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Article Info  Abstract 

Article History:  The use of FRP composites in the strengthening of existing structures has become 
increasingly common. In the strengthening of reinforced concrete (RC) elements 
using FRP through either the externally bonded reinforcement (EBR) or near-
surface mounted (NSM) methods, the interface between the FRP and the concrete 
is typically the weakest link, which negatively affects the overall effectiveness of 
the strengthening technique. One of the primary damage mechanisms observed in 
RC members strengthened with NSM-CFRP strips is intermediate crack (IC) 
debonding. To estimate the maximum debonding resistance that develops in the 
NSM-CFRP strip against this type of failure, an existing analytical model in the 
literature was recalibrated using Particle Swarm Optimization (PSO). While 
preserving the original functional form proposed by the authors, four separate 
models were developed. The resulting coefficients and performance metrics 
(RMSE, MAE) were then compared with those of the existing model, which uses 
fixed coefficients reported in the literature, based on the same dataset. The 
recalibrated model achieved 6.9% improvement in MAE, demonstrating better 
prediction accuracy and more consistent performance across individual runs. 
These improvements can contribute to more efficient and reliable FRP 
strengthening designs by improving the accuracy of debonding strength 
estimation and enhancing economical design. 
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1. Introduction 

As reinforced concrete (RC) structures are exposed to increasing load demands or design 
deficiencies, their structural performance may gradually deteriorate. In such cases, strengthening 
techniques may become necessary to restore or enhance the load-carrying capacity, stiffness, or 
ductility - particularly to extend service life and improve safety under seismic or heavy loading 
conditions [1]. 

Recently, the use of Fiber Reinforced Polymer (FRP) composite materials in the strengthening of 
reinforced concrete (RC) structures has become increasingly widespread. There are two commonly 
adopted techniques for strengthening RC elements using composite materials: Externally Bonded 
Reinforcement (EBR) and Near Surface Mounted (NSM) methods [2-3]. In the EBR technique, FRP 
composites are bonded externally to the surface of the structural element, whereas in the NSM 
technique, FRP composites are embedded into grooves cut into the concrete cover and bonded 
using adhesives such as epoxy or repair mortars. 

FRP composites are available in various forms, such as sheets, bars, and fabrics, and can be 
manufactured using different constituent materials, including carbon, glass, and aramid fibers. 

mailto:silayaman@sdu.edu.tr
http://dx.doi.org/10.17515/resm2025-1131an0905rs


Sila Yaman / Research on Engineering Structures & Materials x(x) (xxxx) xx-xx 
 

2 

Among these, Carbon Fiber Reinforced Polymer (CFRP) composites are the most widely used type. 
Compared to other types such as GFRP and AFRP, CFRP composites are preferred in structural 
strengthening applications due to their high tensile strength and stiffness, lower unit weight, 
resistance to corrosion, favorable performance under fire exposure, better fatigue performance, 
and more advanced manufacturing technologies. FRP materials exhibit linear elastic behavior up 
to their ultimate tensile strength, beyond which they fail abruptly and lose their load-carrying 
capacity. 

In any strengthening application, it is ideal to fully utilize the mechanical properties of the FRP 
material [4]. In RC elements strengthened with FRP, the interface between the FRP and concrete is 
often the weakest link, and this interface plays a critical role in determining the effectiveness of the 
strengthening technique [5]. One of the major failure modes observed in elements strengthened 
with NSM-CFRP strips is known as intermediate crack (IC) debonding [6–8]. This failure typically 
occurs when a flexural or tensile crack in the concrete intersects the bonded CFRP strip. At the 
intersection point, cracks initiate at the FRP–concrete interface and often propagate into the 
surrounding concrete substrate [6]. If these interface cracks coalesce and reach the end of the CFRP 
strip, the deformation in the strip decreases significantly, leading to what is defined as 
"intermediate crack debonding" (IC debonding) [6, 9] (Fig. 1). 

 
Fig. 1. Schematic illustration of the IC debonding failure mechanism (a) Initial state with 

applied load, (b) Development of flexural cracks intersecting the CFRP strip, (c) Initiation of 
debonding at the NSM-CFRP strip–concrete interface, (d) Propagation and coalescence of 

cracks leading to IC debonding failure 

Several analytical models have been proposed in the literature to estimate the debonding strength 
at the NSM-CFRP interface, based on experimental studies [6, 10–17]. However, these models were 
generally calibrated using a limited number of experimental datasets. In the present study, the 
objective is to improve the accuracy of the model developed by Seracino et al. [6] by recalibrating 
its fixed parameters using Particle Swarm Optimization (PSO). 

In recent years, the use of soft computing-based innovative approaches for solving civil engineering 
problems has been increasingly adopted [18–21]. In this context, artificial neural networks (ANNs) 
and/or machine learning (ML) techniques have been employed in various studies to predict or 
estimate key structural parameters, such as the compressive strength of concrete [22–24], the 
shear strength of reinforced concrete (RC) beams [25], the load-bearing capacity of strengthened 
RC slabs [26–27], and the required number of FRP layers for strengthening RC members or frames 
[28–29]. 

Li et al. [30] and Hu et al. [31] developed backpropagation neural network models to improve the 
accuracy of predicting debonding deformations in RC beams strengthened with FRP. Ghaidan et al. 
[32] applied multinomial logistic regression analysis to address the issue of concrete cover 
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separation - a premature failure mode observed in RC beams strengthened using NSM-FRP 
techniques. 

Several studies in the literature have utilized Particle Swarm Optimization (PSO) for various 
structural engineering applications [33–34]. Ghodousian et al. [35] employed PSO to evaluate the 
interfacial bond strength of colored self-compacting concrete repair overlays. Mohammadizadeh 
and Esfandnia [36], as well as Wahab et al. [37], applied various metaheuristic algorithms, including 
PSO, to predict the compressive strength of reinforced concrete (RC) columns confined with FRP. 

Nguyen and Lý [38] used Adaptive Neuro-Fuzzy Inference System (ANFIS) combined with PSO to 
estimate the bond strength between CFRP and concrete. Su et al. [39] proposed a backpropagation 
neural network model to predict the bond capacity at the NSM-CFRP-to-concrete interface. Kumar 
et al. [40] predicted the bond strength between FRP and concrete surfaces using Artificial Neural 
Networks (ANN), an optimized Artificial Bee Colony (ABC)-ANN, and Gaussian Process Regression 
(GPR). In a subsequent study, Kumar et al. [41] employed a PSO–optimized ANN approach. Pei and 
Wei [42] estimated this bond strength through an ant colony optimization-based ANFIS model. 
Zhang et al. [43] utilized six different ANN models. These models predict bond strength and shear 
capacity at the FRP–concrete interface. Tao and Xue [44] proposed a novel hybrid model. It 
integrates PSO with Random Forest (RF) techniques to predict FRP–concrete bond strength. 
Shbeeb et al. [45] applied both ANN and ANFIS methods. Xue et al. [46] validated the predictive 
capability of Multivariate Adaptive Regression Splines (MARS) and Wavelet Neural Network 
(WNN) algorithms for FRP–concrete bond strength. They also recalibrated these models using PSO. 
Moreover, Haddad et al. [47] employed artificial neural networks to determine the bond strength 
between EBR-FRP and heat-damaged concrete. 

There are numerous studies in the literature predicting the debonding strength at the NSM-CFRP 
and concrete interface using artificial intelligence and optimization algorithms. However, research 
focusing on systematic improvement of existing analytical models through recalibration using 
methods such as Particle Swarm Optimization (PSO) remains limited. This study aims to improve 
the predictive accuracy of an existing analytical model [6] used to estimate the debonding strength 
at the NSM-CFRP strip–concrete interface. To this end, while preserving the original mathematical 
structure of the model, its constant coefficients were recalibrated using the Particle Swarm 
Optimization (PSO) technique. By adapting the model - originally proposed in the literature with 
fixed coefficients - to the available dataset through optimization, its prediction performance has 
been enhanced. During the calibration process, Root Mean Square Error (RMSE) and Mean Absolute 
Error (MAE) were used as cost functions, and two scenarios were considered: one with the first 
two geometric coefficients fixed, and one with them included as variables. As a result of the 
calibration, improvements of 0.73% in RMSE and 6.9% in MAE were achieved. Although these 
numerical differences may appear small, they can contribute to the design of CFRP-strengthened 
structures in a safer, more economical manner - avoiding unnecessary conservatism. In this 
respect, the study brings data-driven refinement to existing analytical models and enables more 
accurate predictions in structural engineering applications. 

2. Material and Method  

2.1. Material 

Seracino et al. [6] proposed an analytical model to predict the debonding strength at the NSM CFRP 
strip - concrete interface using experimental data compiled from the literature. In the present 
study, the same experimental dataset was used to recalibrate the analytical model through the 
Particle Swarm Optimization (PSO) method. The experiments were conducted on CFRP strips 
embedded into concrete blocks using the NSM technique, and debonding strengths were obtained 
under push–pull loading conditions. The loading was uniaxial and applied in a monotonic 
(continuously increasing) manner. In the tested specimens, key parameters such as CFRP strip 
width (dp), thickness (bp), elastic modulus (Ep), embedment length (L), and concrete compressive 
strength (fc) were varied. The ranges of these parameters are as follows: strip width (dp), 9.95 - 
20.47 mm; strip thickness (bp), 1.2 - 2.9 mm; elastic modulus (Ep), 144600 - 162300 MPa; 
embedment length (L), 200 - 350 mm and concrete compressive strength (fc): 30 - 65 MPa. These 
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parameters are the key factors influencing the debonding behavior at the NSM-CFRP interface and 
are critical for the calibration and validation of the model. The dataset used in this study consists 
of a total of 21 experimental tests, covering various combinations of the listed parameters. 
Statistical information related to these parameters and the corresponding experimental debonding 
strength results (Pexp) is provided in Table 1. 

Table 1. Statistical data of the experimental dataset used in the study 

 dp (mm) bp (mm) 
Ep 

(MPa) 
fc 

(MPa) 
L 

(mm) 
Pexp 
(kN) 

Mean 14.51 1.33 161,195.24 43.48 233.33 47.63 

Standard Error 1.03 0.08 831.36 2.51 11.09 4.14 

Median 10.56 1.26 161,800.00 50.00 200.00 45.10 
Standard 
Deviation 

4.71 0.36 3809.75 11.52 50.83 18.97 

Sample Variance 22.21 0.13 14,514,226.19 132.66 2583.33 359.83 

Kurtosis -1.97 20.76 20.81 -1.45 -0.46 -1.54 

Skewness 0.30 4.54 -4.55 -0.12 1.08 0.33 

Range 10.52 1.70 17,700.00 35.00 150.00 54.90 

Minimum 9.95 1.20 144,600.00 30.00 200.00 23.00 

Maximum 20.47 2.90 162,300.00 65.00 350.00 77.90 

Sample Size 21 
 

2.2. Method 

2.1.1 Analytical Model for Debonding Strength 

Seracino et al. [6] proposed a generalized analytical model to predict the interfacial debonding 
strength (PIC) of adhesively bonded strip–concrete interfaces. The model was developed by 
considering an idealized bond–slip relationship of the strip–concrete interface. It is a practical 
model applicable to strips used in both Externally Bonded Reinforcement (EBR) and Near Surface 
Mounted (NSM) techniques, and it depends solely on the strip geometry and material properties. 
The maximum debonding strength at the strip–concrete interface is expressed by Eq (1): 

PIC=√τmax × δmax.√Lper × Ep × Ap (1) 

Lper=2df+bf (2) 

df=dp+td ,    bf=bp+2tb             (td=tb=1) (3) 

Ap=bp × dp (4) 

Fig. 2 schematically illustrates the debonding failure plane that occurs at strip-to-concrete 
interfaces and forms the conceptual foundation of the modeling approach adopted in this study. 
The debonding surface is defined as the mortar layer that separates from the concrete substrate 
while remaining attached to the CFRP strip. The transverse and longitudinal thicknesses of the 
mortar layer adhered to the strip are denoted as tb and td, respectively. In the model proposed by 
Seracino et al. [6], these thicknesses are assumed to be constant and equal to 1 mm. The debonding 
surface is represented as a rectangular failure region characterized by its width (bf) and depth (df), 
which are geometrically related to the dimensions of the NSM CFRP strip (bp and dp). The parameter 
Lper denotes the effective debonding length in the transverse section and plays a significant role in 
the transfer of shear stress along the interface. In this context, δmax represents the maximum slip 
displacement that occurs at the interface prior to complete debonding, while τmax denotes the 
corresponding maximum shear stress. Together, these two quantities define the energy dissipation 
capacity of the interface (τmax × δmax), which is modeled as a function of the aspect ratio (φf) of the 
failure plane and the cylindrical compressive strength of concrete (fc), as shown in Eq (5) and Eq 
(6). As illustrated in Fig. 2, this modeling approach assumes that debonding occurs along a well-



Sila Yaman. / Research on Engineering Structures & Materials x(x) (xxxx) xx-xx 
 

5 

defined shear plane, the geometry of which governs the mechanical behavior of the bonded joint. 
Therefore, Fig. 2 not only serves as a conceptual basis for the analytical model but also helps 
visualize the physical meaning of the key parameters involved in the calibration process. 

 
Fig. 2. IC Debonding failure plane of the strip embedded in the groove (tb = td = 1 mm) [6] 

φf=
df
bf

 (5) 

δmax × τmax=(C × φf
m × fc

n) (6) 

Here, the constants C, m, and n were optimized using linear regression analysis. The values of δmax 
and τmax, which are necessary for determining the debonding strength, were obtained using Eq (7) 
and Eq (8), respectively. 

τmax=(0.802+0.078φf) × fc
0.6 (7) 

δmax=
0.976φf

0.526

0.802+0.078φf
 (8) 

In the proposed analytical model for determining the debonding strength, the values of tb and td  
are assumed to be constant and equal to one, as stated in the study. Accordingly, by modifying Eq 
(3), an expression containing constant coefficients is obtained (Eq 9). 

df=dp+1 ,    bf=bp+2 (9) 

Within the scope of this study, the calibration of the constant values in the analytical model (1 and 
2 due to tb and td; 0.976, 0.526, 0.802, 0.078, and 0.6) was performed using Particle Swarm 
Optimization (PSO). Since these values were originally treated as fixed coefficients in the model 
equations, they were redefined as variable parameters (K₁, K₂, ..., K₇) in the optimization process. 
This allowed the PSO algorithm to iteratively update their values during each run-in order to 
identify the optimal set of coefficients. Based on the original analytical formulation and the 
parameters described above, the modified model used in the optimization process is expressed in 
Eq 10. In this equation, the constants are replaced by optimization variables (K₁ to K₇) to allow for 
calibration using PSO: 

PIC=

√
  
  
  
  
  

((k5+k6 (
dp+k1
bp+k2

)) . fc
   k7) .

(

 
 k3 (

dp+k1

bp+k2
)
𝑘4

(k5+k6 (
dp+k1

bp+k2
))
)

 
 
.√[2(dp+k1)+(bp+k2)]. Ep. (dp. bp) (10) 

Table 2 presents the mapping between the parameters used in the PSO algorithm and their 
corresponding constants in the analytical model.  
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Table 2. Constants used in the model 

PSO Parameter K1 K2 K3 K4 K5 K6 K7 

Original Constant 1 2 0.976 0.526 0.802 0.078 0.6 

Equation Number Eq 9 Eq 9 Eq 8 Eq 8 Eq 7, Eq 8 Eq 7, Eq 8 Eq 7 
 

K₁ and K₂ are geometric correction coefficients affecting the interaction area between the CFRP 
strip and concrete (related to the adhesive thickness and width). They replace the constants 1 and 
2 in Eq 9. K₃ and K₄ represent the multiplier and exponent parameters used in the function defining 
the maximum shear displacement, which governs the deformation characteristics of the interface. 
K These replace the constants 0.976 and 0.526 in Eq 8. K₅ and K₆ are linear coefficients associated 
with φf in the maximum shear stress formula. They replace the values 0.802 and 0.078 in Eq 7 and 
Eq 8, respectively. K₇ is the exponential parameter reflecting the influence of concrete compressive 
strength and replaces the value 0.6 in Eq 7. These parameters are directly integrated into the 
mathematical formulation of the model and are optimized to enhance prediction accuracy. 

2.2.2 Partical Swarm Optimization 

Particle Swarm Optimization (PSO) is a nature-inspired metaheuristic optimization algorithm 
developed by Kennedy and Eberhart in 1995 [48]. The fundamental inspiration behind the 
algorithm is the collective behavior exhibited by flocks of birds or schools of fish while searching 
for food. Based on swarm intelligence, this algorithm is simple yet powerful [49–50]. PSO is widely 
used to solve nonlinear and complex problems in continuous or discrete parameter spaces. 

PSO operates on a swarm consisting of individuals called "particles," which represent a set of 
potential solutions. Each particle corresponds to a point in the solution space and possesses certain 
velocity and position information. Over time, these particles move toward better solutions by 
learning from their own experiences as well as the best experiences of other particles in the swarm 
[51]. Fundamentally, PSO relies on particles adjusting their positions toward the best position 
found by any member of the swarm, and this process continues iteratively until the target is 
achieved [52]. The flowchart illustrating the steps of the algorithm is presented in Fig. 3. 

In PSO, the initial position (Eq 11) and velocity (Eq 12) of each particle are first determined [53]. 
The fitness values of each particle, which lie within the defined boundary limits, are then calculated 
using Eq (13). In each iteration, the personal best (pbest) values - representing the best solution a 
particle has found so far - and the global best (gbest) values - representing the best solution found 
by any particle in the entire population - are identified. Based on these two best values, the 
velocities (Eq 14) and positions (Eq 15) of the particles are updated accordingly. 

[
𝑋11 𝑋12 . .
. . . . . .
𝑋𝑚1 𝑋𝑚2 . .

. . 𝑋1𝑛

. . . .

. . 𝑋𝑚𝑛

] (11) 

[
𝑉11 𝑉12 . .
. . . . . .
𝑉𝑚1 𝑉𝑚2 . .

. . 𝑉1𝑛

. . . .

. . 𝑉𝑚𝑛

] (12) 

[
𝑓(1) = 𝑓(𝑋11, 𝑋12, …𝑋1𝑛)

. .
𝑓(𝑚) = 𝑓(𝑋𝑚1, 𝑋𝑚2, …𝑋𝑚𝑛)

] (13) 

𝑉𝑖𝑑 = 𝑊𝑉𝑖𝑑 + 𝑐1𝑟𝑎𝑛𝑑1(𝑝𝑏𝑒𝑠𝑡𝑖𝑑 − 𝑋𝑖𝑑) + 𝑐2𝑟𝑎𝑛𝑑2(𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑖𝑑) (14) 

𝑋𝑖𝑑 = 𝑋𝑖𝑑 + 𝑉𝑖𝑑 (15) 

Here, W represents the inertia weight; c1 and c2 are the acceleration (or scaling) coefficients; Xid 
denotes the position, and Vid denotes the velocity of the particle. The terms rand1 and rand2 are 
uniformly distributed random numbers between [0–1]. For problems with fewer parameters and 
low complexity, a larger inertia weight value may be used, whereas for more complex problems, a 
smaller value is generally preferred [54]. 
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Fig. 3. Flowchart of the PSO algorithm [50] 

To effectively operate the Particle Swarm Optimization (PSO) algorithm, an objective function is 
required to evaluate the performance of each possible parameter combination within the solution 
space. In this study, a PSO-based model was developed with the aim of modifying the constants in 
the analytical model proposed by Seracino et al. [6] to achieve results that more closely match the 
experimental data. The inertia weight (W) was set to 0.7. The cognitive (c₁) and social (c₂) 
acceleration coefficients were taken as 1.5. The swarm size (m) was fixed at 30 particles, and the 
maximum number of iterations was limited to 1000. 

Two different error metrics were used to evaluate the predictive performance of the model: Mean 
Absolute Error (MAE) and Root Mean Square Error (RMSE). These error metrics are calculated 
based on the differences (i.e., errors) between the maximum load predicted by the PSO-calibrated 
model and the experimentally obtained load values. 

2.2.3 Root Mean Square Error (RMSE) 

RMSE is the square root of the mean of the squared errors. Since it involves squaring the errors, it 
penalizes larger errors more heavily. 

RMSE=√   
1

𝑛
∑(𝑃𝑖 − 𝑃𝑖

′)2
𝑛

𝑖=1

 (16) 

2.2.4 Mean Absolute Error (MAE) 

MAE is the mean of the absolute values of the errors. It directly reflects the magnitude of the 
model’s prediction errors and treats all errors equally, regardless of their direction or size. 
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MAE =
1

𝑛
∑|𝑃𝑖 − 𝑃𝑖

′|

𝑛

𝑖=1

 (17) 

In both error metrics, values approaching zero indicate higher model accuracy. While MAE 
provides a general measure of the average error magnitude, RMSE reflects the model’s sensitivity 
to larger deviations. In this study, RMSE and MAE were used as objective functions in the 
optimization process, and the aim was to identify the set of coefficients that minimize these error 
metrics. 

2.2.5 Model Calibration 

In this study, the original formula structure was preserved, and all models were calibrated using 
Particle Swarm Optimization (PSO). The general procedure involved in putting the data, running 
PSO with random initializations, calculating the selected error metric for each candidate coefficient 
set at every iteration, retaining the coefficient set with the minimum error, and outputting the best 
coefficients once the stopping criteria were met (Fig. 4). 

 
Fig. 4. Flowchart of the model calibration process 

In this study, the termination criterion of the PSO algorithm was defined as reaching the maximum 
number of iterations. The error value was monitored by the decision-maker to evaluate the quality 
of the obtained solutions; however, no automatic error-based stopping condition was applied. PSO 
parameters remained consistent across all models to ensure that the comparison was based on the 
choice of error metric and the status of the first two coefficients. The optimization target was the 
"PIC" value, which corresponds to the expression originally defined in Eq 1 and reformulated in Eq 
10 for optimization purposes. 

In the first model, the objective is to minimize the error according to the RMSE criterion. To ensure 
compatibility with the literature, K₁ and K₂ are kept fixed; PSO searches only over K₃ to K₇. In the 
flowchart, this is represented by the “PSO” block operating on a parameter set and the “Min Error 
= RMSE” evaluation. The second model also focuses on RMSE but allows K₁ and K₂ to be free 
parameters. Thus, PSO searches across all K₁ to K₇, enabling an independent investigation of the 
effect of including the first two coefficients in the calibration. The flow remains the same; only the 
dimension of decision variables increases. In the third model, the error criterion is selected as MAE. 
To maintain comparability with the literature, K₁ and K₂ are fixed; PSO works on K₃ to K₇. The 
difference in the flowchart is that the error is calculated as MAE in the “Min Error” step. Other steps 
remain unchanged. The fourth model uses MAE as the error criterion and also includes k₁ and k₂ in 
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the calibration; PSO optimizes all coefficients from K₁ to K₇. Thus, the effect of fixing or calibrating 
the first two coefficients on the MAE side is examined symmetrically alongside the RMSE side. 

The software setup is consistent across all models. Each model is run with five independent trials; 
the best, average, and standard deviation values obtained in each trial were recorded for later 
reporting. Comparisons will be made along the axes of error metric selection (RMSE/MAE) and the 
status of coefficients K₁ and K₂ (fixed/free). 

3. Results and Discussion 

In this study, four models were developed using the same formula structure and all calibrated via 
Particle Swarm Optimization (PSO) models with fixed parameters K₁ = 1 and K₂ = 2, and free 
models where these two coefficients were also included in the calibration process. Regarding the 
error criterion, two models were optimized based on RMSE and two models based on MAE. The 
PSO search settings were kept constant throughout all experiments. Each model was run with five 
independent trials using different random initializations, and for each trial, the best (minimum), 
average, and standard deviation of the error values were reported (Table 3).  

Table 3. Results of PSO analysis 

Model 
Independent 

Runs 
K1 K2 K3 K4 K5 K6 K7 RMSE MAE 

Model 1 
K₁-K₂ 
fixed, 

optimized 
based on 

RMSE 

1.  1.000 2.000 0.845 0.537 0.521 0.467 0.633 0.274  
2.  1.000 2.000 0.845 0.537 0.462 0.761 0.633 0.274  
3.  1.000 2.000 0.845 0.537 0.379 0.652 0.633 0.274  
4.  1.000 2.000 0.845 0.537 0.610 0.613 0.633 0.274  
5.  1.000 2.000 0.845 0.537 0.415 0.495 0.633 0.274  

Standard 
Deviation 

0.000 0.000 0.000 0.000 0.090 0.119 0.000 0.000  

Mean 1.000 2.000 0.845 0.537 0.477 0.598 0.633 0.274  

Model 2 7-
variable, 

optimized 
based on 

RMSE 

1.  0.500 2.261 0.983 0.510 0.429 0.669 0.625 0.273  
2.  0.500 2.312 0.988 0.512 0.271 0.496 0.624 0.273  
3.  0.501 2.274 0.984 0.510 0.867 0.600 0.625 0.273  
4.  0.500 2.161 0.975 0.505 0.325 0.844 0.626 0.273  
5.  0.500 2.284 0.987 0.510 0.323 0.542 0.624 0.273  

Standard 
Deviation 

0.000 0.054 0.005 0.003 0.244 0.122 0.001 0.000  

Mean 0.500 2.258 0.983 0.509 0.443 0.630 0.625 0.273  

Model 3 
K₁-K₂ 
fixed, 

optimized 
based on 

MAE 

1.  1.000 2.000 0.585 0.565 0.759 0.390 0.714  0.054 
2.  1.000 2.000 0.604 0.562 0.764 0.259 0.707  0.054 
3.  1.000 2.000 0.583 0.566 0.458 0.506 0.715  0.054 
4.  1.000 2.000 0.577 0.569 0.524 0.297 0.717  0.054 
5.  1.000 2.000 0.587 0.565 0.572 0.698 0.714  0.054 

Standard 
Deviation 

0.000 0.000 0.010 0.003 0.138 0.163 0.004  0.000 

Mean 1.000 2.000 0.587 0.565 0.615 0.430 0.713  0.054 

Model 4 
7-variable, 
optimized 
based on 

MAE 

1.  0.500 2.261 0.983 0.510 0.429 0.669 0.625  0.054 
2.  0.500 2.312 0.988 0.512 0.271 0.496 0.624  0.054 
3.  0.501 2.274 0.984 0.510 0.867 0.600 0.625  0.054 
4.  0.500 2.161 0.975 0.505 0.325 0.844 0.626  0.054 

5.  0.500 2.284 0.987 0.510 0.323 0.542 0.624  0.054 

Standard 
Deviation 

0.000 0.054 0.005 0.003 0.244 0.122 0.001  0.000 

Mean 0.500 2.258 0.983 0.509 0.443 0.630 0.625  0.054 
Coefficient 

from 
Literature 

6.  1.000 2.000 0.976 0.526 0.802 0.078 0.600 0.275 0.058 

 

The convergence consistency of the PSO runs was evaluated by analyzing the means and standard 
deviations of the coefficients (K₁–K₇) and the error values obtained from the five independent runs 
for each model. Overall, all four models demonstrated strong convergence stability, with most 
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coefficients and error metrics exhibiting near-zero standard deviations. In Model 1, K₁–K₄ and K₇ 
were highly stable, while K₅ (std ≈ 0.090) and K₆ (std ≈ 0.119) showed relatively higher variability. 
In Models 2 and 4, K₂ (std ≈ 0.054) and especially K₅ (std ≈ 0.244) displayed greater fluctuations, 
while the other parameters and error metrics remained consistent. In Model 3, K₃ and K₄ converged 
almost perfectly, with only K₅ (std ≈ 0.138) showing minor variability. The negligible variation in 
RMSE and MAE across all models confirms the reliability and reproducibility of PSO-based 
calibration. The obtained performance results and coefficient sets were compared with the existing 
method in the literature and its fixed coefficients, with the RMSE and MAE values of the reference 
method on the same dataset also presented. This approach clearly highlights the effects of treating 
the first two coefficients as adjustable and the choice of optimization criterion (RMSE/MAE). 

Each of the four models was run using PSO with 5 independent trials, and the results were 
evaluated according to the model type using either RMSE or MAE. In the models optimized based 
on RMSE, the model with fixed K₁ and K₂ (RMSE–Fixed) consistently produced an RMSE of 0.274 
across all trials, whereas the model with K₁ and K₂ treated as adjustable parameters (RMSE–Free) 
achieved an RMSE of 0.273 in every trial. This indicates that including K₁ and K₂ in the calibration 
yielded a small but consistent improvement of approximately 0.36% in RMSE. For the models 
optimized according to MAE, both the MAE–Fixed and MAE–Free models maintained a constant 
MAE value of 0.054 across all trials, suggesting that allowing K₁ and K₂ to vary did not provide any 
additional benefit within the reported precision for MAE. Although the coefficients in the models 
with adjustable parameters (particularly K₁–K₆) showed some variability across the five 
independent trials, the optimized error metrics (RMSE and MAE) remained highly consistent, with 
minimum, mean, and standard deviation values nearly identical. Given that the metrics did not vary 
over the 5 trials (min = mean = std ≈ 0), it can be concluded that PSO converged reliably for this 
problem. While parameter standard deviations are generally low, some degree of correlation 
among parameters may exist, which is common in multi-parameter calibrations. This likely 
contributes to the consistent error metrics despite small parameter variations. Overall, the results 
indicate reliable and reproducible convergence of the PSO algorithm. Examining the parameter 
patterns reveals that in the RMSE–Fixed model (with K₁ = 1 and K₂ = 2), the coefficients K₅ and K₆ 
were mainly adjusted between trials, whereas in the RMSE–Free model, K₁ converged around 0.500 
and K₂ ranged approximately between 2.16 and 2.31. This suggests that setting the first two 
coefficients as adjustable redefined the equilibrium among the remaining coefficients (e.g., K₅ and 
K₆) and led to a slight reduction in RMSE. In the MAE group, the MAE–Fixed model highlighted 
bands of K₃ ≈ 0.58 – 0.60 and K₄ ≈ 0.56–0.57, while in the MAE–Free model, K₁ and K₂ again 
converged to similar ranges as in the RMSE–Free model, despite the MAE value remaining constant. 
This indicates that the MAE metric, which is more robust against outliers, did not reflect 
performance gains from allowing K₁ and K₂ to vary, whereas RMSE, being more sensitive to larger 
errors, showed a small but positive effect. In summary, treating K₁ and K₂ as adjustable parameters 
provided a marginal but consistent improvement in RMSE, while no significant difference was 
observed based on MAE. 

When compared to the literature method coefficients (K₁ = 1, K₂ = 2, K₃ = 0.976, K₄ = 0.526, K₅ = 
0.802, K₆ = 0.078, K₇ = 0.600) and performance values (RMSE = 0.275, MAE = 0.058), the PSO-based 
models demonstrated improvements: the RMSE–Fixed model reduced RMSE to 0.274, achieving 
approximately a 0.36% improvement, while the RMSE–Free model further reduced RMSE to 0.273, 
corresponding to about a 0.73% enhancement. For the MAE-focused models, both fixed and flexible 
cases resulted in an MAE of 0.054, representing a roughly 6.9% decrease compared to the 
literature. In other words, treating K₁ and K₂ as adjustable parameters produced a small but 
consistent additional gain in RMSE, whereas the MAE remained unchanged. 

The 6.9% reduction in MAE indicates a significant improvement in the overall accuracy and 
consistency of the model, which is particularly advantageous when generalizing to different 
structural configurations. This enhancement contributes to more reliable safety assessments, 
reduced overdesign, and improved efficiency in the use of strengthening materials such as CFRP. 
These aspects highlight the practical engineering relevance of the improvements achieved through 
the proposed recalibration approach. 
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The prediction results obtained using the model parameters that showed the best performance 
through the PSO method are compared with the experimental data and presented in Fig. 5. The 
proximity of the data points to the linear reference line indicates the success of the calibration and 
that the model provides results closer to the experimental values. 

 
Fig. 5. Scatter plot of experimental vs. PSO-predicted IC debonding strength 

4. Conclusion 

In this study, the aim was to recalibrate an existing analytical model [6] in the literature that 
estimates the bond strength required to prevent debonding at the NSM-CFRP strip–concrete 
interface, using the Particle Swarm Optimization (PSO) algorithm. The original structure of the 
model was preserved. Four different model configurations were evaluated, in which the first two 
coefficients (K₁ and K₂) were kept constant or considered as optimization parameters. Each 
configuration was tested through five independent runs under identical PSO settings. Prediction 
accuracy was evaluated using Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) 
metrics. 

The results show that the PSO-based recalibration improves the predictive performance of the 
original model, particularly in terms of MAE.  The 6.9% reduction in MAE represents a notable 
improvement in the model’s overall consistency. The observed enhancement enables safer and 
more efficient structural design by reducing the need for excessive material use and improving the 
accuracy of performance predictions. These findings demonstrate the engineering relevance of the 
recalibrated model, offering practical benefits in real-world strengthening applications. Scatter 
plots comparing experimental and predicted loads confirm that the proposed models provide a 
closer fit to the experimental data. Moreover, the consistent performance across all five trials 
indicates that the PSO algorithm converged reliably for this specific problem. 

The main contribution of this study is to demonstrate the applicability of metaheuristic 
optimization techniques such as PSO in calibrating bond strength models for NSM CFRP–concrete 
joints. Without adding complexity to the original model, it was shown that prediction accuracy can 
be improved by selectively recalibrating specific coefficients and choosing appropriate error 
metrics. This approach supports more reliable strength estimations, reduces overdesign, and 
promotes more efficient use of CFRP strips in strengthening applications. 

However, the findings of this study are limited by the dataset and interface configuration used. The 
dataset is relatively small, and the calibration is restricted to specific NSM CFRP–concrete joint 
configurations. Future studies should aim to include broader datasets encompassing various 
concrete grades, groove dimensions, and different types and sizes of FRP materials. Additionally, 
testing other optimization methods or hybrid approaches may further enhance model performance 
and generalizability. 
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