑵𝑻 mass densities of the BNNT 

𝑼𝟏 
global displacements of the beam in the x-

direction 
𝝆𝑷𝑴 mass density of the PM  

𝑼𝟑 
global displacements of the beam in the z-

direction 
𝒗𝑩𝑵𝑵𝑻/𝑷𝑴 

 Poisson's ratio of FG-BNNT 
reinforced PM 

𝒖𝟏 the mid-plane vertical displacements  𝑵𝟏𝟏 generalized membrane stress 

𝒖𝟑 the mid-plane axial displacements  𝑴𝟏𝟏 generalized bending stress 

𝜽𝟏 the mid-plane rotation about the 𝑦-axis 𝑵𝟏𝟑 generalized membrane stress 

𝒆𝟏𝟏 generalized membrane strain 𝑾int  internal strain energy 

𝜿𝟏𝟏 generalized curvature strain 𝑾𝒇 foundation strain energy 

𝝌𝟏𝟑 generalized transverse shear strain 𝑾ext  external work 

𝝈𝟏𝟏 axial stress 𝑾𝒌 kinetic energy 

𝝉𝟏𝟑 transverse shear stress 𝑰𝟎, 𝑰𝟏, 𝑰𝟐 Inertia resultants 

  𝒗𝑩𝑵𝑵𝑻 effective Poisson's ratio of BNNT 

𝒑𝟑 transverse sudden dynamic loads 𝒗𝑷𝑴 effective Poisson's ratio of PM 

𝑮𝑩𝑵𝑵𝑻/𝑷𝑴 
effective shear modulus of the FG-BNNT-
reinforced PM 

𝑽𝑩𝑵𝑵𝑻 volume fractions of the BNNT 

𝑬𝑳 
axial Young's moduli of the FG-BNNT-
reinforced PM 

𝑽𝑷𝑴 volume fractions of the PM  
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𝑬𝑻 
transverse Young's moduli of the FG-
BNNT-reinforced PM 

𝑽𝑪𝑭 volume fractions of carbon fiber 

𝑬𝑷𝑴 
Young's moduli of the PM 

𝑬𝒆𝒇𝒇 
Effective Young's moduli of the 
FG-BNNT/CF-reinforced PM 

𝑬𝑩𝑵𝑵𝑻 
Young's moduli of the BNNT 

𝑮𝒆𝒇𝒇 
shear modulus of the FG-
BNNT/CF-reinforced PM 

𝑬𝑩𝑵𝑵𝑻/𝑷𝑴 Young's modulus 
𝝆𝒆𝒇𝒇 

mass density of the FG-BNNT/CF-
reinforced PM 

𝑾𝑩𝑵𝑵𝑻 weight fraction of the BNNT 
𝒗𝒆𝒇𝒇 

Poisson's ratio of the FG-
BNNT/CF-reinforced PM 

𝝉𝟏𝟑 transverse shear stress 𝑰𝟎, 𝑰𝟏, 𝑰𝟐 Inertia resultants 
 

Table 8. List of abbreviations 

Abbreviation description 

FV forced vibration 

PM polymer matrix 

PMCBs polymer matrix composite material beams 

FG-BNNT functionally graded boron nitride nanotubes 

CF carbon fibers 

VEFs viscoelastic foundations 

DMLs dynamic mechanical loading 

BCs boundary conditions 

VWP Visco-Winkler-Pasternak 

FSDT first-order shear deformation theory 

MHTM modified Halpin-Tsai model 

ROM rule of mixtures 

FMM fiber micromechanics method 

HP Hamilton's principle 

FEM finite element 

NITINM Newmark implicit time integration numerical method 
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