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Article Info  Abstract 

Article History:  Geological disasters, such as landslides, are vital in terms of life and property 
preservation and requires timely and accurate monitoring to adequately react to 
them and respond appropriately. Such catastrophes are to be monitored and acted 
on by advanced sensor technology that need advanced sensing technologies to 
operate in-person to detect and track them. This work utilizes satellite remote 
sensing data with several environmental and geological variables to produce high-
precision landslide influence factors. These are the foundations of advanced 
sensors and monitoring techniques in geological disaster response. The RK-
OBGRNet, an integrated recurrence and monitoring model for landslides which 
uses remote sensing images, is designed to detect and monitor landslides. The 
preprocessing methods for satellite images are z-score normalization, Fourier 
Transform, FT which improves the quality of the satellite images by eliminating 
noise and making data synchronized to the analyzer. It utilizes feature extraction 
such as principal component analysis to identify characteristics of landslides that 
dominate their presence. The impact of model parameters on landslide detection 
accuracy has been analyzed. The performance of RK-OBGRNet is better compared 
to the RNN-Autoencoder and Cascade R-CNN with improved accuracy of 95%, 
precision of 94%, recall of 93%, and F1-Score of 92%. The results indicate that RK-
OBGRNet achieves better and demonstrates its effectiveness for high-precision 
landslide detection. This research provides valuable insights for enhancing 
geological disaster monitoring and emergency response. It offers a reference for 
applying high-precision sensing technologies to early warning systems and rapid 
response strategies in the management of landslide hazards.  
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1. Introduction 

In disaster management and disaster risk reduction (DRR), the majority of nations utilize the 
single-hazard approach because hazards are viewed and handled as distinct, separate events. A 
proactive approach to disaster risk reduction by minimizing vulnerability and strengthening 
vulnerability against natural hazards. But occasionally, several danger categories overlap and 
interact in the ways listed below: Human activities can cause natural hazards by generating one or 
more hazard events, by generating natural hazards, intensifying the triggering of natural hazards, 
establishing networks of interconnections between hazards, and generating two or more hazard 
events simultaneously [1]. Research on emergency planning and Geographic Information System 
(GIS) based emergency command systems for geologic hazards is essential. A system that captures, 
stores, analyzes, and visualizes geographic and spatial data for decision-making and planning. 
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 All levels of emergency management agencies have noticed improvements in rescue operations 
and response times due to emergency plans and command systems [2]. Geological catastrophes are 
frequent natural occurrences that have a significant impact on human existence because of their 
abruptness and extreme destructiveness. Therefore, multiple investigations both domestically and 
internationally have developed catastrophe emergency management programs, for the sake of 

human survival and the normal development of human civilization [3]. As the social economy 
expands, large-scale projects, like the railways, may be constructed. Therefore, an 
increasing number of economies at risk from the hidden dangers of geological disasters, 
especially long-term landslide threats. However, earthquakes and geological hazard chains 
may become more apparent when the effects of extreme weather, such as typhoons, 
drought, and heavy rain, worsen [4]. Reducing catastrophe losses after natural disasters occur 
is mostly dependent on decision-making based on big data, both geographical and non-spatial, to 
enable quick emergency response and rescue. A disaster emergency management system's primary 
component, GIS technology, aids decision-makers in rapidly integrating, processing, and analyzing 
catastrophe data [5]. The shortest distance, the shortest time, and the highest rescue effect are the 
goals of emergency resource dispatch models, which typically have particular features. To disperse 
resources for prompt rescue, emergency management departments typically set up many resource 
centers. The quantity and kind of vehicles at each resource center are unknown due to the 
abruptness of geological disasters. Furthermore, roadways can sustain damage and new places can 
be affected by the effects of secondary catastrophes [6]. The RK-OBGRNet model is aided by GIS 
systems for integration of spatial data, multi-hazard management principles for the integrated 
response to disasters, and satellite communication for real-time transmission of data  

Emergency communication greatly benefits from satellite networks, while the conventional 
approach mostly uses a single satellite vehicle or satellite portable station to build the network. 
While this plan can help with communication issues to a certain degree, satellite vehicles have 
limited network coverage and poor mobility in crises. The role of satellite vehicles is limited by the 
aforementioned issues [7]. Seismological monitoring has been made possible by advances in 
seismology, and the Global Seismographic Network (GSN) offers almost consistent worldwide 
monitoring. The network, which has more than 150 stations globally, reduces the number of 
fatalities and financial losses caused by significant earthquakes [8]. Meteorology, geology, and 
seismology are among the sciences that apply technological methods to avoid and lessen natural 
disasters. GPS measures crustal movements, weather radar detects precipitation, satellites collect 
data, and autonomous weather stations track data in real-time [9]. Imaging spectroscopy, another 
name for hyperspectral imaging, is a technique that uses space-based, airborne, or unmanned aerial 
systems or lab-based imaging systems to capture images of geologic or outdoor environments. Each 
pixel of the images contains a reflective/emissive spectrum of the material present. Each pixel can 
be analyzed to identify items in the obtained image or scene, given context, and a reference library 
[10]. One of the primary trends in global catastrophe prevention and reduction is community-based 
disaster risk management (CBDRM) extensively adopted and used by national, international, and 
local organizations. A participatory process of participatory participation of local communities in 
how they identify, assess, and manage disaster risk to reduce vulnerability. In recent years, some 
nations have embraced the development of community-centered disaster reduction strategies to 
construct the policies, plans, and schemes of CBDRM to address the increasing difficulties of 
catastrophe risks [11]. Geological disasters, including collapses, landslides, and debris flows, 
happen all over the world and have a major negative impact on property, human life, the 
environment, and sustainable economic growth, particularly in developed countries [12]. Runge-
Kutta optimization enhances convergence and stability through the optimization of model 
parameters, and gated layers increase the temporal learning capability, providing dynamic 
adjustment towards geological information over time. The limitations include, 

• Handling real-time, high-dimensional data: Processing high-dimensional data in real-time 
remains computationally intensive, requiring advanced optimization methods that can be 
prone to resource constraints. 
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•  Optimizing sensor placement through Runge Kutta: Runge Kutta optimization may struggle 
with non-stationary or unpredictable data, potentially leading to suboptimal sensor 
placement in rapidly changing environments. 

• Using gated layers for better temporal data learning: Gated layers can become prone to 
overfitting when trained on insufficient or noisy data, limiting their generalization ability in 
diverse real-world disaster scenarios. 

The integration of high-precision sensing and monitoring technologies in geological disaster 
emergency response plays a crucial role in promoting climate-responsive and sustainable 
infrastructure development. With the increasing frequency of extreme climatic events, such as 
intense rainfall, drought, and temperature fluctuations, the stability and resilience of smart 
construction systems have become vital concerns. The proposed RK-OBGRNet-based sensing 
framework not only enhances the accuracy of geological disaster prediction but also contributes to 
climate-adaptive infrastructure planning by enabling real-time monitoring of environmental 
parameters such as soil moisture, rainfall intensity, and ground deformation. Through intelligent 
sensor deployment, AI-driven analytics, and adaptive learning, the system supports early warning 
and proactive maintenance strategies that reduce the vulnerability of critical infrastructure to 
climate-induced geohazards. By integrating geological sensing with climate-responsive design 
principles, this research provides a pathway toward smart, sustainable, and resilient construction 
ecosystem that can dynamically adapt to evolving environmental conditions and ensure long-term 
structural stability under the influence of changing climate patterns. 

1.1. Objective of the Research 

In research focused on landslide detection, the aim is to develop high-precision sensing and 
monitoring systems to enhance emergency response for geological catastrophes. In improving 
accuracy as well as the efficiency in landslide monitoring and early warnings, this research explores 
the combination of satellite remote sensing data, complex pre-processing methods, and the use of 
the RK-OBGRNet model. 

1.2. Key Contribution  

• For continuous monitoring, high-precision landslide influencing variables in this research 
are produced by the combination of both geology and environmental data from satellite 
remote sensing. 

• The suggested RK-OBGRNet model enhanced by applying Runge Kutta, proves to have 
surpassed conventional methods for landslide detection. 

• This research helps enhance emergency response tactics and raise the level of effectiveness 
of disaster management through offering a useful tool for landslide early warning systems. 

• The RK-OBGRNet model greatly enhances the accuracy of disaster detection via sophisticated 
optimization methods and deep learning, providing an effective tool for early warning 
systems. Its ability to incorporate dynamic sensor placement and temporal learning 
maximizes real-time monitoring ability, pushing forward disaster management practices. 

1.3 The Remaining Research 

Phase 2 includes the literature review, Phase 3 discusses the methodology, Phase 4 evaluates the 
experimental findings and the discussion, and Phase 5 establishes the conclusions. 

1.4 Literature Review 

The Sichuan-Tibet Railway, a complex and elaborate project across the Qinghai-Tibetan Plateau, 
was at risk of disasters because its terrain was extremely difficult. The Sichuan-Tibet Fund special 
project focused on five studies: geological structure, hazard-inducing processes, tunnel engineering 
and disaster identification to address these problems and advance technology [13]. The probability 
of landslides, intensity, and location as well as time and place, are considered as the predictive 
factors for emergency rescue risk in a landslide catastrophe scenario [14]. For a country on the 
coast, it examined the effects of risk perception and protective motive theory in disaster 
preparedness in China. In their analysis, people’s desire to participate in protective activities was 
greatly influenced by their own assessment of coping and risk attitudes and this is reflected in the 
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need to do more than just managing risk [15]. Real-time data collection and enhanced agency 
collaboration in emergency management are made possible by the Internet of Emergency Services 
(IoES). It discussed the difficulties, possibilities, risks, restrictions, and possible effects on the 
public safety of sensors and Internet of Things (IoT) devices [16]. Forecasting and monitoring were 
necessary to reduce the dangers associated with large-scale landslides in Zhouqu County, Gansu 
Province, China. Global Navigation Satellite System monitoring and unmanned aerial vehicle 
imaging were combined techniques for threat reference and emergency decision-making [17]. With 
an emphasis on their suddenness, mass occurrence, induction, geographical variation, and social 
effect, the research investigated the reasons for frequent geological disasters in mined regions. It 
created a risk assessment system with 10 indicators and emphasized the relationship between 
environmental geology and breeding, inducing, and forming geology [18]. Public involvement in 
disaster mitigation programs in both model and nonmodel towns in a geologically vulnerable area 
was examined. The findings indicated that while catastrophe experience and perceived behavioral 
control impacted the behavior of nonmodel societies, model communities participated more in 
evacuation drills and self-help skills training [19]. Earthquake catastrophes in China, an 
earthquake-prone region, result in direct loss of life and property, secondary natural disasters, and 
societal repercussions. Researching the main earthquake risks aids in mitigation prediction and 
prevention. The special issue compiles the most recent findings in research on significant 
earthquake hazards, such as active structure evolution, occurrence mechanisms, prediction, risk 
assessment, mitigation, emergency response, and rescue following big earthquakes [20]. For 
catastrophe scenarios, remote sensing was essential; however, user applications and science 
restrict its potential. Through the use of social surveys and case studies, it investigated the non-
technical aspects that affect RSES. The objective was to enhance RSES administration and 
comprehension, provide a framework and software for authorities, and direct RSES procedures 
during crises [21]. The research examined the safety of pipelines that were suspended as a result 
of natural disasters, with a particular emphasis on plastic deformation and nonlinear finite element 
techniques (FEM). When the hung length surpasses 50 meters, irreversible plastic stresses happen, 
reaching 2% at 340 meters.  It suggested promoting the sustainable expansion of oil and natural 
gas pipelines in areas that frequently encounter natural disasters [22]. To lower the expenses of 
disaster management and the number of fatalities, the Chinese government implemented the Public 
Participation Monitoring and Warning (PPMW) system. The method, which was used in landslides 
in Boli village, organizes inhabitants to evacuate ahead of time and distributes timely emergency 
information. For other nations dealing with comparable circumstances, the system can develop into 
an inexpensive catastrophe risk management tool [23]. The Yellow River Basin (YRB) was 
vulnerable to significant calamities due to its diverse climate, fast evolution, and active geological 
processes. Ecosystems can be destroyed by these catastrophes, which can have serious 
repercussions. The research examined the YRB's geological processes, significant catastrophe 
impacts, and risk mitigation studies, highlighting important scientific issues and outlining potential 
directions for further research based on earth system science ideas [24,25]. Kadiyala et al. (2025) 
presents a cloud-integrated IoT-based healthcare monitoring and emergency response system 
using deep learning. RK-OBGRNet adopts similar strategies by integrating satellite IoT sensors with 
cloud computing for real-time geological monitoring and applying deep learning algorithms for 
analyzing spatiotemporal data. This integration improves real-time monitoring, enhances disaster 
prediction accuracy, and ensures scalability for various disaster scenarios, offering a robust 
solution for geological hazard management [26]. It incorporates ConvLSTM networks and satellite 
images to enhance predictive modeling for natural hazards such as floods, landslides, and 
earthquakes, describing its capability in learning spatiotemporal relationships between remote 
sensing data. It presents a modern example of AI/ML use in disaster sensing, which might be 
contrasted with the models such as U-Net. Adding this study in your literature review provides a 
critical evaluation of the development in disaster management technologies [27]. 

2. Methodology 

The technique includes RK-OBGRNet optimization for real-time landslide detection, sensor 
placement, improved geological disaster monitoring, PCA for feature extraction, and data 
preprocessing using Z-Score normalization and Fourier Transform. Primary geological disaster 
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data, including information on landslides, tsunamis, floods, and earthquakes, were directly 
collected through satellite imagery. Figure 1 represents the proposed methodology flow. 

 

Fig. 1. Flow of proposed methodology 

2.1 Data Preprocessing Using Z-Score Normalization and Fourier Transform (FT) 
For Geological Disaster Monitoring 

2.1.1. Z-Score Normalization  

In the preprocessing stage of the geological disaster monitoring system, the Z-Score normalization 
method is used to normalize the data collected from different high-precision sensing technologies, 
such as seismic activity, soil movement, and atmospheric pressure. The technique is useful in real-
time disaster response systems, as it ensures all the features are on the same scale and, hence, 
improves the accuracy and performance of DL models. Equation (1) follows for standardizing the 
data: 

𝑁 = 𝑁 −
𝑚𝑒𝑎𝑛(𝑁)

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑁)
 (1) 

By removing the biasing in units of data, there is an improvement of RK-OBGRNet models regarding 
predictions about geological risk hazards and emergency response. This implies with the 
processing of various source data, it ensures the model can perform, and generate timely results, 
which will lead to improving tactics for response and disaster management. 

2.1.2. Fourier Transform (FT) 

The application of FT techniques improves the procedure for the feature extraction of 
geocatastrophe monitoring. Combined with the data of high accuracy, FT enables real-time 
processing of frequency terms in data signals related to environmental and seismic events. It 
converts time-domain information to frequency-domain representation as it unfolds critical 
frequency content, such as ground acceleration or angular velocity; which is required to 
understand geologic activity, such as an earthquake, landslides, or volcanic activity. These are 
frequency components on which traditional correct identification and prediction of disaster 
scenarios are based. The mathematical expression of a constant FT of a time-domain signal 𝑌(𝑠), 
which is an expression of geological monitoring equipment or seismic data, is given by equation 
(2):  

𝑦 = (𝑒) = ∫ 𝑌(𝑠)𝑓−𝑗2𝜋𝑑𝑠𝑑𝑠
∞

−∞

 (2) 
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Here, 𝑦(𝑒) corresponds to the signal in frequency domains, 𝑦(𝑠) or the signal in a time domain, and 
symbols 𝑐 𝑎𝑛𝑑 𝑗 correspond for frequency and imaginary units respectively. This domain 
transformation is required in order to produce elements according to frequency analysis in order 
to characterize behavior geology in a natural catastrophe. Subsequently after the conversion 
formula in equation (3), the average of converted signal with respect to mean frequency can be 
calculated as an imperative component of disaster management surveillance: 

𝑀𝑒𝑎𝑛 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
1

𝑛
∑|𝑦[𝑘]|

𝑛−1

𝑘=0

 (3) 

The equation represents the amplitude of each frequency component by Y[k] whereas n is the 
number of frequency samples. The proposed solution can improve on monitoring knowledge 
accuracy through the study of such frequency aspects, therefore, facilitating real-time monitoring 
and prediction of geological disasters. Z-score normalization was used over min-max scaling 
because it is able to only normalize data and does not eliminate bias, and all features are equally 
contributing and their range is not limited hence more stable with other data distributions. The 
application of Fourier Transform (FT) was based on the fact that it is able to convert time-domain 
signals into frequency-domain characteristics, which allows a researcher to study a periodic nature 
and anomalies typical with geological events, including seismic occurrences. This mixture enhances 
the model to effectively handle dynamic and noisy geological data. 

2.2 Feature Extraction Using Principal Component Analysis (PCA) 

PCA is a significant preprocess technique, which can be applied to data of high-resolution sensor 
systems. Typically, such geological factors are the monitoring of the climatic conditions, soil 
movement, and seismic activity, which generate large amounts of information and have a high level 
of dimensionality. This is easy to understand and can easily be facilitated to achieve the real-time 
analysis of response to disasters because the most salient features of this data created by the 
process of PCA are removed. The initial procedure is the normalization of data matrix Z that is a 

representation of geological measurements. Principal Component Analysis (PCA) is important in 
lowering the dimensionality of geological data, determining the most significant features for 
precise disaster forecasting by recognizing major patterns in seismicity, soil movement, and other 
environmental conditions. In this case, parameters might be on varied scales e.g., pressure in 
Pascal, displacement in meters hence the standardization procedure would ensure that all features 
contribute equally to this research. Subtracting the mean of each feature and dividing by the 
standard deviation yields the standardized data matrix, or 𝑍𝑠𝑡𝑎𝑛𝑑  in equation (4): 

𝑍𝑠𝑡𝑎𝑛𝑑 =
𝑍 − 𝑚𝑒𝑎𝑛 (𝑍)

𝑠𝑡𝑑 (𝑍)
 (4) 

The matrix of covariance 𝐵 is calculated to comprehend the connections among the dataset's 
characteristics. Understanding the correlations and fluctuations between feature pairs is provided 
by the covariance matrix, which depicts how fluctuate together. The following standardized data is 
used to compute it in equation (5): 

𝑋 =
1

𝑝 − 1
𝑌𝑠𝑡𝑎𝑛𝑑

𝐵 𝑍𝑠𝑡𝑎𝑛𝑑 (5) 

The standardized form of the data matrix is called 𝑌𝑠𝑡𝑎𝑛𝑑 , and 𝑝 is the number of observations in 
the dataset. To determine the most significant directions of variation in the data, the covariance 
matrix is essential. The covariance matrix 𝐴 is used to compute the eigenvalues and eigenvectors. 
The associated eigenvectors characterize the directions of maximal variance, whereas the 
eigenvalues, represented by 𝜆, show the variance along with each primary component. The 
following equation (6) is an expression for the connection between eigenvalues and eigenvectors: 

𝑋𝑎 = 𝜆𝑎 (6) 



Wang et al. / Research on Engineering Structures & Materials x(x) (xxxx) xx-xx 
 

7 

This equation demonstrates how each eigenvalue 𝜆 scales the corresponding eigenvector 𝑎. The 
primary components, or the directions in which the data fluctuates are represented by the 
eigenvectors. Components with eigenvalues greater than one are typically retained when using the 
Kaiser criterion, as they account for the majority of the variation in the data. The following is how 
top 𝑇 components are chosen in equation (7): 

𝑇𝑜𝑝 𝑇 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑎1, 𝑎2, … . , 𝑎𝑇 (7) 

These particular elements are the most crucial for comprehending the main causes of geological 
disasters. The regular data 𝑍𝑠𝑡𝑎𝑛𝑑  must be predictable into the new coordinate system that the 
chosen primary components have specified. While keeping the most significant attributes, this 
alteration lowers the dimensionality of the data. The covered dataset𝑍𝑃𝐶𝐴 is provided by the 
equation (8): 

𝑍𝑃𝐶𝐴 = 𝑍𝑠𝑡𝑎𝑛𝑑𝑈𝑇 (8) 

𝑈𝑇is the matrix of the selected eigenvectors. By reducing the dataset and emphasizing its prime 
components, this revolution facilitates data analysis and understanding. The most important 
elements of the concentrated data can be highlighted while maintaining critical information by 
reconstructing it to roughly be similar to the dataset. During the renewal process, the following 
equations (9& 10) are used: 

𝐹 =  𝑈𝑇
𝐵 (9) 

𝑉 = 𝑚𝑒𝑎𝑛 (𝑍) +  𝑈𝑇𝑓 (10) 

The reconstructed data is denoted by 𝐹 in these equations, and the reconstructed dataset with the 
mean added back is denoted by 𝑉. By using PCA on the data collected by high-precision sensing 
systems, the research determines the main causes of geological catastrophes, such as changes in 
the environment, shifting seismic activity, or soil displacement. PCA was employed to compress 
data dimensionality while retaining essential features, maximizing high-precision sensor data 
fusion, and enabling effective analysis in dynamic geological monitoring systems. PCA outputs, 
which constitute important geological features, were incorporated in the RK-OBGRNet model to 
enhance the predictive performance by enabling the modeling process with a compressed, but 
meaningful, feature set. The model relies on the assumption of frequent satellite image data 
availability with high-frequent updates, and the data-collecting sensors are usually high-precision 
geological sensors that can sense seismic activity, soil movement, and changes in atmospheric 
pressure. 

2.3 Landslide Detection and Monitoring Using Runge Kutta Optimized 
Backpropagate Gated Layered RecurrenceNet (RK-OBGRNet) from Remote Sensing 
Images 

The images of remote sensing are used in landslide detection and monitoring landslide 
occurrences. Nevertheless, the accuracy of the prediction can be increased by employing the design 
of the OBGRNet, which incorporates the usage of backpropagation and the gated recurrent layers; 
however, the efficiency of the model can be optimized using RK. This improves the accurate 
geographical and time nature of the landslide processes in real-time monitors. RK-OBGRNet is 
particularly useful in geological disaster observation, as it is capable of work with high-dimensional 
time-series, adapting to changes in disasters with gated layers, RK optimization of sensor 
placement positioning, and real-time observation at high precision. 

2.3.1 Backpropagation 

The Backpropagation Algorithm is used to optimise sensor data, predict danger and validate the 
results through error functions, including the Mean Squared Error (MSE) when high precision 
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sensing data is required to respond to geological disasters. Minimizing prediction accuracy through 
error correction Backpropagation can be used to minimize prediction errors, gated layers allow the 
learning of real-time temporal predictions and RK optimization can be used to maximize the 
performance of sensors by the prediction of geological occurrences.  

Forward Pass Calculations: The weather and cloud cover are external factors that are known to 
distort satellite remote sensing data and this may affect the prediction by a model. RK-OBGRNet 
responses to this by incorporating preprocessing techniques such as Fourier Transform and PCA 
in order to eliminate noise and capture useful information in noisy satellite pictures. The 
normalized input variables are received by the input layer and are positioned based on geological 
features (ground displacement or seismic). Each input is given significance by initializing the 
weights 𝑋𝑗, 𝑙, 𝑎𝑛𝑑 𝑖 at random. The output 𝑊1 for the first hidden layer is computed as follows in 
equation (11): 

𝑍1,1 = 𝑒(𝑛𝑒𝑡1,1) (11) 

Where the first layer's input is in equation (12): 

𝑛𝑒𝑡1,1 = ∑ 𝑋𝑗,1,1

𝑛

𝑗=1

 (12) 

• Activation Function: The Sigmoid activation function is used to normalize the output of each 
neuron in equation (13): 

𝑍̂𝑐 =
1

1 + 𝑓∑ (𝑛𝑒𝑡𝑙,𝑖+𝑔𝑖)𝑙
 (13) 

Where, the predictable output, such as the anticipated danger of a geological disaster, is 
represented by𝑍̂𝑐. 

• Error Function and Validation: The discrepancy between the expected and intended 
output 𝑍𝑏 . The MSE is used to measure 𝑍̂𝑐 in equation (14): 

𝑀𝑆𝐸 =
1

𝑚
∑(𝑍𝑏 − 𝑍̂𝑐)2

𝑚

𝑐=1

 (14) 

To guarantee accurate forecasts for geological disaster management, this error function is utilized 
to assess the model's correctness. 

2.3.2 Gated Layered 

Multi-layered sensing systems that are able to analyze are a gated layered approach. selective 
choice of important data in real-time. This method prioritizes and filters data of different layers of 
sensors, based on urgency and relevance, when there is a geological crisis, e.g. an earthquake, 
landslide, or volcanic eruption, using gated mechanisms. It enhances the accuracy and efficiency of 
monitoring systems by integrating the state-of-the-art sensors with intelligent data filtering 
mechanisms, thereby making prompt and informed decisions respectively on disaster response 
and mitigation. 

2.3.3 Runge Kutta (RK) Optimization  

RK optimization algorithm is a strong optimization technique, which applies the concepts of the 
Runge-Kutta algorithm in solving ordinary differential equations. The RK in the geological disaster 
emergency response is applied to enhance the precision of real-time sensor selection and location 
to sense and monitor. This is because the estimation of gradients was made through the RK 
technique to guide the search of optimal design and placement of the sensors. This is to trade 
exploration and exploitation with the solution space to attain high-precision sensing information 
regarding early warning and disaster relief. RKOBGRNet framework enables an easy coordination 
of sensing units by integrating resilient communication schemes, which adjusts the placement of 
sensors and transmit data in response to realtime feedback and monitoring requirements. 
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Backpropagation, RK optimization, and gated layers provide a high level of synergy by combining 
the three mechanisms, namely, error correction, dynamic sensor placement, and temporal learning. 
Backpropagation is used to optimize model accuracy, RK optimization is used to optimize locations 
of response sensors in real time and gated layers enhance temporal behavior of geological 
processes to model performance, in comparison with traditional models.  

• Search Mechanism to Disaster Monitoring:  

The RK optimization identifies regions of the solution space that represent the zones of interest 
that include seismic activity or prone landscape areas or areas that are at risk of flooding in 
geological disaster monitoring. The system is operated to guarantee a balance between exploration 
(of finding new potentially valuable sensor placements) and exploitation (finer-tuning of existing 
sensor placements based upon the information gathered), with initial sensor placements being 
randomly assigned to these areas. As examples of the RK optimization of geological sensing, the 
following equations (15 and 16) are illustrations of the search mechanism (SM): 

𝑆𝑀 =
1

6
𝑤𝑅𝐾 (15) 

𝑤𝑅𝐾 = 𝑙1 + 2.  𝑙2 + 2.  𝑙3 + 𝑙4 (16) 

Where, 𝑤 is the positional adjustment of sensors inside the monitoring network and 𝑙1, 𝑙2, 𝑙3,  𝑎𝑛𝑑 𝑙4 
are coefficients obtained through the RK approach.  

• Solution Update in Disaster Monitoring Systems:  

The initial inputs of the RK optimization method are a randomly distributed population of sensors, 
which are potential locations of monitoring. The locations of these sensors are updated at every 
cycle with the RK technique. The sensor network is altered to suit the real-time information of 
geological processes such as earthquakes, landslides, or floods. The sensor location updating 
process is regulated by the following equations (17 & 18) that ensure the exploration of the new 
territories as well as the usage of the existing information to manage the disaster:  

𝑖𝑓 𝑟𝑎𝑛𝑑 < 0.5   𝑤𝑚+1 = (𝑤𝑑 + 𝑞. 𝑆𝐹. ℎ. 𝑤𝑑) + 𝑆𝐹. 𝑆𝑀 + 𝜇. 𝑟𝑎𝑛𝑑𝑚. (𝑤𝑛 −
𝑤𝑑)    𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛         

(17) 

𝑒𝑙𝑠𝑒  𝑤𝑚+1 = (𝑤𝑛 + 𝑞. 𝑆𝐹. ℎ. 𝑤𝑛) + 𝑆𝐹. 𝑆𝑀

+ 𝜇. 𝑟𝑎𝑛𝑑𝑚. (𝑤𝑞1 − 𝑤𝑞2)  𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 
(18) 

With SF the adaptive scaling factor that varies the search intensity in accordance with the iteration 
progression, and 𝑞 and ℎ random integers controlling exploration and exploitation respectively 
equation (18).  

• Enhanced Solution Quality (ESQ) in Monitoring Systems:  

To ensure that the sensor placement quality is steadily improved with the iteration progression, 
the RK algorithm ensures that 𝑞 and �acute are random integers that regulate exploration and 
exploitation, respectively. This enhancement called the Enhanced Solution Quality (ESQ) is ensured 
by a feedback mechanism which entails real-time sensor data, which ensures that the system keeps 
on improving its search to the best monitoring locations. The ESQ process of sensor placement are 
the equations below (19-21):  

𝑖𝑓 𝑟𝑎𝑛𝑑 < 0.5 (19) 

𝑖𝑓 𝑥 < 1   𝑤𝑛𝑒𝑤2 = 𝑤𝑛𝑒𝑤1 + 𝑞. 𝑥. |𝑤𝑛𝑒𝑤1 − 𝑤𝑎𝑣𝑔| + 𝑟𝑎𝑛𝑑𝑚 (20) 

𝑒𝑙𝑠𝑒 𝑤𝑛𝑒𝑤2 = (𝑤𝑛𝑒𝑤1 − 𝑤𝑎𝑣𝑔) + 𝑞. 𝑥. |𝑣. 𝑤𝑛𝑒𝑤1 − 𝑤𝑎𝑣𝑔| + 𝑟𝑎𝑛𝑑𝑚 (21) 
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Where x is a parameter which is dynamically modified to control the work of the algorithm. 
Ensuring the new sensor placement points are moved towards the region of high-risk activities like 
the fault lines or floodplains by continuously setting the average location of sensors 𝑤𝑎𝑣𝑔 to 

optimally and efficiently improve sensor network. The program experiment with additional 
configurations in the event that the addition of further sensors does not improve the data collecting 
(i.e., the fitness function is not maximized). Improvement of sensor location is achieved by shifting 
the sensor in the direction which is shown by the subsequent equation (22):  

𝑖𝑓 𝑟𝑎𝑛𝑑 < 𝑥    𝑤𝑛𝑒𝑤3

= (𝑤𝑛𝑒𝑤2 − 𝑟𝑎𝑛𝑑. 𝑤𝑛𝑒𝑤2) + 𝑆𝐹. (𝑟𝑎𝑛𝑑. 𝑤𝑅𝐾 + 𝑢. 𝑤𝑎 − 𝑤𝑛𝑒𝑤2) 
(22) 

To ensure the algorithm continues to search regions which have the highest probability of locating 
an important geological process, say a tremor, change in the surface, or rising water levels, 𝑢 is a 
random integer that determines the search direction. The hybrid RK-OBGRNet is represented in 
algorithm 1. 

• Algorithm 1: Hybrid RK-OBGRNet 
𝑀𝑎𝑖𝑛 𝐿𝑜𝑜𝑝: 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟 − 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑠𝑒𝑛𝑠𝑜𝑟 𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 
𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠): 
𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 (𝐵𝑃𝐴) 𝑆𝑡𝑒𝑝 𝑡𝑜 𝑎𝑑𝑗𝑢𝑠𝑡 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 
𝐼𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 (𝑒. 𝑔. , 𝑟𝑒𝑚𝑜𝑡𝑒 𝑠𝑒𝑛𝑠𝑖𝑛𝑔 𝑖𝑚𝑎𝑔𝑒𝑠 𝑜𝑟 𝑠𝑒𝑛𝑠𝑜𝑟 𝑑𝑎𝑡𝑎) 
 𝑖𝑛𝑝𝑢𝑡_𝑑𝑎𝑡𝑎 =  𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑟𝑒𝑚𝑜𝑡𝑒_𝑠𝑒𝑛𝑠𝑖𝑛𝑔_𝑑𝑎𝑡𝑎) 
  ℎ𝑖𝑑𝑑𝑒𝑛_𝑙𝑎𝑦𝑒𝑟_𝑜𝑢𝑡𝑝𝑢𝑡 =  𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒(𝑖𝑛𝑝𝑢𝑡_𝑑𝑎𝑡𝑎)   𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑝𝑎𝑠𝑠 

    𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑜𝑢𝑡𝑝𝑢𝑡 =  𝑓𝑜𝑟𝑤𝑎𝑟𝑑_𝑝𝑎𝑠𝑠(ℎ𝑖𝑑𝑑𝑒𝑛_𝑙𝑎𝑦𝑒𝑟_𝑜𝑢𝑡𝑝𝑢𝑡) 
𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 𝑢𝑠𝑖𝑛𝑔 𝑀𝑆𝐸 (𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟) 
𝑒𝑟𝑟𝑜𝑟 =  𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝑀𝑆𝐸(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑜𝑢𝑡𝑝𝑢𝑡, 𝑡𝑟𝑢𝑒_𝑜𝑢𝑡𝑝𝑢𝑡) 
𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 𝑡𝑜 𝑎𝑑𝑗𝑢𝑠𝑡 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑎𝑛𝑑 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 
𝑏𝑎𝑐𝑘𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒(𝑒𝑟𝑟𝑜𝑟) 
𝐺𝑎𝑡𝑒𝑑 𝐿𝑎𝑦𝑒𝑟𝑒𝑑 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ: 𝑅𝑒𝑎𝑙 − 𝑡𝑖𝑚𝑒 𝑑𝑎𝑡𝑎 𝑓𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑔𝑒𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑒𝑣𝑒𝑛𝑡𝑠 
  𝑖𝑓 𝑔𝑒𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙_𝑒𝑣𝑒𝑛𝑡_𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑():  # 𝐶ℎ𝑒𝑐𝑘 𝑖𝑓 𝑎 𝑑𝑖𝑠𝑎𝑠𝑡𝑒𝑟 𝑒𝑣𝑒𝑛𝑡 (𝑒. 𝑔. , 𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒) 𝑖𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 

𝑖𝑓 𝑑𝑎𝑡𝑎_𝑢𝑟𝑔𝑒𝑛𝑐𝑦_𝑙𝑒𝑣𝑒𝑙()  >  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑: 
 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑖𝑧𝑒 𝑑𝑎𝑡𝑎 𝑓𝑟𝑜𝑚 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑠𝑒𝑛𝑠𝑜𝑟𝑠 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑢𝑟𝑔𝑒𝑛𝑐𝑦 
𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑_𝑑𝑎𝑡𝑎 =  𝑓𝑖𝑙𝑡𝑒𝑟_𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙_𝑑𝑎𝑡𝑎(𝑖𝑛𝑝𝑢𝑡_𝑑𝑎𝑡𝑎) 
 𝐸𝑙𝑠𝑒: 
 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑎𝑙𝑙 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑑𝑎𝑡𝑎 (𝑛𝑜𝑛 − 𝑢𝑟𝑔𝑒𝑛𝑡) 
𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑_𝑑𝑎𝑡𝑎 =  𝑓𝑖𝑙𝑡𝑒𝑟_𝑎𝑙𝑙_𝑑𝑎𝑡𝑎(𝑖𝑛𝑝𝑢𝑡_𝑑𝑎𝑡𝑎) 
    𝐸𝑙𝑠𝑒: 
𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑_𝑑𝑎𝑡𝑎 =  𝑖𝑛𝑝𝑢𝑡_𝑑𝑎𝑡𝑎  # 𝑁𝑜 𝑒𝑣𝑒𝑛𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑, 𝑢𝑠𝑒 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑎𝑡𝑎 
𝑅𝑢𝑛𝑔𝑒 − 𝐾𝑢𝑡𝑡𝑎 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (𝑅𝐾) 𝑓𝑜𝑟 𝑠𝑒𝑛𝑠𝑜𝑟 𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 
𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑒𝑛𝑠𝑜𝑟 𝑖𝑛 𝑠𝑒𝑛𝑠𝑜𝑟𝑠: 
𝑆𝑡𝑒𝑝 1: 𝑈𝑝𝑑𝑎𝑡𝑒 𝑠𝑒𝑛𝑠𝑜𝑟 𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑅𝐾 𝑠𝑒𝑎𝑟𝑐ℎ 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚 
 𝑠𝑒𝑎𝑟𝑐ℎ_𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚 =  𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝑠𝑒𝑎𝑟𝑐ℎ_𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚(𝑠𝑒𝑛𝑠𝑜𝑟_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 
 𝑆𝑡𝑒𝑝 2: 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑣𝑠 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 (𝐵𝑎𝑙𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑒𝑤 𝑎𝑛𝑑 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠) 
𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚()  <  0.5: 
 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛: 𝑆𝑒𝑎𝑟𝑐ℎ 𝑓𝑜𝑟 𝑛𝑒𝑤 𝑠𝑒𝑛𝑠𝑜𝑟 𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠 
𝑠𝑒𝑛𝑠𝑜𝑟_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =  𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛(𝑠𝑒𝑛𝑠𝑜𝑟_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑠𝑒𝑎𝑟𝑐ℎ_𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚) 
𝐸𝑙𝑠𝑒: 
𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛: 𝑅𝑒𝑓𝑖𝑛𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑒𝑛𝑠𝑜𝑟 𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠 
            𝑠𝑒𝑛𝑠𝑜𝑟_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =  𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛(𝑠𝑒𝑛𝑠𝑜𝑟_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑠𝑒𝑎𝑟𝑐ℎ_𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚) 
 𝑆𝑡𝑒𝑝 3: 𝑈𝑝𝑑𝑎𝑡𝑒 𝑠𝑒𝑛𝑠𝑜𝑟 𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑤𝑖𝑡ℎ 𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 (𝐸𝑆𝑄) 
𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚()  <  0.5: 
𝐸𝑛ℎ𝑎𝑛𝑐𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑡𝑜 𝑎𝑣𝑜𝑖𝑑 𝑙𝑜𝑐𝑎𝑙 𝑚𝑖𝑛𝑖𝑚𝑎 
𝑠𝑒𝑛𝑠𝑜𝑟_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =  𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑞𝑢𝑎𝑙𝑖𝑡𝑦(𝑠𝑒𝑛𝑠𝑜𝑟_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 
𝑆𝑒𝑛𝑠𝑜𝑟 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑈𝑝𝑑𝑎𝑡𝑒: 𝐴𝑑𝑗𝑢𝑠𝑡 𝑠𝑒𝑛𝑠𝑜𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑟𝑒𝑎𝑙 − 𝑡𝑖𝑚𝑒 𝑑𝑎𝑡𝑎 
𝐹𝑜𝑟 𝑠𝑒𝑛𝑠𝑜𝑟 𝑖𝑛 𝑠𝑒𝑛𝑠𝑜𝑟𝑠: 
𝑈𝑝𝑑𝑎𝑡𝑒 𝑠𝑒𝑛𝑠𝑜𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑛𝑒𝑤 𝑔𝑒𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑒𝑣𝑒𝑛𝑡 𝑑𝑎𝑡𝑎 

        𝑠𝑒𝑛𝑠𝑜𝑟_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =  𝑢𝑝𝑑𝑎𝑡𝑒_𝑠𝑒𝑛𝑠𝑜𝑟_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑠𝑒𝑛𝑠𝑜𝑟_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 
𝐶ℎ𝑒𝑐𝑘 𝑖𝑓 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ℎ𝑎𝑠 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 (𝑛𝑜 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑟𝑒𝑠𝑢𝑙𝑡𝑠) 
 𝑖𝑓 𝑐ℎ𝑒𝑐𝑘_𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒(): 
𝑏𝑟𝑒𝑎𝑘  𝐸𝑥𝑖𝑡 𝑙𝑜𝑜𝑝 𝑖𝑓 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠 
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The system incorporates gated layers for real-time data prioritization during geological events, 
backpropagation for error correction-based model prediction optimization, and RK optimization 
for dynamic sensor placement. This combination of RK-OBGRNet methods improves the reaction 
to geological risks by increasing forecast accuracy, fine-tuning sensor placements, and 
guaranteeing effective disaster monitoring.  

3. Case Studies 

3.1 Case Study 1: Wayanad Landslide Disaster (2024) 

This paper presents a detailed investigation into the 2024 Wayanad landslide in India, determining 
the major factors (geological instability, heavy rainfall) and far-reaching effects on indigenous 
communities. The research indicates how RK-OBGRNet's dynamic sensor deployment and real-
time monitoring could have enhanced early warning systems, saved lives and minimized damage. 
The model's potential to learn temporal relationships and sensor placement optimization would 
give more effective disaster response plans in other high-risk territories [28]. 

3.2 Case Study 2: Pettimudi Landslide Case Study (2020) 

This research examines the environmental and social effects of the Pettimudi landslide in Kerala 
that occurred in 2020 with special focus on how geographic and human factors contribute to 
disaster management. Incorporating RK-OBGRNet in such a case would have been able to yield 
improved spatial and temporal analysis of vulnerability in the region, providing early warning 
mechanisms to avoid such a massive loss. The model's high-level feature learning and temporal 
ability would improve the predictive power for landslide events, with real-time guidance for 
enhanced evacuation and resource deployment [29].  

4. Experimental Results 

The recommended fix was implemented on a desktop computer running Windows 10 with a 64-bit 
processor, an 18th-generation Intel Core i7 CPU, and a 4 GB GPU driver that supports CUDA and 
other components. The suggested structure was constructed using Keras with TensorFlow 
software capabilities and Python 3.5 software tools for the backend toolkits. The accuracy, 
precision, recall, and F1-Score of this research's comparison to the traditional models monitoring 
technology in geological disaster emergency response RNN-Auto encoder [30], and Cascade R-CNN 
[31] clarify the extent to which the proposed RK-OBGRNet model accurately monitors the 
geological disaster emergency response. The data used here is the satellite image obtained using 
Landsat-8 and Sentinel-2 satellites, targeted for geological disaster observation. Landsat-8 offers a 
spatial resolution of 30 meters with a temporal resolution of 16 days, whereas Sentinel-2 offers a 
higher spatial resolution of 10 meters and a temporal resolution of 5 days. The data consists of 
around 5,000 tagged images in different disaster situations, including landslides, earthquakes, and 
floods, with ground truth information hand-marked on the basis of past records and field 
observations. The RK-OBGRNet model integrates convolution layers for feature extraction, gated 
recurrent units (GRUs) for recognizing temporal relationships in sequential data, and Runge-Kutta 
optimization for dynamic sensor placement and real-time adaptation of data. The hyperparameters 
for the model are a learning rate of 0.001, 10 layers, the Adam optimizer, 50 epochs, and a batch 
size of 32, selected based on initial experiments to balance performance and training time. 

4.1. Accuracy Loss 

Accuracy loss, as it relates to high-precision sensing monitoring for geological catastrophes, is the 
deterioration in the model's capacity to accurately identify landslides as a result of inconsistent 
data or model restrictions. Figure 2 represents the accuracy loss.  

4.2. Confusion Matrix 

The RK-OBGRNet model's accuracy in landslide detection is evaluated using a confusion matrix, 
which displays true positives, false positives, true negatives, and false negatives in monitoring. The 
confusion matrix, which displays the real labels vs, expected labels for landslides, earthquakes, 
floods, and tsunamis, with color intensity representing occurrences, displays the categorization 
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performance of geological catastrophe categories. Figure 3 displays the confusion matrix for 
geological disaster classification. 

 

(a) 

 

(b) 

Fig. 2. a) Accuracy and b) Loss 

 

Fig. 3.: Confusion matrix 

4.3. Accuracy 

The degree to which sensor data, such as from environmental, displacement, or seismic sensors 
reflects real-world circumstances during geological events is known as accuracy. It is essential to 
ensure that disasters like earthquakes, landslides, and floods are reliably detected and monitored. 
This enables prompt warnings and efficient decision-making in emergency response operations. 
Table 1 and Figure 4 illustrate the comparison results of accuracy. 

Table 1. Outcomes of accuracy 

 

For geological disaster monitoring, the RK-OBGRNet technique outperforms the RNN-Autoencoder 
method, which achieves 68% accuracy, with an accuracy of 95%. These notable enhancements 
show how well the RK-OBGRNet model detects and tracks geological hazard occurrences using 
remote sensing data.  

Method Accuracy (%) 
RNN-Autoencoder [25] 68% 

RK-OBGRNet [Proposed] 95% 
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Fig. 4. Analysis of accuracy 

4.4. Precision 

The precision of identifying and quantifying geological occurrences is referred to as precision in 
high-precision sensing monitoring technology for geological disorder response. It guarantees low 
sensor reading error, precise position determination, and trustworthy forecasts, facilitating 
prompt, well-informed disaster management decision-making and improving response efficiency. 
Table 2 and Figure 5 depict the comparison results of precision. 

Table 2: Outcomes of precision 

Method Precision (%) 
RNN-Autoencoder [30] 70% 

Cascade R-CNN [31] 93.15% 
RK-OBGRNet [Proposed] 94% 

 

The suggested RK-OBGRNet outperforms the RNN-Autoencoder (70%) and Cascade R-CNN 
(93.15%) with a precision of 94%. This illustrates how well RK-OBGRNet detects geological 
catastrophes and how well it optimizes high-precision sensing and monitoring systems for 
emergency response in areas affected by geological disasters. 

 
Fig. 5. Analysis of precision 
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4.5. Recall 

Recall refers to a sensory monitoring system's capacity to accurately identify and detect real 
catastrophe occurrences, such as earthquakes or landslides, in the context of geological disaster 
emergency response. High recall guarantees low false negatives and enhances the dependability of 
the system for early warning as well as effective catastrophe mitigation techniques. Table 3 and 
Figure 6 represent the comparison results of recall. 

Table 3. Outcomes of Recall 

Method Recall (%) 
RNN-Autoencoder [30] 72% 

Cascade R-CNN [31] 89.32% 
RK-OBGRNet [Proposed] 93% 

 

From the numerical result, it indicates that RK-OBGRNet performs better than the Cascade R-CNN 
by 89.32% and then RNN-Autoencoder by 72%. The best value of the recall rate reaches up to 93%. 
Hence, it presents how RK-OBGRNet exhibits superior capability for accurately identifying and 
responding to geological disaster occurrences. 

 
Fig. 6. Analysis of recall 

4.6. F1-Score 

In high-precision sensing related to geological disaster monitoring, the F1-Score balances precision 
and recall of estimating its accuracy. It is considered crucial for evaluating how efficiently sensor 
networks and precision models identify and react to events leading to geological disasters, 
reducing false alarms while being responsive toward actual events. Table 4 and Figure 7 show the 
comparison results in terms of F1-score. 

Table 4. Outcomes of F1-Score 

Method F1-Score (%) 
RNN-Autoencoder [30] 71% 

RK-OBGRNet [Proposed] 92% 
 

With an F1-Score of 92% compared to 71% for the RNN-Autoencoder, the suggested RK-OBGRNet 
model is better than the RNN-Auto encoder model and thus, suitable for geological disaster 

monitoring. This means that regarding achieving equilibrium between recall and precision, 
the suggested model offers much higher accuracy in disaster warning and response. 
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Fig. 7. Analysis of F1-score 

4.7. Discussion 

Despite its utility for anomaly detection in monitoring geological catastrophes, the RNN-
Autoencoder [30] has limitations concerning accuracy and online adaptability. It performs less than 
other models when it is concerned with predicting and responding to changing geological hazards, 
as it fails to handle complex spatial-temporal relationships and environmental changes. The 
computational complexity and difficulty in processing real-time, high-resolution remote sensing 
data make the approach of Cascade R-CNN [31,32] unsuitable for geological hazard monitoring, 
even though it performs well for object recognition. This might cause delays in critical disaster 
reaction situations. The proposed RK-OBGRNet method based on RK optimization of dynamic 
sensor placement, the application of back propagation to improve accuracy, and the Gated Layered 
methods of real-time adaptation help to overcome the drawbacks and cope successfully with the 
complicated spatial-temporal data, which will guarantee the faster and more precise responses to 
disasters.  

5. Conclusion  

Geological catastrophes such as landslides are very dangerous to human life and assets, therefore, 
needs prompt and precise monitoring to control instances of emergencies. Complex sensory 
technology was crucial in the real-time identification and control of such incidences. This study 
combines the information of satellite remote sensing and various geological and environmental 
variables to design high-quality landslide factors that influence factors. On the basis of these 
features, it was predicted that advanced sensing and monitoring of geological catastrophe 
emergency response would be created. The RK-OBGRNet was used to identify and monitor 
landslides using remote sensing photographs in a model. In order to enhance the quality of the 
satellite images, preprocessing techniques such as FT and z-score normalization are applied to 
remove noise, and to give the same data to perform the analysis. PCA and other feature extraction 
methods were embraced in order to distinguish the significant features that characterize presence 
or absence of landslides. The effect of the model parameters on the accuracy of landslide prediction 
was assessed. RK-OBGRNet is better than RNN-Autoencoder and Cascade R-CNN with a higher F1-
Score of 92%, accuracy of 95%, precision of 94% and recall of 93%. As per the outcomes, RK-
OBGRNet got the lowest overall error and it was shown to be applicable in identification of 
landslides with high precision. On the theoretical level, this study can be used in forming adaptive, 
real-time, and data-driven solutions in disaster management as they would enhance the 
effectiveness of early warning systems and response time, which could transform the exercise of 
disaster risk reduction. RK-OBGRNet is perfectly applicable to existing disaster response systems 
due to extreme weather conditions, sparsity of data, and real-time adaptation, which may affect the 
precision of the model during dynamic and large-scale disasters. High computational demands in 
it would inhibit its scalability especially in systems with resource constraints. The unpredictability 
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of data based on the quality of satellite images and capacity of the sensors may lower predictions 
and this would be challenging to the model strength in its real application. The study assists in the 
improvement of emergency reaction and geological disasters observation. It offered a blueprint on 
how the management of landslide risks could be done through the combination of high-precision 
monitoring devices and early warning systems and rapid response strategies.One of the limitations 
is that it depends on satellite data, which has weather fluctuations. Future studies could explore 
the combining deep learning with real-time sensor networks can enhance predictive accuracy.  
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