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This paper aims to analyze the forced vibration (FV) behavior of polymer matrix
(PM) composite material beams (PMCBs), incorporating functionally graded
boron nitride nanotubes (FG-BNNT) and carbon fibers (CF) reinforcements,
supported on viscoelastic foundations (VEFs). The PMCBs are subjected to
dynamic mechanical loading (DMLs) under various boundary conditions (BCs).
The viscoelastic foundations supporting the PMCBs are used to simulate the
interaction between the composite beams and their surrounding media. The Visco-
Winkler-Pasternak (VWP) elastic foundation model is adopted to represent these
foundations. The structural behavior of PMCBs is analyzed based on the first-order
shear deformation theory (FSDT). The effective material properties are
determined through a combination of the modified Halpin-Tsai model (MHTM),
the rule of mixtures (ROM), and a fiber micromechanics method (FMM). The
governing equations of motion are derived using Hamilton's principle (HP) and
solved numerically via the finite element method (FEM) combined with the
Newmark implicit time integration numerical method (NITINM). After validation
studies, parametric analyses are conducted to analyze the impact of multiple
factors on the dynamic behavior of FG-BNNT/CF-reinforced PMCBs. This study
highlights the vibration behavior of advanced composite structures and their
potential use in designing and controlling smart materials and structures.

© 2025 MIM Research Group. All rights reserved.

1. Introduction

The vibrational behavior of structural elements, such as beams made from advanced composite
materials under dynamic loads and resting on viscoelastic foundations, can be observed in various
engineering applications [1-2], including the manufacturing of aircraft components, building
foundations, automotive suspension systems, and many others. Particularly in the modeling of
turbine blades in aircraft engines [3], they are subjected to extreme operating conditions, including
high vibrations, thermal loads, and significant mechanical dynamic loads [8]. Moreover, significant
efforts have been devoted to the analysis of the vibrational characteristics of plates and beams with
varying boundary conditions and geometric parameters [9].
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Nanocomposites represent an advanced class of composite materials [10], consisting of a matrix
reinforced with nanoscale fillers [11]. However, their primary challenge lies in the dispersion and
agglomeration of the nanofillers within the matrix [12]. Due to their small size, these fillers tend to
cluster, leading to an uneven distribution throughout the composite material, which may
significantly degrade its mechanical performance. To overcome the problem of filler
agglomeration, reinforcements are applied simultaneously at both macro and nanoscale levels [9].
The integration of reinforcement elements across multiple scales in these composite materials can
greatly enhance their mechanical and functional performance. In the literature, such materials are
commonly known as multi-scale hybrid composites [10].

Multi-scale hybrid composites represent an emerging class of materials, with their mechanical
response to various loading conditions having been extensively studied over the past decade [11-
13]. He et al. [14] investigated the nonlinear free and forced vibration characteristics of laminated
multiscale composite beams reinforced with carbon nanotubes (CNTs) and carbon fibers (CF)
embedded in a polymer matrix, within the framework of the classical beam theory. Ahmadi et al.
[15] investigated the bending, buckling, and free vibration of hybrid composites with a polymer
matrix reinforced with CF/CNT using FEM. In a related investigation, Ebrahimi and Dabbagh [16]
analyzed the vibrational response of multiscale hybrid nanocomposite plates employing the Halpin
Tsai model. Their findings revealed that such hybrid configurations exhibit enhanced natural
frequencies compared to conventionally reinforced composite counterparts.

Carbon-based fillers such as carbon nanotubes, graphene nanoplatelets, and graphene oxide
powders are the most commonly used for matrix reinforcement in nanocomposites and multi-scale
hybrid composites. Recently, boron nitride nanotubes (BNNTs) have emerged as promising
alternative nanoscale fillers. BNNTSs are a novel type of advanced reinforcement with advantageous
applications in polymer nanocomposites, owing to their chemical compatibility with polymers and
their remarkable mechanical, thermal, magnetic, and electrical properties. These nanotubes
enhance the tensile strength, modulus of elasticity, and thermal properties of polymer
nanocomposites. In addition, BNNTs are highly attractive as a nanofiller for high-temperature
integrated and structural applications due to their extreme thermal stability and excellent
mechanical properties [17]. Despite the numerous advantages of BNNTs, their integration with
carbon fibers remains limited. Therefore, one of the objectives of this work is to combine BNNTs
with carbon fibers to enhance the mechanical properties of matrix materials.

In many real-world applications, polymer matrix composite beams PMCBs interact with
surrounding materials. Therefore, for effective maintenance and optimal production of PMCBs, it
is essential to consider the effects of these interactions with a viscoelastic medium. Various
foundation models have been proposed to simulate the interaction between PMCBs and
viscoelastic foundations. The earliest model is the Winkler-type viscoelastic foundation. A more
advanced model is the Pasternak-type viscoelastic foundation, which accounts for the interaction
between discrete springs, unlike the Winkler model. The study of the mechanical behavior of
PMCBs resting on elastic and viscoelastic foundations has garnered significant attention [18 -21].

The existing literature on the dynamic response of two-phase and three-phase carbon-based
composite beams has predominantly focused on systems reinforced with carbon nanotubes (CNTSs)
and graphene platelets (GPLs) as nanoscale fillers, combined with carbon fibers (CFs) as
macroscale reinforcements. However, only a limited number of studies have investigated the
influence of viscoelastic foundations on the dynamic behavior of such nanocomposites. Moreover,
recent findings have highlighted the limitations inherent in relying solely on carbon-based fillers,
motivating the exploration of alternative nanostructures with superior mechanical and thermal
characteristics. Among the reviewed works, most have concentrated on plate structures, leaving
beam configurations comparatively underexplored.

In light of these gaps, investigating the dynamic response of composite structures reinforced with
CFs in combination with alternative nanoscale fillers emerges as a promising and novel research
direction. Accordingly, the primary objective of the present study is to analyze the dynamic
response of functionally graded (FG) boron nitride nanotube (BNNT)/CF-reinforced polymer
matrix composite beams resting on viscoelastic foundations under dynamic loading. In this work,
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the first-order shear deformation theory (FSDT) is used for structural modeling of PMCBs. The
effective material properties are determined through the modified Halpin-Tsai model (MHTM) and
the rule of mixtures (ROM), combined with a fiber micromechanics method (FMM). The equations
of motion are derived using Hamilton's principle (HP) and are solved using the finite element
method (FEM) along with the Newmark-# method. To the best of the authors’ knowledge, no
previous work has addressed the integration of FG-BNNTs with CFs as hybrid reinforcements in
composite beams supported by viscoelastic foundations and subjected to dynamic excitation. The
present work distinguishes itself through the following key contributions:

e Integration of functionally graded boron nitride nanotubes (FG-BNNTSs) and carbon fibers
(CFs) within a polymer matrix to achieve a multi-scale reinforcement architecture.

e Comprehensive analysis of the linear vibration response of the composite beams under
dynamic loading for various boundary conditions.

e Advanced modeling of the viscoelastic foundation using the Pasternak-type formulation,
incorporating both shear layer effects and damping characteristics.

e Hybrid use of micromechanical modeling and the finite element method (FEM) to determine
the effective material properties and evaluate the structural response with high fidelity.

The remainder of this paper is structured as follows. Section 2 presents a comprehensive
mathematical formulation of the problem under consideration. In section 3, the numerical solution
strategy is elaborated, employing the FEM in conjunction with the NITINM scheme. Section 4 is
devoted to the validation of the developed numerical model, followed by an in-depth parametric
analysis. Finally, Section 5 concludes the study by summarizing the principal findings and insights.

2. Mathematical Formulation

To further highlight these contributions and position the present study within the existing body of
research, a comparative synthesis is provided in Table 1. The table highlights the main types of
reinforcements, foundations, methods, analyzed vibration types, and limitations or gaps of
previous studies

Table 1. Comparison of existing studies on multi-scale hybrid composite beams and the present
work.

Reference Type of Foundation Theory / Vrl';[}),faeti%fn Main Limitation
Reinforcement Model Method / Research Gap
Analyzed
Free and Excludes BNNT
He etal. CNT + CF (multi- No Classical Beam forced reinforcement
[10] scale) foundation Theory nonlinear and viscoelastic
vibration effects
Ebrahimi
& CNT + CF + . . Refined Beam Free No FG_BNNTS.OF
. : Viscoelastic . . graded material
Dabbagh viscoelastic phase Theory vibration .
[9] distribution
Dynamic No composite
Yang et Homogeneous . : Timoshenko response . b
. Viscoelastic . reinforcement or
al. [17] material Beam Theory to moving
FG concept
load
No hybrid
Abdollahi BNNT reinforced . Timoshenko Free . CE/BNNT
& Yas olvmer Elastic Beam Theor vibration reinforcement or
[21] poy y viscoelastic
foundation
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Trigonometric Focus on
Merzouki FG porous Elastic shear Linear nonlocal effects,
etal. [3] nanocomposite deformation vibration not viscoelastic
beam theory damping
Introduces
Linear multi-scale FG-
CF + FG-BNNT . forced BNNT/CF
Present . . . Timoshenko vibration hybridization
hybrid Viscoelastic
work . Beam Theory under and advanced
nanocomposite . . .
various viscoelastic
BCs foundation
modeling

2.1. Problem Description

The structures considered in this examination are straight, slender composite beams with length L,
and rectangular cross-sections of area S = b X h where b, and h represent the width and thickness
of the beams, respectively. The composite beams under study are assumed to be subjected to
transverse sudden dynamic loads p, = p;(x, t) with various boundary conditions. These beams are
supported by viscoelastic foundations (VEFs), modeled using the Visco-Winkler-Pasternak (VW P)
elastic foundation model, which is characterized by the material properties K,,,K;,, and D¢, as
shown in Fig.1.
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Fig. 1. Geometry of FG-BNNT/CF-reinforced polymer matrix composite beams supported by
viscoelastic foundations, featuring various BNNT reinforcement patterns and subjected to
external transverse dynamic loads and boundary conditions (right), and polymer matrix cross-
sections with hybrid FG-BNNT and CF fillers (left)

The composite beams analyzed in this study are made of a polymer matrix (PM) material reinforced
with a combination of both macro-sized carbon fiber (CF) reinforcements and nano-sized BNNT
fillers, as shown in Fig. 1. The BNNT distribution is assumed to follow different functional grading
patterns, such as (FG-V-BNNT), (FG-O-BNNT), and (FG-X-BNNT), as well as a uniform distribution
(UD-BNNT) across the composite beam's thickness. The CF fillers are considered to be uniformly
dispersed (UD) within the polymer matrix.

2.2. Material Properties of the FG-BNNT /CF Reinforced PM Composite Beams

A homogenization procedure (HP) is utilized to determine the effective material properties of
the structure under investigation, as shown in Fig. 2. The homogenization procedure used is
developed through a two-step process, integrating a modified Halpin-Tsai model [22-23] with a
fiber micromechanical approach [24].
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[ Polymeric matrix (PM) ‘ Boron nitride nanotube (BNNT)] {Carbon fiber (CF)J

[BNNT reinforced nanocomposite]

[ Multi-scale hybrid nanocomposite

Fig. 2. Flowchart depicting the arrangement of materials in the formation of multi-scale hybrid
nanocomposites

2.2.1 Modified Halpin-Tsai Model for Predicting BNNT/PM Material Properties

Using the modified Halpin-Tsai model, the effective Young's modulus Egyyr/pu (2) of the FG-BNNT-
reinforced PM is given as follows:

Epnnrypm(2) = aLEL(2) + arEr(2) (1)

Here,a; = 3/8and a; = 1 — a;, where E; (z) and E(z) represent the axial and transverse Young's
moduli of the FG-BNNT-reinforced PM, respectively. They are calculated as follows:

1+ &, Veunr(2) 1+ &nrVennr(2)
E.(2) = Epy; Er(z) =
t 1—n.Vennr(2) PM =T 1 —n7Veynr(2) P (2)
With 5, and 5+ are given by:
N, = (Egnnt/Epm) — 1 gy = (Egnnt/Epm) — 1
b Epwnt/Erm) + & T (Esnnr/Epm) + ér (3)

In which Epy, and Egyyr represent the Young's moduli of the PM material and BNNT nanofillers,
respectively. The geometric parameters ¢; and & are determined as follows:

$L=2BL; §r =2 (4)

BNNT

Where f3; refers to the filler's aspect ratio determined as 8, = Z = 300, with Lgyyr and dgynt

BNNT
representing the length and diameter of the BNNT fillers, respectively. The volume fraction

Vennt(2) for the four FG distribution patterns is calculated as follows:
(VennT for (UD-BNT)

2z

V = 2
snr (2) <2(1 _%) Viwwr for  (FG-O-BNT) )
2|z ..
2(57)Vimnr  for  (FG-X-BNT)

Where Vgynr denotes the total volume fraction of BNNT, which can be approximated as:
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WennT
Wennr + (Pannt/Ppm) (1 — Weynr) (6)

* —
VBNNT -

In which ppy, and pgyyr represent the mass densities of the PM and BNNT reinforcements,
respectively, and Wgyyr denotes the weight fraction of the BNNT. The effective Poisson's ratio
vpnnt/pum (2) of the PMCBs is calculated using the ROM as follows:

UBNNT/PM (2) = vennrVennr (2) + vpuVen (2) (7)

Where Vpp(2) and Vgyyr(2) denote the volume fractions of the PM and BNNT reinforcement,
respectively. The volume fraction of the PM is provided by the following relation:

Vem(2) = 1 = Vgynr(2) (8)

The mass density pgyyr/py Of the FG-BNNT reinforced PM composite beams is determined by:

PBNNT/PM (2) = pentVent(2) + PpuVpm(2) 9)
The effective shear modulus Ggyyr/pm Of the FG-BNNT-reinforced PM composite beams can be
calculated as follows:

EBNNT/PM(Z)
2(1 + UpnnT/PM (Z)) (10)

GpnnT/PM (2) =

2.2.2. Micromechanical Scheme for Determining the Material Properties Of FG-BNNT/CF
Reinforced PM

The effective mechanical properties of the FG-BNNT/CF-reinforced PM are determined using the
micromechanical approach as follows:

fEeff(Z) = Ver(2)Ecr + VBNNT/PM(Z)EBNNT/PM(Z)
Goys (2) = (VCF(Z) VBNNT/PM(Z)>_1

Ger GnNT/PM (2)
Pesr(z) = Ver(2)pcr + Vennr/pm (2)pBNNT/PM(7)
\Verr(2) = Ver(2)ver + Vennr/pem (2)Vennt/pm

A

(11)

Where E, G, p denote the Young's modulus, shear modulus, Poisson's ratio, and mass density,
respectively. In Eq. (11), the superscripts CF and BNNT/PM refer to carbon fiber and BNNT
reinforced PM, respectively. Additionally, V¢r and Vgyyr/py represent the volume fractions of

carbon fiber and the polymer matrix reinforced with signle walled BNNT, respectively, and they
are related as follows:

Ver + Vennrpm = 1 (12)

The material properties of the PM, BNNT, and CF are listed in Table 2.
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Table 2. Material properties of the BNNT, PM, and CF [21, 22]

Parameter Values
Epp (GPa) 2.5
VUpum 0.3
ppu (kg/m?) 1190
Epynr(TPa) 1.064
VBNNT 0.14
pennr(kg/m®) 2270
Ecr(GPa) 233.05
Ger(GPa) 8.96
Ver 0.2
pcr(kg/m?) 1750

2.3. Displacement Field

By applying the 1D-FSDT for beams, the displacement field at a given point ( x, z ) within the beam
at time t can be expressed as:

Ul = u1 + Z01
U3 - ug (13)

Here, U; and U; are the global displacements of the beam, while u;, u3, and 8, denote the mid-plane
axial, vertical displacements, and rotation about the y-axis, respectively.
2.4. Strain Field
The vector of reduced strain for the FG-BNNT/CF-reinforced PMCBs is expressed as:
{511 =e11 T ZKyy

Y13 = X13 (14)

Where ey, k11 and y;3 denote the generalized membrane strain, curvature strain, and transverse
shear strain, respectively, and are defined as follows:

( 0uyy
€11 = ax
a6
0x
du,
13 = 5+ 6,

2.5. Constitutive Equations
The vector of reduced stresses for the FG-BNNT/CF-reinforced PMCBs is described as:
{011 = Q11811
713 = Uss5Y13 (16)

Where 0,4 and 7,3 represent the axial stress and transverse shear stress, respectively. The formulas
for the stiffness coefficients Q4 and Qg5 are:
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Eeff
Q1 = T—v7, ; Qss = Gegr (17)

The generalized membrane stress Ny, bending stress M,,, and transverse shear stress N;; are
defined as follows:

b/2 ,hJ2

N11 = f f (011)dzdy = Ae;y; + Bkqq
b/2 J-h/2
b/2 h/2

< M11 = f J (ZO'll)dZdy = B€11 + DK11 (18)

b/2 J-n/2
b/2 h/2

N13 = f J. (t13)dzdy = Sy;3
b/2 J-n/2

With, 4, B, D, and S denote the axial, coupling, bending, and shear rigidities, respectively.

b/2 (h/2
W50 = [ [ (i ksQss, 7 Qu)dzdy 19)
b/2 /-h/2
where k¢, = 5/6 denotes the shear modification parameter.
2.6. Weak-Form Dynamical Equation

The equations of motion for the FG-BNNT/CF-reinforced PMCBs follow from Hamilton's principle
[23]:
ty
(6Wine + 6Ws — §Woye — Wy )dt = 0 (20)
t1

where Wi, , Wr, Wey,, and W, denote the internal strain energy, foundation strain energy, external
work, and kinetic energy of the FG-BNNT/CF beam, respectively, defined as:

5Wmt = f (N110ey1 + My 6Ky5 + Ni3bxi3)dx
+b/2 dus  80us
Wy —f J usK,,du; + 7% —K,—— e + 13D, 6u3> dydx
b/2

] +b/2 (21)

W,y = f f D58ty dydx
~b/2

\ SWy, = f (W 1g60y + 041,60, + 011,60, + 011,80, + U3l S15)dx
0

With dot above a function signifies partial differentiation with respect to the time variable t. The
inertia resultants Iy, I; and I, are defined as follows:

b/2 ~h/2
(o Iy, 1) = f f (p(2), 2p(2), 2%p(2))dzdy 22)

b/2 J=h/2
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3. Solution Procedure Based on The FEM With The NITINM
In this section, the FEM [28,29] and the NITINM [30] are applied to solve the governing equations.
3.1. Spatial approximation using FEM

In this study, two-noded C° beam elements with a length of (®) and three degrees of freedom per
node are employed to discretize the kinematic variables. The axial displacement u,, deflection us,
and rotation 8, are interpolated using linear Lagrangian shape functions as follows:

U1 (&) =< Ny(6) > {d@}
u3(§) =< Ny(&) > {d@} (23)
6,(§) =< N.(§) > {d®}

Where {d(e)} represents the nodal displacement vector for the e th element, defined as:

{d®@} =< u},ul, 0}, u2,ul 02 >T (24)

Where ui, u, 81, u%,u3, and 67 denote the axial displacement, deflection, and rotation at nodes 1
and 2 of the eth element, respectively. The vectors (N,), (N;) and (N,.) are row vectors consisting of
cO shape functions, and are defined as follows:

(Na($)) = (N1(£),0,0, N>(£),0,0)
(Nq(§)) = (0,N,(£),0,0, Nz (£),0) (25)
(N-(§)) = (0,0, N1(£),0,0, N, (£))

Where N; (¢) and N, (§) are the standard linear shape functions, defined as:

{Nl(f) =(1=48)/2
N (§) = (1+8)/2 (26)
Where & € [-1,1] represents the natural coordinates, expressed as&(x) = —1 + 2x/1(®), By

applying Egs. (15) And (23), the generalized strains e;4, k11 and y;3 can be expressed in terms of
the nodal degrees of freedom as:

e11(§) =< Bn(§) > {d}
k11(8) =< By(§) > {d} (27)
X13(8) =< By(§) > {d©}

Where the kinematic vectors (B,,), (B,) and (B;) are defined as:

CAEE
$(By) = %<dd1?> (28)
L) =S

Where Z—i = 1/det(J), with det(J) being the Jacobian, equal to 1(¥) /2. By applying Eqgs. (20), (21),
(23), and (27), the discretized governing equation is derived as:

[MINUI ()} + [CIHUI (O} + [KIHUI ()} = {F (D)} (29)
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Here,[MY], [CY], [K9], and {F9} denote the global mass, damping, stiffness matrices, and external
force vector, respectively, assembled as follows:

e=N¢lem

(MoL[co) (ke Py op = ) (M@ [c@LKOL{FOLU®@) o)

With
{[K(e)] — [Kmme] + [Kbbe] + [Ksse] + [wae] + [Kpfe]
[M(e)] — [Mmme] + [Mbbe] + [Msse] (31)

Where the element matrices are defined as:
1@ 1® NG}

[Kmme] = f (B,}A < By, > dx + f (B,JA < By > dx + f (B,}A < B, > dx
0 0 0
1(e
[Kbbe] = f (B,}D < B, > dx
0
1
[K5%] = f (BJC < B, > dx
0
1(e
[KWfe] = f {N,}bK,, < N, > dx
0

1(e
dé (dN, d¢  dN,
pfe )¢ 2 <
[P fo dx{df}prdx< a
G} e e (32)
[Mmme] - f (NMy < N, > dx + f N, <N, > dx + f (N3, < N, > dx
0 0 0
1(e
[MPPe] = f {N,}I, < N, > dx
0
1(e
[Msse] = J {Ny}l, < N; > dx
0
1
[c®] = f {N,}bC, < Ny > dx
0
1(e
k{F @ = f b{Ny}psdx
0

The equation of motion (Eq. 29) is completed by the essential boundary conditions, which are given
in the next section (Egs. 38, 39, and 40).

3.2. Temporal Approximation Using The NITINM

In this study, the NITINM is employed to solve Eq. (29). This method allows the approximation of
the velocity {U9(t + At)} and acceleration {U9(t + At)} vectors at time t + At as follows [30]:

{{09@ + At} = ag (UI(t + AD)} — {U9(1)}) — af {U9 (1)} — a3 (U9 ()}
(U9t + A} = {U9(0)} + a¥{U9(0)} + al {U9(¢t + AL)} (33)

Where At is the time step, the coefficients a?, a¥, a,ay, a¥, a¥,a, and a¥ are defined as:
0,01,07,03,0y,0s5,0¢ 7

10
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(a) = 1/(aVAt?)

al =6V /(aVAt)

a) = 1/(aVAt)

al =1/Qa") -1

ay =6V/aVN -1 (34)
af = (At/2)(6N /a - 2)

al = At(1 - 6V)

\all = 6N AL

Where 6" and a” are the Newmark parameters, selected as 0.5 and 0.25, respectively. Applying
Eq. (33), the resulting algebraic equations are:

{[kg]HAt{U‘g(t + A)} = {ﬁ'}t,t+At (35)

Where {U9(t + A)} represents the global generalized displacement at time t + A. The effective
stiffness matrix [RQ]HM and the load vector {ﬁ'}t,t+At at time t + At are defined as:

[kg]HAt = [K9]¢rae + ag [M9]erae + ad' [CO]pine

(Fleerae = (Fleeae + IM9p4ac (@ {U9 (0} + a3 (U9 (D)} + a {T9 (D)) (36)
+[C]+ac (@ {U(O} + ad (U9 (O} + ag{U9 (D)D)
The acceleration vector {U/9(0)} is determined at t = 0 as follows:

(U90)} = [M9] " ((F}o — [C9]{09(0)} — [RI](U9(0)}) (37)

4. Results and Discussion

This section examines the linear forced vibration characteristics of polymer matrix composite
beams (PMCBs) reinforced with hybrid functionally graded boron nitride nanotubes and carbon
fiber (FG-BNNT/CF). The FG-BNNT/CF reinforced PMCBs are subjected to a vertical sudden
dynamic load and analyzed under two types of boundary conditions, supported by viscoelastic
foundations as shown in Figure 1. Four different BNNT distribution patterns are considered, with
carbon fiber uniformly distributed. The study investigates how the BNNT weight fraction, BNNT
distribution patterns, carbon fiber volume fraction, elastic foundation stiffness, and boundary
conditions affect the dynamic behavior of FG-BNNT/CF reinforced PMCBs.

4.1. Preliminary Remarks
Unless stated otherwise, the geometric properties of the PMCBs are provided in Table 3.

Table 3. Geometric characteristics of the PMCBs

Parameter Values
L(m) 1
b(m) 1
h(m) 0.01

The analysis considers only a sudden vertical dynamic load, p3(x,t) = 1 N/m, as indicated in

11
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pzn

Jo

0 >t
Fig. 3. The sudden transverse dynamic load applied to the FG-BNNT/CF reinforced polymer
matrix composite beams

Three types of boundary conditions, which are clamped-clamped (C-C), simply supported-simply
supported (S-S), and clamped-free (C-F) are considered in this paper:

_ 'u1=U3=91=03tx=O

(© C)'{u1=u3=91=0atx=L (38)
o fur=uz=0atx=0

(s S)'{ul =u;=0atx =1 (39)

(C—F)uy=uz3=0,=0atx=0 (40)

4.2. Numerical Convergence and Comparative Validation

To evaluate the accuracy and validity of the current numerical model using FEM with NITINM based
FSDT, convergence studies were first performed on a C-C elastic homogeneous isotropic beam. The
beam's geometric and material specifications are specified as follows [27]:

Li=1m ; L,=1m ;h=001m (41)

The external force vector is assumed to be null, and the beam is initialized with the following
conditions:

us(x,0) = sin (mx) — mx(1 — x) forx € [0, L]
Ju3 (x,0) = 0 for x € [0, L]

0:(x,0) = —mcos (nx)+m(1l—2x) forx € [0,L] (42)
6,(x,0) = 0 for x € [0,L]

The Newmark integration parameters are chosen as 8" = 1/2,a" = 1/4, with a time increment of
At = 0.005s. Figure 4 illustrates the time history of the transverse displacement at the beam's mid-
span for various element discretizations Ngjep, -

Figure 4 indicates that the optimal number of elements is 100. Consequently, this value will be
utilized for the subsequent numerical analyses. The comparison in Table 6 highlights the accuracy
of the proposed method against reference FEM solutions based on Euler-Bernoulli beam theory
(EBT) and Timoshenko beam theory (TBT). The displacement histories obtained from the present
approach exhibit almost perfect agreement with both reference models. The maximum deviation
with respect to FEM (EBT) is less than 0.2%, while the deviation with respect to FEM (TBT) remains
below 1.3% throughout the entire time interval. Such small errors confirm that the present
formulation can reliably capture the dynamic response of beams, while maintaining computational
efficiency. These results provide strong validation of the proposed methodology and demonstrate
its consistency with established finite element solutions.
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Fig.4. Central transverse displacement u3(0.5,t) versus time t with different numbers of
elements N, for a C-C isotropic homogeneous elastic beam.

Table 4. Quantitative validation of the present method through comparison with FEM (EBT and
TBT) solutions, including relative percentage errors

Method
Time
us(Present) uz(EBT) uz(TBT) Err vs EBT Err vs TBT
(%) (%)

0 2.1460 2.146 2.146 0.000 0.000
0.01 2.0974 2.098 2.100 0.029 0.124
0.02 1.9504 1.951 1.953 0.031 0.133
0.03 1.6978 1.698 1.695 0.012 0.165
0.04 1.3501 1.350 1.342 0.007 0.604
0.05 0.9363 0.935 0.929 0.139 0.786
0.06 0.4844 0.483 0.484 0.290 0.083
0.07 0.0184 0.018 0.016 2.222 15.000
0.08 —0.4536 —0.455 —0.469 0.308 3.284
0.09 —0.9140 —0.916 —0.937 0.218 2.455
0.10 —1.3330 —1.336 —1.349 0.225 1.186
0.11 —-1.6799 —1.682 —1.680 0.125 0.006
0.12 —1.9307 —1.932 —-1.931 0.067 0.016
0.13 —2.0864 —2.087 —2.100 0.029 0.648
0.14 —2.1478 —2.148 —2.168 0.009 0.932
0.15 —2.1105 —-2.111 —2.116 0.024 0.260

Figure 5 demonstrates the time-step sensitivity of the Newmark integration scheme for the central
deflection of the homogeneous isotropic beam. The results for At = 0.005 s and finer (At = 0.0005
and 0.00005 s) are indistinguishable, while At = 0.01 s introduces only a negligible deviation in
amplitude. This confirms that At = 0.005 s is adequate for the homogeneous validation cases. For
the composite parametric study, a smaller increment At = 0.0005 s was adopted to safely capture
the higher-frequency response. For the first validation study, we consider the free vibration
response of functionally graded beams with the following geometric and material parameters:
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L=352x10"*m;bh=352%x10"m;h=17.6 X 10" m

E, =144 GPa; E, =144 GPa; v=10.38; K —5(1+V)
1= . a; B, = 1. a, Vv =>u. ; s—m (43)
p1 =122 X 10%g/m; p, = 1.22 x 103 kg/m

The rotary inertia is included in the present study. Table 5 contains the results for homogeneous (
n = 0 ) and functionally graded (n # 0 ) compared to the same given by Reddy [27].
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Fig. 5. Central transverse displacement u3(0.5,t) versus time t with different time steps At for
a C-Cisotropic homogeneous elastic beam.

Table 5. First three natural frequencies ((I)n = wnLZ/,/pZAO/EZ) of simply-supported FGM beams

n W1 aps W3
ref [27] Present ref [27] Present ref [27] Present

9.83 9.8353 38.82 38.9412 85.63 86.2024

1 8.67 8.6730 34.29 34.3826 75.79 76.0537
10 10.28 10.2898 40.47 40.5756 88.80 88.2976

A close agreement between the two solutions demonstrates the accuracy and reliability of the
present approach. For the second validation study, we consider an isotropic, homogeneous elastic
beam with the following initial conditions:

usz(x,0) = cosh (Ax) — cos (Ax) — (cos (AL) + cosh (AL))/(sin (AL) for x € [0, L]
{ +sinh (AL))(sinh (Ax) — sin (1x))
6,(x,0) = A(sinh (Ax) + sin (Ax)) — (cos (AL) + cosh (AL))/(sin (AL) for x € [0, L] (44)
+sinh (AL))(cosh (Ax) — cos (Ax))A

Where A = 1.8751/L. The geometric and material parameters are provided in Eq. (41). The
analytical solution is given as:

us(x,t) = (cosh (Ax) — cos (Ax) — (cos (AL) + cosh (AL))/(sin(AL)
+ sinh (AL))(sinh (Ax) — sin (Ax)))cos (wt) (45)

Inwhich w = A2,/(EI/pA).Fig. 6 presents graphs of the central transverse displacement u3 (0.5L, t)
versus time t for both the current FEM-based numerical model and the exact solution (Eq. (44)).
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Fig. 6. Central transverse displacement u3(0.5L, t) versus time t obtained by FEM and
compared to the exact solution

Figure 6 demonstrates that our results closely align with the exact solution, confirming the
accuracy and reliability of the current numerical model. In the final verification numerical
experiment, a straight, thick ( L = 2m,b = 0.2 m, h = 0.6 m) elastic homogeneous isotropic beam
was investigated where both rotary inertia and known shear deformation effects were considered.
The beam's left boundary is fixed (i.e., u, = u, =6, = 0 at = 0), free at the right end (x =L, ),
and subjected to a uniformly distributed sudden dynamic transverse load of intensity py =
100kN/m. The material properties of the beam are: = 50GPa, v = 0.2, p = 2500 kg/m3, and since
the FSDT is adopted, a shear correction factor of 5/6 is applied. The initial conditions are taken as
zero displacement and zero velocity vectors. For the numerical analyses, the following parameters
are employed: Ngje, = 100, the total duration of the simulation is T = 0.05s, the temporal step size
is At = 107%s, with 6" = 1/2 and a” = 1/4. Figure 6 shows a comparison of the tip vertical

displacement u3 (L4, t) as a function of time ¢, obtained using Abaqus and the proposed numerical
approach.

x 10

— Abaqus - - =Present

Deflection, ug(L,t)

0 0.01 0.02 0.03 0.04 0.05
Time, t

Fig. 7. Tip transverse displacement u3(L, t) versus time t obtained by FEM and compared to the
Abaqus solution

It is evident from Fig. 7 that the obtained results exhibit excellent agreement with those derived
from the Abaqus software. Based on the presented numerical experiments, it can be concluded that
the proposed approach accurately simulates the linear dynamic response of thick elastic beams.
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To assess the accuracy and consistency of the adopted micromechanical modeling approaches, a
comparative analysis is conducted between the Rule of Mixtures (ROM) and Mori-Tanaka (MT)
homogenization schemes.

Table 6. Comparison of Root Mean Square Errors (RMSE) between the adopted micromechanical
model and the Mori-Tanaka (MT) homogenization approach under C-C boundary conditions,
considering various distribution patterns, carbon fiber volume fractions, and BNNT weight
fractions

Distribution patterns Ver Wrco RMSE

0.5% 7.3241 % 107°

0.01 1% 5.7537 x 107°

2% 3.4636 x 107°

UD 0.5% 1.9260 x 1078
0.03 1% 1.6820 x 108

2% 1.2020 x 10~8

0.5% 6.3670 x 107°

0.01 1% 42712 x 107°

2% 1.5103 x 107°

FG-X 0.5% 1.7238 x 1078
0.03 1% 1.3566 x 1078

2% 7.1389 x 10~°

0.5% 8.2724 x 10~°

0.01 1% 7.5901 x 10~°

2% 6.0033 x 10~°

FG-0 0.5% 2.1208 x 1078
0.03 1% 2.0429 x 1078

2% 1.8197 x 108

0.5% 7.4346 x 107°

0.01 1% 6.0719 x 10~°

2% 4.0710 x 10~°

FG-V 0.5% 1.9400 x 1078
0.03 1% 1.7231 x 1078

2% 1.2995 x 1078

Table 6 presents a comparison of the Root Mean Square Error (RMSE) between the Rule of Mixtures
(ROM) and Mori-Tanaka (MT) homogenization approaches for the case of C-C beam with different
distribution patterns (UD, FG-X, FG-O, FG-V), carbon fiber volume fractions ( Vor ), and BNNT
weight fractions ( Wyt )- The RMSE values are consistently very low across all cases, generally in
the order of 1072 to 1078, indicating excellent agreement between the two homogenization
methods. These results confirm that both, the adopted micromechanical model and MT
homogenization approaches yield highly consistent dynamic responses for nanocomposite beams,
with differences that are negligible for engineering purposes. The choice of homogenization
method can be guided by convenience and computational cost, particularly in cases with complex
distribution patterns or high fiber contents.

4.3. Parametric Analysis

In this subsection, we present results to investigate the impact of various geometric and material
parameters on the linear forced vibration response of FG-BNNT/CF reinforced polymer matrix
composite beams. The geometric and material properties of the considered PMCBs are provided in
Table 1. For the numerical analyses, the following parameters are used: the number of elements
Ngem = 100, the total simulation time T = 0.5 s, the time step At = 0.0005s, with ¥ = 1/2 and
a” = 1/4. Additionally, both the initial displacement and velocity vectors are assumed to be zero.
In all the parametric studies conducted, C-C (Eq. (38)), S-S ((Eq. (39))), and C-F (Eq. (40)) boundary
conditions are considered.
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4.3.1. Influence of BNNT Weight Fraction

In this study, the influence of the BNNT weight fraction ( Wgyyr ) on the dynamic behavior of FG-
BNNT/CF reinforced PMCBs without VEFs ( K,, = K, = Cp, = 0 ) is evaluated. Different values of
BNNT weight-fractions (0%, 0.5%, 1%, and 2% ) with a UD BNNT distribution are considered. The
CF volume fraction is taken as V.r = 0.01. Figs. 8(a), 8(b), and 8(c) present the central vertical
displacements of C-C, S-S, and C-F FG-BNNT/CF reinforced PMCBs subjected to a vertical dynamic
step load.

’ x 10
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g g
e 2
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a A 0.5

0 0.1 0.2 0.3 0.4 0.5

Time, t Time, t
(a) C-C FG-BNNT/CF reinforced PMCBs (b) S-S FG-BNNT/CF reinforced PMCBs
15X 107 | .
al — Waanr = 0% ]
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e 21
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(c) C-F FG-BNNT/CF reinforced PMCBs

Fig. 8. Central transverse displacement u3(0.5L, t) versus time t for FG-BNNT/CF reinforced
PMCBs with varying BNNT weight fractions under C-C (8(a)), S-S (8(b)) and C-F (8(c))
boundary conditions

Figures 8(a), 8(b), and 8(c) show that increasing the BNNT/CF weight fraction Wgyyr affects the
amplitude and period of the central vertical displacement in FG-BNNT/CF reinforced PMCBs
because higher reinforcement content enhances the stiffness and mass distribution of the beam,
increasing its resistance to bending and altering its natural frequency. Specifically, higher BNNT/CF
weight fractions lead to a reduction in both amplitude and period, since the stiffer material reduces
dynamic deflections and accelerates the vibrational response, effectively shortening the oscillation
period. This effect is significant under both boundary conditions. Additionally, the maximum
amplitude and period of the central vertical displacement are observed under S-S boundary
conditions, compared to C-C BCs because simply-supported beams are less constrained, allowing
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larger deflections and longer vibration periods, with the C-F beam consistently showing higher
amplitudes and temporal periods compared to both C-C and S-S cases as the cantilever-free
configuration is inherently more flexible, amplifying the impact of dynamic loads on both
displacement magnitude and oscillation duration.

4.3.2. Influence of BNNT Distribution Patterns

To investigate the impact of BNNT distribution patterns on the time-history curve of central
vertical displacement in FG-BNNT/CF reinforced PMCBs without a viscoelastic foundation, four
BNNT distribution patterns (UD, FG-X, FG-0, and FG-V) are analyzed. The CF volume fraction is set
atVor = 0.01 and the BNNT weight fraction is chosen as Wgynr = 1%. Figures 9(a), 9( b), and 9(c)
present the time-history curves of central vertical displacement for UD and three types of FG-BNNT
reinforced PMCBs under a vertical dynamic step load, with C-C, S-S, and C-F boundary conditions,
respectively.
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Fig. 9. Central transverse displacement u3(0.5L, t)over time t for FG-BNNT/CF reinforced
PMCBs with different BNNT distribution patterns under DL with C-F (9(a)), S-S(9(b) ) and S-S
(9(c)) boundary conditions

As shown in Figs. 9(a), 9(b), and 9(c) for both C-C, C-F, and S-S BCs, the FG-O-BNNT reinforced
PMCBs exhibits the highest amplitude and period of central vertical displacement, whereas the FG-
X-BNNT configuration shows the lowest values because the O-type distribution concentrates the
stiff BNNTSs near the surfaces, increasing the bending rigidity and natural frequency, while the X-
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type distribution spreads the reinforcement more uniformly, reducing the beam’s ability to resist
transverse deformation. Therefore, it can be concluded that distributing BNNT near the top and
bottom surfaces of the FG-BNNT reinforced PMCBs is the optimal choice for enhancing the global
rigidity of the PMCBs since this placement maximizes the moment of inertia and improves the
beam’s resistance to bending under dynamic loads, effectively reducing vibration amplitude and
period. The influence of the BNNT distribution patterns on the dynamic response is more
significant for the C-F beams compared to the S-S and C-C cases because the initially flexible C-F
beams experience larger dynamic deflections, making the effect of reinforcement heterogeneity
more pronounced on their vibration characteristics. This is attributed to the enhanced flexibility of
the C-F configuration, which amplifies the impact of material heterogeneity on the vibration
characteristics.

4.3.3. Influence of BNNT Geometrical Parameters

To investigate the influence of BNNT geometrical parameters on the central vertical displacement
of PMCBs reinforced with FG-BNNTs, the FG-X distribution model is adopted. The mass fraction of
BNNTs is fixed at Wyt = 1%, while the volume fraction of carbon fibers is set to Vo = 0.03. The
viscoelastic foundation parameters, namely K,,,( N/m?), K,(N/m),and D.(N - s/m?), are assumed
to be zero. Four aspect ratios, namely 100,200,300, and 400, are considered. The time-history
curves of the central vertical displacement of FG-X-BNNT reinforced PMCBs, subjected to a step-
type vertical dynamic load, are presented in Figures 10(a),10(b), and 10(c) for the C — C,S — S,
and C — F boundary conditions, respectively.

The effect of the aspect ratio is clearly observed in the dynamic response of FG-BNNT reinforced
PMCBs. As the aspect ratio increases from 100 to 400, both the amplitude and the oscillation period
of the central vertical displacement decrease significantly, reflecting the higher global stiffness of
slender beams. This trend is consistent across all boundary conditions, although the reduction is
more pronounced for the C-F case due to its greater flexibility. Consequently, higher aspect ratios
contribute to improved structural rigidity and vibration resistance, highlighting the crucial role of
geometric parameters in optimizing the dynamic performance of FG-BNNT reinforced PMCBs.

x107° | 4% 107

Deflection, u3(0.5L,t)
Deflection, 113(0.5L,t)

0z
Time, t

(a) C-C FG-BNNT/CF reinforced PMCBs (b) C-F FG-BNNT/CF reinforced PMCBs
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Fig. 10. Time-history curves of the central transverse displacement u5(0.5L, t) of FG-BNNT/CF
reinforced PMCBs with different BNNT aspect ratios under dynamic loading for (a) C-F, (b) S-S,
and (c) C-C boundary conditions

4.3.3. Influence of Viscoelastic Damping Coefficient

To examine the effect of the viscoelastic damping coefficient on the central vertical displacement
of FG-BNNT reinforced PMCBs, the FG-X distribution pattern is used. The BNNT weight fraction is
set at Wyyyr = 1% with a CF volume fraction of V. r = 0.01. The viscoelastic foundation
parameters K,,(N/m?) and K,(N/m) are assumed to be zero, while the damping coefficient
D.(N.s/m?) varies from 0 to 5 X 102. The time-history curves of central vertical displacement for
FG-X-BNNT reinforced PMCBs under a vertical dynamic step load are depicted in Figures 11(a),
11(b), and 11(c) for C-C, S-S, and C-F BCs, respectively.

Figs. 11(a), 11(b), and 11(c) illustrate that the damping parameter significantly affects the dynamic
response of FGBNNT/CF reinforced PMCBs because damping dissipates vibrational energy,
reducing the system’s Kinetic energy and limiting the amplitude of oscillations. As the damping
coefficient increases, the amplitude of central vertical displacement decreases exponentially since
higher damping removes energy from the system more efficiently, shortening the duration and
intensity of vibrations under dynamic loads.
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Fig. 11. Central transverse displacement u5(0.5L, t) over time t for FG-BNNT reinforced PMCBs
with different viscoelastic damping coefficients D, under DL with C-C (9(a)), S-S (11(b)) and C-
F (11(c)) boundary conditions

The damping effect is particularly prominent in the C-F configuration, where the initial high
flexibility allows for greater energy dissipation compared to the more constrained C — Cand S — S
beams because flexible beams experience larger oscillations, which generate more strain energy
that can be absorbed by the damping mechanism, leading to a stronger reduction in vibration
amplitude.

4.3.4. Influence of Winkler and Shear Viscoelastic Foundation Parameters

The effects of Winkler and shear layer stiffness on the dynamic behavior of thin FG-BNNT/CF
reinforced PMCBs with C-C and S-S boundary conditions under a transverse load of 1 N/m on a
viscoelastic foundation are investigated. The BNNT weight fraction is set at Wgyyr = 1% with a CF
volume fraction of Vg = 0.01 and a damping coefficient of D, = 10 N.s/m3. We examine three
values for the Winkler foundation stiffness K, = (0,1 x 10%,5 x 10*) and the shear layer
parameter K, = (0,1 x 103,5 x 103). Figs. 12(a), 12(b), and 12(c) present the central transverse
displacement versus time for various values of the elastic foundation coefficients.
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Fig. 12. Central transverse displacement u5(0.5L, t) versus time t for FG-BNNT reinforced
PMCBs with different viscoelastic coefficients (K, and K,,) under DL with C-C (12(a)), S-S
(12(b)) and C-F (12(c)) boundary conditions

From Figs. 12(a), 12(b), and 12(c) it is observed that, as anticipated, that the central transverse
displacement of the FG-BNNT/CF reinforced PMCBs decreases with increasing elastic foundation
coefficients because a stiffer foundation provides higher reactive forces that counteract the
dynamic bending of the beam, effectively increasing the system’s overall dynamic stiffness. This
outcome aligns with expectations because higher elastic foundation stiffness typically results in
greater resistance to deformation, thereby reducing the amplitude of transverse displacement
under the applied load as the beam’s natural vibration is constrained by the foundation, leading to
lower vibration amplitudes and modified dynamic response. The increase in Winkler and
Pasternak foundation stiffness coefficients significantly suppresses the vibration amplitudes across
all boundary conditions since the Winkler component resists local deflections while the Pasternak
shear layer distributes the dynamic load more evenly, damping out oscillations. The C-F beams
exhibit the most noticeable decrease in amplitude, reflecting their greater sensitivity to the elastic
foundation parameters compared to the more rigid C — C and S — S beams because initially flexible
beams experience larger dynamic displacements, so any increase in foundation stiffness has a
proportionally stronger effect on their vibration suppression.

4.3.5. Influence of CF Volume Fraction

To assess the impact of CF volume fraction V. on the central vertical displacement of FG-BNNT/CF
reinforced PMCBs, we consider C-C and S-S BCs with a UD transverse step load of 1 N/m applied to
PMCBs resting on VEF ( K,, =5 x 10%, K, = 5 x 103, and D, = 10 ). The BNNT weight fraction is
set at Wyyr = 1% with an FGX distribution pattern. Figures 13(a), 13(b), and 13(c) display the
central transverse displacement versus time for various CF volume fractions.

From Figs. 13(a), 13(b), and 13(c) it is observed that as the CF volume fraction increases, the
stiffness and strength of the PMCBs increase due to the enhanced load-bearing capacity of the CF,
which improves the overall structural rigidity and resistance to deformation. This leads to a
reduction in the amplitude of transverse displacement under given DMLs and BCs because the
stiffer material can better resist bending and shear effects induced by dynamic loads. Conversely,
a lower CF volume fraction results in a less stiff composite material. This lower stiffness means the
beam is more flexible, leading to a larger amplitude of transverse displacement under the same
loading conditions as the material offers less resistance to bending, allowing greater deflection
under applied loads. However, the reduction is more substantial for the C-F beams due to their
inherently lower stiffness, making them more sensitive to material reinforcement.
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Fig. 13. Central transverse displacement u3(0.5L, t) as a function of time t for C-C (13(a)), S-S
(13(b))and C-F (13(c)) boundary conditions, for different values of CF volume fraction

5. Conclusion

A detailed analysis was presented in this paper of the linear forced vibration analysis behavior of
polymer matrix composite structural beams strengthened with an assembly of functionally graded
boron nitride nanotubes and car bon fibers, supported by viscoelastic foundations under dynamic
loads. Through the use of the Visco-Winkler-Pasternak model, this work captures the complex
interactions between the composite beams and their surrounding environments, accounting for
shear layer deformation, compressive stiffness, and damping effects. The beam's vibration
behavior under various boundary conditions, loadings, and material configurations is examined
using a first-order shear deformation structural beam model, the FEM, and Newmark technique.
The results provide valuable insights into the dynamic characteristics of advanced composite
structures, highlighting the potential of FG-BNNT/CF reinforcements to enhance mechanical
performance and vibration control. The results provide a deeper understanding of the vibration
characteristics of advanced composite structures, with particular focus on the control of vibrations
in dynamic environments. The combination of FG-BNNT and CF reinforcements offers promising
possibilities for enhancing the mechanical performance of composite beams, particularly in
applications where maintaining structural integrity and controlling vibrations are essential for
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operational safety and longevity. These findings are particularly relevant for applications such as
aerospace components, marine structures, and high-speed transportation systems, where
lightweight materials with superior damping properties are essential for durability, safety, and
comfort. Particularly, the findings can be used in concrete engineering problems such as the design
of aerospace components, marine structures, and high-speed transportation systems, where
lightweight materials with superior vibration damping characteristics are crucial for ensuring
structural durability, passenger comfort, and operational safety. Moreover, the study lays the
groundwork for future research on intelligent vibration control strategies, including adaptive and
neural network-based approaches, to further optimize vibration reduction in complex dynamic
environments and expand practical engineering applications. Further research could delve into the
use of intelligent control strategies, including adaptive techniques and neural network-based
controls, to optimize vibration reduction in more complex dynamic environments, broadening the
scope for practical implementations in engineering systems.

Nomenclature

Table 7. List of Nomenclatures

Length of the composite beam Longitudinal reinforcement
L a efficiency factor of the Halpin-
Tsai model
width of the composite beam Transverse reinforcement
b ar efficiency factor of the Halpin-
Tsai model

thickness of the composite beam Longitudinal geometry parameter

h S of the Halpin-Tsai model
S cross-sections of the composite beam £ Transverse geometry parameter
T of the Halpin-Tsai model
YV 7 Cartesian coordinates along the beam Longitudinal efficiency factor of
Y . the Halpin-Tsai model
X Longitudinal coordinate along the length of Transverse efficiency factor of the
the composite beam I Halpin-Tsai model
Transverse coordinate of the composite beam mass density of the FG-BNNT
y PBNNT/PM  Loinforced PM
7 Vertical coordinate of the composite beam PBNT mass densities of the BNNT
global displacements of the beam in the x- .
U, direction Ppru mass density of the PM
U global displacements of the beam in the z- v Poisson's ratio of FG-BNNT
3 direction BNNT/PM reinforced PM
uy the mid-plane vertical displacements Niq generalized membrane stress
us the mid-plane axial displacements My, generalized bending stress
0,4 the mid-plane rotation about the y-axis Nis3 generalized membrane stress
e, generalized membrane strain Wi internal strain energy
Ky,  8eneralized curvature strain w; foundation strain energy
xq13  generalized transverse shear strain W s external work
011 axial stress W, kinetic energy
Tq3  transverse shear stress Io 14,1, Inertia resultants
VBNNT effective Poisson's ratio of BNNT
Ps3 transverse sudden dynamic loads Vpy effective Poisson's ratio of PM
GpnnT/E I?Zfiflcfg:fefjh;l?{ modulus of the FG-BNNT- Vennt volume fractions of the BNNT
E, axial Young's moduli of the FG-BNNT- Vou volume fractions of the PM

reinforced PM
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transverse Young's moduli of the FG-

Ey BNNT-reinforced PM Ver volume fractions of carbon fiber
E Young's moduli of the PM E Effective Young's moduli of the
PM eff FG-BNNT/CF-reinforced PM
E Young's moduli of the BNNT G shear modulus of the FG-
BNNT eff BNNT/CF-reinforced PM
Egynr/e Young's modulus mass density of the FG-BNNT /CF-
Pers reinforced PM
Wgennvr Wweight fraction of the BNNT v Poisson's ratio of the FG-
eff BNNT/CF-reinforced PM
Ti3  transverse shear stress Iy, 14,1, Inertia resultants

Table 8. List of abbreviations

Abbreviation description

FV forced vibration

PM polymer matrix

PMCBs polymer matrix composite material beams

FG-BNNT functionally graded boron nitride nanotubes

CF carbon fibers

VEFs viscoelastic foundations

DMLs dynamic mechanical loading

BCs boundary conditions

VWP Visco-Winkler-Pasternak

FSDT first-order shear deformation theory

MHTM modified Halpin-Tsai model

ROM rule of mixtures

FMM fiber micromechanics method

HP Hamilton's principle

FEM finite element

NITINM Newmark implicit time integration numerical method
References

[1] Davim JP. Vibration: A bibliometric analysis. Sound & Vibration. 2025;59(2):26-7.
https://doi.org/10.59400/sv2627

[2] Davim JP. Modern Mechanical Engineering: Research, Development and Education. Berlin, Heidelberg:
Springer; 2014. https://doi.org/10.1007/978-3-642-45176-8

[3] Bhat A, Budholiya S, Raj SA, Sultan MTH, Hui D, Shah AUM, et al. Review on nanocomposites based on
aerospace applications. Nanotechnology Reviews. 2021;10(1):237-53. https://doi.org/10.1515 /ntrev-
2021-0018

[4] Davim JP. Mechanical and Industrial Engineering: Historical Aspects and Future Directions. Springer;
2022. https://doi.org/10.1007/978-3-030-90487-6

[5] Reddy JN. Analysis of functionally graded plates. Int ] Solids Struct. 2000;37(50):5159-81.
https://doi.org/10.1002/(SIC1)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.C0;2-8

[6] Davim JP. Composite materials: A bibliometric analysis. AIMSMATES. 2024;11(6):1145-8.
https://doi.org/10.3934/matersci.2024055

[7] Merzouki T, Ahmed HMS, Bessaim A, Haboussi M, Dimitri R, Tornabene F. Bending analysis of functionally
graded porous nanocomposite beams based on a non-local strain gradient theory. Mathematics and
Mechanics of Solids. 2022;27(1):66-92. https://doi.org/10.1177/10812865211011759

[8] Korayem AH, Tourani N, Zakertabrizi M, Sabziparvar A, Duan W. A review of dispersion of nanoparticles
in cementitious matrices: Nanoparticle geometry perspective. Constr Build Mater. 2017;153:346-57.
https://doi.org/10.1016/j.conbuildmat.2017.06.164

[9] Sadeghi B, Cavaliere PD. Reviewing the integrated design approach for augmenting strength and
toughness at macro-and micro-scale in high-performance advanced composites. Materials.
2023;16(17):5745. https://doi.org/10.3390/mal6175745

25


https://doi.org/10.59400/sv2627
https://doi.org/10.1007/978-3-642-45176-8
https://doi.org/10.1515/ntrev-2021-0018
https://doi.org/10.1515/ntrev-2021-0018
https://doi.org/10.1007/978-3-030-90487-6
https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3%3c663::AID-NME787%3e3.0.CO;2-8
https://doi.org/10.3934/matersci.2024055
https://doi.org/10.1177/10812865211011759
https://doi.org/10.1016/j.conbuildmat.2017.06.164
https://doi.org/10.3390/ma16175745

Ouassim et al. / Research on Engineering Structures & Materials x(x) (xxxx) xx-xx

[10] Ebrahimi F, Dabbagh A. On thermo-mechanical vibration analysis of multi-scale hybrid composite
beams. ] Vib Control. 2019;25(4):933-45. https://doi.org/10.1177/1077546318806800

[11] Ebrahimi F, Dabbagh A. An analytical solution for static stability of multi-scale hybrid nanocomposite
plates. Eng Comput. 2021;37(1):545-59. https://doi.org/10.1007 /s00366-019-00840-

[12] Al-Furjan M, Dehini R, Paknahad M, Habibi M, Safarpour H. On the nonlinear dynamics of the multi-scale
hybrid nanocompositereinforced annular plate under hygro-thermal environment. Arch Civ Mech Eng.
2021;21(1):4. https://doi.org/10.1007 /s43452-020-00151-w

[13] Ebrahimi F, Nopour R, Dabbagh A, Duc ND. Vibration of three-phase hybrid viscoelastic nanocomposites
beams. ] Mech Sci Technol. 2023;37(5):2311-7. https://doi.org/10.1007 /s12206-023-0407-8

[14] He X, Rafiee M, Mareishi S, Liew K. Large amplitude vibration of fractionally damped viscoelastic
cnts/fiber/polymer  multiscale  composite  beams.  Compos  Struct.  2015;131:1111-23.
https://doi.org/10.1016/j.compstruct.2015.06.038

[15] Ahmadi M, Ansari R, Rouhi H. Multi-scale bending, buckling and vibration analyses of carbon
fiber/carbon nanotube-reinforced polymer nanocomposite plates with various shapes. Physica E Low-
dimensional Syst Nanostruct. 2017;93:17-25. https://doi.org/10.1016/j.physe.2017.05.009

[16] Ebrahimi F, Dabbagh A. Vibration analysis of multi-scale hybrid nanocomposite plates based on a halpin-
tsai homogenization model. Compos Part B Eng. 2019;173:106955.
https://doi.org/10.1016/j.compositesb.2019.106955

[17] Reyes AN, Tank M, Patadia R, Sweat R. Thermal performance and interply bonding of boron nitride
nanotube/carbon fiber hybrid composites. In: SAMPE conference proceedings. Seattle, WA: Society for
the Advancement of Materials and Process Engineering; 2023. p. 561-74.

[18] Ebrahimi F, Hosseini SHS. Investigation of flexoelectric effect on nonlinear forced vibration of
piezoelectric/functionally graded porous nanocomposite resting on viscoelastic foundation. J Strain Anal
Eng Des. 2020;55(1-2):53-68. https://doi.org/10.1177/0309324719890868

[19] Sofiyev AH, Zerin Z, Kuruoglu N. Dynamic behavior of fgm viscoelastic plates resting on elastic
foundations. Acta Mech. 2020;231:1-17. https://doi.org/10.1007/s00707-019-02502-

[20] Younesian D, Hosseinkhani A, Askari H, Esmailzadeh E. Elastic and viscoelastic foundations: A review on
linear and nonlinear vibration modeling and applications. Nonlinear Dyn. 2019;97(1):853-95.
https://doi.org/10.1007/s11071-019-04977-9

[21] Yang Y, Ding H, Chen L-Q. Dynamic response to a moving load of a timoshenko beam resting on a
nonlinear viscoelastic foundation. Acta Mech Sin. 2013;29(5):718-27. https://doi.org/10.1007 /s10409-
013-0069-3

[22] Fouaidi M, Jamal M, Zaite A, Belouaggadia N. Bending analysis of functionally graded graphene oxide
powder-reinforced composite beams using a meshfree method. Aerosp Sci Technol. 2021;110:106479.
https://doi.org/10.1016/j.ast.2020.106479

[23] Thostenson E, Li W, Wang D, Ren Z, Chou T. Carbon nanotube/carbon fiber hybrid multiscale composites.
] Appl Phys. 2002;91(9):6034-7. https://doi.org/10.1063/1.1466880

[24] Abdollahi [, Yas MH. Free vibration analysis of timoshenko beams reinforced by bnnts and a comparison
with cnt-reinforced composite. SN Appl Sci. 2020;2:1-18. https://doi.org/10.1007 /s42452-020-2429-5

[25] Dabbagh A, Rastgoo A, Ebrahimi F. Static stability analysis of agglomerated multi-scale hybrid
nanocomposites via a refined theory. Eng Comput. 2021;37:2225-44. https://doi.org/10.1007 /s00366-
020-00939-7

[26] Reddy JN. Theory and analysis of elastic plates and shells. CRC Press; 2006.
https://doi.org/10.1201/9780849384165

[27] Zienkiewicz OC, Morice P. The finite element method in engineering science. Vol. 1977. London: McGraw-
Hill; 1971.

[28] Reddy N, Gartling DK. The finite element method in heat transfer and fluid dynamics. CRC Press; 2010.
https://doi.org/10.1201/9781439882573

[29] Newmark NM. A method of computation for structural dynamics. ] Eng Mech Div. 1959;85(3):67-94.
https://doi.org/10.1061/J[MCEA3.0000098

26


https://doi.org/10.1177/1077546318806800
https://doi.org/10.1007/s00366-019-00840-y
https://doi.org/10.1007/s43452-020-00151-w
https://doi.org/10.1007/s12206-023-0407-8
https://doi.org/10.1016/j.compstruct.2015.06.038
https://doi.org/10.1016/j.physe.2017.05.009
https://doi.org/10.1016/j.compositesb.2019.106955
https://doi.org/10.1177/0309324719890868
https://doi.org/10.1007/s00707-019-02502-y
https://doi.org/10.1007/s11071-019-04977-9
https://doi.org/10.1007/s10409-013-0069-3
https://doi.org/10.1007/s10409-013-0069-3
https://doi.org/10.1016/j.ast.2020.106479
https://doi.org/10.1063/1.1466880
https://doi.org/10.1007/s42452-020-2429-5
https://doi.org/10.1007/s00366-020-00939-7
https://doi.org/10.1007/s00366-020-00939-7
https://doi.org/10.1201/9780849384165
https://doi.org/10.1201/9781439882573
https://doi.org/10.1061/JMCEA3.0000098

