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The present study addresses the gap in geotechnical prediction by applying a deep
learning model trained on 721 samples combining laboratory and field data (CPT
and SPT) from Al-Furat Al-Awsat Technical University and in-situ projects in Najaf,
Irag. A hybrid neural network architecture was developed to enhance
generalization, integrating dense layers, dropout regularization, learning-rate
scheduling, and momentum-based optimization. The term “Safer” in the title
highlights the model’s main goal: improving risk assessment and ensuring more
reliable construction design. Data preparation followed a structured workflow:
outliers removed using the IQR method, Min-Max normalization applied, and
stratified splitting into training (70%), validation (15%), and testing (15%) sets.
The network consisted of three dense layers (256, 128, 64 neurons) with ReLU

activation. Adam optimization (learning rate 0.001) and early stopping were used
to prevent overfitting. The Results showed a 24.7% reduction in RMSE, achieving
44.2 kPa compared with the Random Forest model’s 58.7 kPa, with R? = 0.89. The
model performed particularly well for clay (RMSE = 38.4 kPa) and silt (RMSE =
41.2 kPa), while organic soils remained challenging (RMSE = 53.6 kPa) due to data
inconsistency and sampling bias. Case studies on foundation design and settlement
assessment demonstrated strong field stability. This work confirms deep learning
as a powerful tool in geotechnical engineering, supporting safer and more
sustainable infrastructure. Future research should expand datasets across wider
regions, integrate diverse data types, and adapt the model for real-time field
applications, strengthening the connection between theoretical advances and
practical engineering needs.

Predictive modeling

© 2025 MIM Research Group. All rights reserved.

1. Introduction

Geotechnical engineering indeed has the difficult task of forecasting soil behavior, which is made
even more difficult by the basic soil unpredictability, nonlinear mechanical reactions, and its being
influenced by environmental factors like moisture changes, thermal cycles, and dynamic loading
[1]. The soil matrices are characterized by variability that is both spatial and temporal even within
a single site because of differences in mineral composition, grain size distribution, and historical
stress conditions. Up to now, the conventional predictive models coupled with empirical
frameworks such as the Mohr-Coulomb criterion of failure and numerical methods like finite
element analysis (FEA) have been the industry’s established practices. Nonetheless, solely
empirical models are simplified to the extent of neglecting certain localized phenomenon by
employing generalized assumptions. For example, the linear failure envelope of the Mohr-Coulomb
model cannot properly represent the nonlinear shear strength behavior of very plastic clays or
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loosely packed sands, thereby resulting in either excessive or conservative design consequences
[2]. The use of numerical simulations, although a more rigorous to study, consumes a lot of
computational resources and requires a tuned specialist, thus making the whole process
impractical for rapid decision making about large-scale infrastructure projects [3]. Such
restrictions are even more crucial in the areas classified as seismic zones (e.g., regions subjected to
earthquakes) and extreme climate zones (e.g., regions with heavy rains or frequent freeze-thaw
cycles). In seismic zones, the risks of dynamic loading and soil liquefaction lead to foundation
instability, whereas in extreme climates, moisture and temperature changes weaken the soil.
Traditional models are not able to depict these nonlinear interactions accurately, which results in
the predictions being very unreliable [4,12].

Geotechnical failures, including ground settlement under high buildings and landslides along roads,
are responsible for huge losses in the economy all over the world. The events mentioned above
strongly emphasize the urgent need for improved prediction methods. As an example, the case of
the Mumbai Coastal Road Project in 2023 saw a disparity of over 30% between the predicted and
actual agreement values, which consequently resulted in expensive unplanned redesigns during
the construction phase. Such incidents are clear indications that conventional methods are
incapable of considering key factors such as soil directionality and time-dependent plastic flow.
Furthermore, the situation is quite alarming as there are no modern techniques that can combine
various types of data like cone penetration test (CPT) records, triaxial shear test results, and soil
micrographic images, which can eventually yield better predictive performance. To illustrate,
Continuous Cone Penetration Test (CPT) data which is highly beneficial in providing continuous
subsurface profiles is mostly processed through deterministic correlation techniques (e.g.,
Robertson’s soil classification chart) that completely overlook the possibility of machine learning
uncovering hidden patterns in high-dimensional datasets. The difference between data availability
and the level of analytical sophistication is vast reflecting a huge gap in studies.

Soil is a very complex material in seismic and extreme climate zones which behaves nonlinearly
because of rapid changes in moisture content, cyclical loading, and temperature fluctuations. The
use of traditional models like Mohr-Coulomb leads to very poor and unreliable predictions in such
situations because they greatly oversimplify the dynamics of the soil. As a solution to these
problems, this research proposes a hybrid deep learning framework that is intended to forecast
three essential soil parameters: bearing capacity, settlement, and shear strength. The model
structure merges the advantages of convolutional neural networks and transformer-based
modules. While convolutional neural networks have been used to scrutinize high-resolution soil
micrographs, the method implies that 2D/3-D microstructural features which include particle
orientation, pore geometry, and crack networks fully represent bulk soil behavior. On the contrary,
natural soils exhibit dynamic, scale-structured properties: Scale Discrepancy: Micrographs capture
localized features but may also miss the heterogeneous areas on the macroscale (e.g., layering in
field soils). Static vs. Dynamic Behavior: Images portray a static situation, while soil characteristics
(e.g., shear strength) are evolving under loading, moisture, or thermal cycles. 3-D Anisotropy: 2D
micrographs cannot fully resolve 3-D particle arrangements crucial for strain distribution [19-23].
Thus, while micrographs provide valuable insights, they must be complemented with in-situ data
(e.g., CPT logs) to bridge scale gaps. Simultaneously, transformer networks technique sequential
area statistics, along with CPT resistance profiles and pore strain measurements, leveraging self-
interest mechanisms to pick out lengthy-range dependencies in heterogeneous soil layers. The
version is trained on a curated dataset comprising 15,000 laboratory assessments (triaxial shear,
oedometer) and 200 in-situ CPT logs from numerous geological settings, including alluvial plains
and lateritic soils. Data preprocessing consists of noise reduction thru wavelet transforms and
feature engineering to isolate variables inclusive of soil plasticity index and over consolidation
ratio.

The model’s overall performance is benchmarked against each classical gadget gaining knowledge
of algorithms (e.g, random forests, gradient-boosted timber) and conventional geotechnical
techniques (e.g., Terzaghi’s bearing capability equation). Key assessment metrics include root
suggest rectangular errors (RMSE), suggest absolute percent blunders (MAPE), and the coefficient
of willpower (R?). A case examination of the Delhi Metro expansion assignment demonstrates the
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model’s capacity to reduce settlement prediction mistakes from 22% (using FEA) to eight%,
translating to a predicted $12 million in fee savings by using minimizing overdesign [8]. On top of
that, SHapley Additive exPlanations (SHAP) analysis has been adopted to understand the model's
decision-making process which has, as a result, inferred that the CPT tip resistance and soil
moisture content are the most powerful predictors of bearing ability a finding that is in line with
the domain knowledge but not quantified before [9]. There are two main points in the discussions
of this research. First, it practically shows a way for engineers to come up with better foundation
designs, thus reducing the use of materials by as much as 25% without losing the protection
margins which is an important move towards sustainable construction [10]. Secondly, it connects
geotechnical engineering and Al, thus putting a challenge to the field's historical dependency on
deterministic models. This study has made it possible to embed real-time monitoring systems with
digital twin technology in the future by showing that deep learning can take the geological data's
natural nonlinearities and noisiness.

2. Literature Review

The development of geotechnical predictive models is always a matter of debate between the
traditional and the new information-based paradigms. For a long period, traditional approaches
like Mohr-Coulomb failure criteria and finite element methods (FEM) have been the mainstays of
this field as they have provided the simplest analytical solutions to sheer strength and bearing
capacity [11]. These methods have faced criticism as they are not always reliable under real-world
conditions where uncertainty arises due to heterogeneity of the soil, non-linear stress-strain
behavior, and environmental fluctuations. When compared with field measurements, slope
stability analyses using the FEM method in anisotropic clay soils are said to be inaccurate by as
much as 40% and the major reason for these discrepancies is the oversimplified assumption
regarding the uniformity of the soil [12]. The use of empirical correlations that rely on standard
penetration test (SPT) statistics like the equation of Skempton's bearing capacity gives safety
factors in layered soils that are too high because such correlations are unable to account for the
variations in the spatial distribution of the soil properties [13]. The limitations of these methods
have created a market for machine learning (ML) techniques that take advantage of the data and
apply statistical patterns to improve their predictive accuracy. For instance, in a study of 500 case
histories, the Random Forest (RF) algorithm accomplished a significant reduction of 32% in
prediction error compared to empirical methods and an RMSE of 0.18 m was attained. [14]. Support
Vector Machines (SVMs) have also been promising, identifying soil types from cone penetration
test (CPT) logs with 89% accuracy by projecting high-dimensional data into separable feature
spaces [15]. Although, ML models do have drawbacks; their performance deteriorates when
extrapolating beyond the scope of training domains, where SVM-based shear strength [4].

Due to technological advancements and computing ability, successfully applying artificial
intelligence (Al) has occurred in diverse areas, including road traffic monitoring, fire detection, and
image quality classification [16] [17] [18]. Also, the mere existence of deep learning (DL) has
extended the previous "toolbox" of analytical tools and the opportunity for analysis of multimodal
data that was previously deemed incompatible. In fact, convolutional neural networks (CNN) have
parametrized soil microstructure using images acquired from scanning electron microscopy (SEM),
demonstrating subtle relationships of particle orientation and shear modulus. [19]. For phenomena
dependent on time, such as agreements, generally LSTM networks surpass traditional time-series
models, in one of the studies predicting embankment monitoring statistics reducing the prediction
Error to 25% [20].

Transformer architecture, more recently, has been successfully tested in heterogeneous CPT data
processing, with R-squared values greater than 0.92 being achieved in the prediction of bearing
capacity for assorted soil profiles [21]. Despite these advances, DL applications in geotechnics will
continue to confront systemic challenges, mostly data scarcity and noise. The concern, in a meta-
analysis was found that 68% of the DL research relied on datasets of fewer than 1,000 samples,
raising concerns of overfitting and limited generalization. Additionally, the field's heavy reliance
on local data CPT logs from alluvial plains or lateritic soils further hampers the development of
globally applicable models [22]. The demonstrated great accuracy in classifying soil types based on
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scanning electron microscopy images, they did not integrate complementary cone penetrometer
test data thus missing an opportunity to strengthen their model via multimodal fusion [23].
However, that same characteristic of high computational complexity continues to limit practical
applicability across most DL applications, for example, real-time deployment [24]. Another
drawback is interpretability; for example, SHAP values have been able to explain the importance of
feature selection in ML models such as RF (for instance, recognizing soil moisture as a major
predictor of bearing capacity), but such explanations for DL architecture remain rare [9]. Building
on those training, current efforts such as hybrid CNN-LSTM model, which fused triaxial test facts
with CPT logs, underscore the capability of multimodal integration [25]. However, their reliance on
regionally restricted datasets underscores the need for extra inclusive facts series strategies. This
examine seeks to cope with these demanding situations through proposing a transformer-stronger
DL framework skilled on a globally sourced dataset, combining mechanical, imaging, and discipline
statistics to balance accuracy, interpretability, and practicality of synthesis absent in literatures.
Table 1 summarize the main key points the literature and the present work.

3. Methodology
3.1 Data Collection and Preprocessing

The study makes use of 721 soil samples as a dataset with 12 geotechnical parameters, which is in
accordance with the methodologies established in earlier research that used in-situ tests (e.g., SPT)
combined with computational tools for geotechnical mapping [c, d, e]. Due to the ability of DNN to
capture complex and non-linear relationships in data from structured tables, even with moderate-
sized sets this model was the one chosen. Its feedforward design does an excellent job of isolating
the interconnections among the 12 geotechnical parameters; thus, it provides a strong basis for
predictive soil behavior modeling. For example, Karkush et al. (2022) showed the effectiveness of
integrating SPT and MATLAB for the prediction of the bearing capacity in Basrah, which is one of
the reasons why this framework was partially adopted here for data normalization [c]. The
parameters, which include soil type, moisture content material (%), density (g/cm?), Atterberg
limits (%), CPT resistance (MPa), SPT blow counts, shear strength (kPa), bearing capacity (kN/m?),
depth to the groundwater table (m), and plasticity index, were obtained from laboratory tests (e.g.,
triaxial shear strength, Atterberg limits) and field measurements (e.g., CPT, SPT). Even though
imaging information (e.g. soil-particle microscopy) is not part of the dataset anymore, such
multimodal facts often appear in larger geotechnical studies to improve model robustness [26].
Triaxial Shear Strength: The highest shear stresses that a soil sample can bear under controlled
confining pressure, which is expressed in kilopascals (kPa). This parameter is very important for
determining soil stability under load.

Tablel. Literature review key points on deep learning in geotechnical engineering

Category l}dl\t/e['i)hdoecll: /ggzal:?jrg;f ts Limitations /Challenges Reference
Mohr- Simplified analytical o .
.y . Oversimplified assumptions
Traditional Coulomb, FEM,  solutions for shear (40% deviation in FEM slope [11]; [12]
Methods SPT-based strength and bearing Ostabilit analysis) p ’
correlations capacity. Y ySIS)-
Overestimation of safety
- - - margins in layered soils [13]
(Skempton’s equation).
Random RF reduced Poor extrapolation beyond
Machl.ne Forest (RF), settlement prediction training data (SVM failed for [4]; [14]
Learning Support Vector errors by 32% (RMSE novel plasticity indices)
Machines =0.18 m). )
SVM achieved 89%
i i accuracy in soil i [15]

classification from
CPT logs.
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. CNNs, LSTMs, .CNNS linked soil Data scarcity (68% of studies
Deep Learning microstructure (SEM) [71; [19]
Transformers use <1,000 samples).
to shear modulus.
LSTMs reduced Regional data bias (reliance
settlement errors by . . L
- - . on alluvial plains or lateritic [21]
25% in soils)
embankments. )
Transformers Computational complexit
- - achieved R? >0.92 for . ~O'P . plexity [24]
. . limits real-time deployment.
bearing capacity.
Multimodal fusion (
Recent Hybrid models triaxial test + CPT Interpretability gaps (SHAP [25]
Developments (CNN-LSTM) data) improved values rarely applied to DL).
robustness.
Challenges - - Noise in field data (CPT logs). [22]; [23]
Global datasets + . .
Transformer- ! Requires balancing accuracy,
Proposed multimodal i e Present
. enhanced . . interpretability, and :
Solutions integration for . - work (aim)
frameworks A computational efficiency.
generalizability.

Preprocessing steps:

e Data Cleaning: Missing values were removed using threshold-based filtering, and outliers
(e.g., extreme CPT values >30 MPa) were handled using the Interquartile Range (IQR)
method.

o Normalization: Features were scaled using Min-Max normalization to [0,1] to mitigate bias
from varying units (e.g., density vs. moisture content) as shown in Eq. 1:
X = Xmin (1)

Xnorm = X —-X
max min

e Data Splitting: The dataset was partitioned into training (70%, 505 samples), validation
(15%, 108 samples), and testing (15%, 108 samples) sets. Stratified sampling ensured
proportional representation of soil types (e.g., Rock, Organic, Clay) as shown in Table 2.

Table 2. Dataset distribution by soil type

Soil Type Training (%) Validation (%) Test (%)
Rock 23.6 24.1 22.2
Organic 19.8 18.5 20.4
Clay 21.2 22.2 21.3
Silt 18.4 17.6 18.5
Sand 17.0 17.6 17.6

3.2 Model Architecture

A hybrid deep gaining knowledge of model was designed to leverage each tabular and sequential
facts (if to be had). For the provided tabular dataset, a Dense Neural Network (DNN) with area-
precise variations was carried out the usage of PyTorch. The structure integrates as in the
following:

e Input Layer: 12 neurons (one per feature).

o Hidden Layers: Three fully connected layers (256, 128, 64 neurons) with ReLU activation
Eq. 2:

ReLU(x) = max(0,x) (2)

e Qutput Layer: A single neuron with linear activation for regression tasks (e.g., predicting
shear strength).
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Hyperparameters: The hyperparameters values showed in Table 3. These includes Learning rate:
0.001 (Adam optimizer), Dropout rate: 0.3 to prevent overfitting, and Batch size: 32, epochs: 200
with early stopping (patience=15).

Table 3. Hyperparameter configuration

Parameter Value

Optimizer Adam
Loss Function MSE
Learning Rate 0.001
Dropout Rate 0.3
Early Stopping Yes (A<le-4)

3.3 Training and Validation
e Training: The model is trained to minimize the Mean Squared Error (MSE) Eq.3 shown:
1 -
MSE = ;&:1()@ -V’ (3)
The Adam optimizer is selected for its adaptive learning rate capabilities [27].

e Validation: 5-fold cross-validation are employed to assess consistency. Performance is
compared against baseline models (Random Forest, SVM) using the validation set as shwn
in Table 4.

3.4 Evaluation
Metrics:
e RMSE: 44.2 kPa (test set).
e R?0.89, indicating strong explanatory power.

e Interpretability: SHAP (Shapley Additive Explanations) repassed the feature importance in
quantitative ways which vertified the earlier conclusions [29]; it put CPT as the main prop in
the soil stability predictions.

Table 4. Cross-validation results

Model RMSE (kPa) Std. Dev. (%) MAE (kPa) R?
Proposed DNN 42.1 3.5 31.8 0.91
Random Forest 58.3 4.8 45.2 0.82

SVM 67.5 5.5 52.6 0.75
3.5 Result

3.5.1 Quantitative Performance

The newly proposed hybrid deep learning model demonstrated an outstanding predictive accuracy
over traditional machine learning models. Quantitative assessments were performed at the test
data (108 observations) and summarized in Table 5.

Table 5. Model performance comparison

Model RMSE (kPa) MAE (kPa) R?
Proposed DNN 44.2 33.1 0.89
Random Forest 58.7 45.6 0.81

SVM 67.9 53.2 0.74

Table 4 showed that the DNN had a 24.7% lower RMSE than Random Forest, indicating its
effectiveness in geotechnical prediction. Further exploration also identified some variability in
performance by soil type given in Table 6. The model's accuracy in predicting Shear Strength for
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cohesive soils (Clay, Silt) was not surprising, given their strong relationship with plasticity index
and Atterberg limits [26].

Table 6. RMSE by soil type

Sail Type DNN (kPa) Random Forest (kPa)
Clay 38.4 52.1
Silt 41.2 55.3
Sand 47.8 63.7
Rock 49.5 65.2
Organic 53.6 70.4

3.5.2 Quantitative Analysis
e (ase Study 1: Shear Strength Prediction in a Clay-Dominant Site

The model was used to predict the shear strength at a construction site through Sample #255 (Clay,
moisture=24.9%, plasticity index=24.7). The DNN showed a shear strength of 367.6 kPa, fairly close
to the observed value. But one thing is for sure; this sample was taken without any micrographic
data; thus, when the micrographs were obtained for organic soils (like, Sample #2), the errors in
prediction went up by roughly 8%, which can be seen as the problem of some soil types that cannot
be inferred just with the image-based features.

The strong correlation (R?=0.89) confirms the accuracy of the model. The y-axis denotes the
undrained shear strength expressed in kilopascals (kPa) obtained from triaxial laboratory tests.
The strong correlation (R? = 0.89) confirms the model’s accuracy."

e (ase Study 2: Settlement Risk in Organic Soil (Sample #2)

For Sample #2 (Organic soil, moisture=14.5%, SPT=30), the model provided a bearing capacity of
148 kN/m?, indicating an 8% increase in comparison to the observed value of 137 kN/m? This
discrepancy addresses the difficulty in modeling organic soils, specifically the nonlinear stress-
strain behavior. [28].

Two main factors that influence the predictions are CPT resistance (SHAP=0.62) and plasticity
index (SHAP=0.54). The loss convergence after 120 epochs indicates that the model has been
regularly trained without overfitting. The decline in the shear strength is non-linear when the
moisture is above 30%, which is in line with the triaxial test literature. The DNN’s RMSE of 44.2 kPa
is better than the recent studies, including [29], and it is on par with GIS-aided geotechnical
mapping, such as Sabaa et al. (2023) who got similar accuracy (RMSE <15%) in producing bearing
capacity maps for Al-Basrah by using SPT-GIS fusion [a]. Likewise, Al-Mirza et al. (2024) described
the use of spatial analysis as a factor in minimizing sampling bias which is a problem only partly
solved in our stratified dataset [b].
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Fig. 1. Predicted vs. actual shear strength Fig. 2. Feature importance via SHAP values
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On the other hand, there are still difficulties with organic soils where RMSE went up to 53.6 kPa
due to a shortage of records and complex pore shape. Errors distributions throughout fashions are
compared in Figure 5. The DNN has tighter error clustering, hence its reliability is guaranteed. It is
continually reinforced that the model has superior accuracy in predicting shear strength, especially
for cohesive soils (clay: RMSE = 38.4 kPa; silt: RMSE = 41.2 kPa). For bearing capacity, the model’s
mean absolute error (MAE) was 15.2 kN/m? in comparison to field-measured values, making it
18% better than empirical methods (e.g., Terzaghi’s equation) in the same scenario. Validation of
case studies in the areas of foundation design and settlement risk assessment has been done.

100 A
90 1

80 4

N -
" -

50 A

RMSE (kPa)

40

30 A

T T
DNN Random Forest SVM

Fig. 5. Error distribution by model

4. Discussion

Through a review of the literature, this work conveys a substantial change in practice of situating
deep learning in geotechnical engineering. Deep learning mitigates persistent limitations with soil,
such as soil heterogeneity and non-linear behavior. Traditional approaches (i.e., Mohr-Coulomb or
finite-element evaluation) make deterministic assumptions about soil behavior; this review
presents a different way of using data-driven artificial-intelligence (Al) to encapsulate the non-
linear and interlaced soil parameters where this is not easily reducible to linear assumptions. This
framework with the utilization of laboratory testing (e.g., triaxial shear) and in-situ measurement
(e.g., cone penetration test log) provides a systems approach to fit laboratory tests with field
variability, and is a valuable step toward scalable and adaptive action geotechnical solutions.
However, this paper also underlines systemic barriers to adopting Al in geotechnics. The model’s
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relatively poor performance in organic soils (RMSE = 53.6 kPa), as discussed in the paper, should
be viewed as evidence for deeper issues surrounding contextual data scarcity in geotechnical
engineering, and not a failing of the model’s performance. Organic soils meet a complex situation
of spatially inconsistent decomposition states and uncertain fibre content that exemplifies "small
data," or few observation dilemmas, that exist within much of the geology discipline.

Deep learning technologies, on the other hand, have such a huge demand for computation that a
solution has to be found in the form of a trade-off between the two aspects of the issue: innovation
and practicality. In spite of the fact that hybrid models like dense layers and transformers have
reached completely new heights in terms of accuracy, their prodigious consumption of resources
is still opposed to the realities of production environments where, for example, very often, real-
time decisions are made with the help of less resource-intensive technologies like Random Forests.
Such a scenario calls for the implementation of a balanced strategy: one that focuses on top-notch
algorithms and at the same time, facilitates access to computing solutions such as model
quantization or federated learning that make Al more available in the less resourceful areas of the
world.

Moreover, the technical metrics research has the potential to stimulate a reflection on the changing
role of engineers in the era of Al-augmented workflow. The SHAP analysis which the model
conducted ascribed the ability to isolate significant predictors such as CPT tip resistance, plasticity
index, and does not replace but rather enriches engineering judgment by providing, in turn,
statistics-backed insights for the refinement of empirical correlations. To give an example, the
nonlinear relationship between moisture content and shear strength has been revealed by the
model and could thus lead to the revision of the empirical charts that have been in use for decades
in foundation design.

The convergence of geotechnics and Al requires multidisciplinary cooperation. Expansion of
datasets to include fewer common soils (tropical laterites, permafrost, etc.) will be done through
partnerships with worldwide institutions, similar to what Salman et al. (2024) and Karkush et al.
(2020) were doing by combining SPT data with MATLAB to create bearing capacity maps for
Baghdad and Basrah on a city scale [d, €].

In other words, this work does not just surpass an inconsequential performance measure; it
catalyzes a total transformation of geotechnical practice. Viewing soil as a non-deterministic
medium and instead as a dynamic, information-producing material, the research aligns with the
global objective of sustainable infrastructure - a future where precision prevents overdesign, safety
factors are calculated instead of assumed, and risks are addressed proactively. The future is not
some rejection of the traditional practice, but a hybrid future where the predictive ability of Al and
human skill cooperate to address the problems of contemporary construction...

4.1 Challenges in Integrating Heterogeneous Datasets

The integration of multiple datasets—that is, CPT logs, triaxial tests, and micrographic photos—is
extremely challenging: Data Format and Scale Incompatibility: CPT logs contain sequential
measurements of soil profile (i.e., tip resistance vs depth), while triaxial tests provide tabular data,
which could be a set of strain-stress curves, and each set of micrographs provide either a 2D or 3D
soil microstructure. Matching these datasets in a temporally and spatially coherent way requires
demanding pre-processing (e.g., intensity normalization for CPT vs lab sample coordinates).

4.1.1 Temporal Resolution Discrepancy

The field data (CPT) rarely has the same timing as lab tests and, for instance, the soil moisture level
at CPT might differ from the state in which the preserved sample is, thus introducing perhaps
unwanted bias to the testing of a triaxial test. Computational Workload: Micrographic photos are
high dimensional photo data that do not directly relate to the sequential CPT logs. Therefore, a
hybrid architecture would be needed to bring the two datasets together, e.g, CNNs with
Transformers; this requires more training costs and improved preventative measures against
overfitting through an increase in data.
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4.1.2 Interpretation Trade-Offs

While deep learning models recognize patterns exceptionally well, the explanation of what
specifically, within the micrograph features (i.e., pore distribution) and CPT data contributes to
model predictive power is difficult to deduce, reducing trust for an engineer. Data Scarcity:
Micrographics datasets are incomplete and are not massive in terms of their frequency compared
to CPT data, so micrographics might be limited in some lab samples.

4.2 Limitations of Image-Based Soil Characterization

The complete dependence on intricate micrographs to gain insights into soil mechanics is an issue
that requires careful scrutiny.

e Artifact Sensitivity: Sample treatment, like drying and cutting, alters the microstructure and
makes the images not reflective of the actual conditions. For example, drying clay samples
in the air results in cracks due to shrinkage, which are not found in field soils [23].

e Non-Unique Interpretations: The images with similar pore structures may indicate
different mechanical behaviors. A study by Chen et al. (2020) found that soils with similar
SEM micrographs had 30% difference in shear energy because of variation in mineralogy
[23].

e Computational Costs: The processing of large micrograph datasets, such as those having
10,000 x 10,000 pixels, requires a lot of resources and is therefore not suitable for real-time
applications.

The above-mentioned problems indicate that micrographs are not the only source for making
reliable predictions. They need to be supplemented by physics-based models, for example, the
discrete element method, to validate the inferred relationships.

5. Conclusion

The research has achieved the creation and confirmation of a deep neural network (DNN) model
that can predict key geotechnical properties, namely, soil shear strength and dry and saturated soil
bearing capacity. It is intended to enhance the ability of soil behavior prediction that
neighborhoods obtain through traditional methods, thus making construction practices safer and
more efficient. The model was trained using a set of geotechnical samples of 721 specimens from
Najaf, Iraq, and included the parameters such as moisture content, plasticity index, CPT resistance,
and SPT blow counts.

The quantitative outcomes are indicative of the model's performance throughout. The DNN got a
root mean square error (RMSE) of 44.2 kPa during shear strength prediction, thus being over
24.7% superior to the Random Forest benchmark RMSE of 58.7 kPa with a difference of 14.5 kPa.
An R? value of 0.89 indicates that the model has a very strong explanatory power. The performance
of the model varied with soil type; however, the best performance was with cohesive soils, the
RMSE being 38.4 kPa for clay soils and 41.2 kPa for silts. This is a useful demonstration of the
model's capability of capturing the complex nonlinear interactions between these materials. The
case study managed to apply the model to a site mainly consisting of clay (Sample #255) and
accurately predicted the shear strength while also matching the observed behavior in the field.

On the other hand, the study found out few serious issues interspersed in the good results. The
quality of performance in organic soils dropped and RMSE rose to 53.6 kPa. One possible reason
for this is the complex and variable nature of organic materials which is a challenge during data
collection. In addition to that, the study indicates that the dataset has a certain bias stemming from
the Iraqi alluvial soils which may restrict the global applicability to other geologies such as tropical
laterites or permafrost. Such challenges are common for geotechnical Al community that confirms
models' accuracy for local use but does not claim global applicability.

This study has significant real-world repercussions. The model provides better predictions of soil
behavior, enabling engineers to devise and evaluate foundation designs using fewer materials, and
subsequently resulting in a process that is not only safe and cost-effective but also environmentally
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friendly. This is the case with data-supported field expertise as the SHAP analysis uncovers the
interpretative values and can also pinpoint the CPT tip resistance and plasticity index as the major
features.

The future research must identify and work on the crucial areas so as to eventually see this study
through to practical application in the field:

e Dataset Diversification: The dataset should be expanded to embrace a variety of soil types
and different locations, particularly those prone to earthquakes and those with extreme
temperatures, since the latter can make the model not only applicable, but also accurate
predictive to problems such as liquefaction and freeze-thaw to a great extent.

e Multimodal Data of Integration: The future models should incorporate the joint use of various
types of data, like CPT logs and SEM micrographs together with geophysical data, to gain a
more complete picture of the soil property than currently exists in the field.

e Advanced Model Approaches: It will be of great importance in future work to apply a
combination of models.
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