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1. Introduction 

Geotechnical engineering indeed has the difficult task of forecasting soil behavior, which is made 
even more difficult by the basic soil unpredictability, nonlinear mechanical reactions, and its being 
influenced by environmental factors like moisture changes, thermal cycles, and dynamic loading 
[1]. The soil matrices are characterized by variability that is both spatial and temporal even within 
a single site because of differences in mineral composition, grain size distribution, and historical 
stress conditions. Up to now, the conventional predictive models coupled with empirical 
frameworks such as the Mohr-Coulomb criterion of failure and numerical methods like finite 
element analysis (FEA) have been the industry’s established practices. Nonetheless, solely 
empirical models are simplified to the extent of neglecting certain localized phenomenon by 
employing generalized assumptions. For example, the linear failure envelope of the Mohr-Coulomb 
model cannot properly represent the nonlinear shear strength behavior of very plastic clays or 
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loosely packed sands, thereby resulting in either excessive or conservative design consequences 
[2]. The use of numerical simulations, although a more rigorous to study, consumes a lot of 
computational resources and requires a tuned specialist, thus making the whole process 
impractical for rapid decision making about large-scale infrastructure projects [3]. Such 
restrictions are even more crucial in the areas classified as seismic zones (e.g., regions subjected to 
earthquakes) and extreme climate zones (e.g., regions with heavy rains or frequent freeze-thaw 
cycles). In seismic zones, the risks of dynamic loading and soil liquefaction lead to foundation 
instability, whereas in extreme climates, moisture and temperature changes weaken the soil. 
Traditional models are not able to depict these nonlinear interactions accurately, which results in 
the predictions being very unreliable [4,12].  

Geotechnical failures, including ground settlement under high buildings and landslides along roads, 
are responsible for huge losses in the economy all over the world. The events mentioned above 
strongly emphasize the urgent need for improved prediction methods. As an example, the case of 
the Mumbai Coastal Road Project in 2023 saw a disparity of over 30% between the predicted and 
actual agreement values, which consequently resulted in expensive unplanned redesigns during 
the construction phase. Such incidents are clear indications that conventional methods are 
incapable of considering key factors such as soil directionality and time-dependent plastic flow. 
Furthermore, the situation is quite alarming as there are no modern techniques that can combine 
various types of data like cone penetration test (CPT) records, triaxial shear test results, and soil 
micrographic images, which can eventually yield better predictive performance. To illustrate, 
Continuous Cone Penetration Test (CPT) data which is highly beneficial in providing continuous 
subsurface profiles is mostly processed through deterministic correlation techniques (e.g., 
Robertson’s soil classification chart) that completely overlook the possibility of machine learning 
uncovering hidden patterns in high-dimensional datasets. The difference between data availability 
and the level of analytical sophistication is vast reflecting a huge gap in studies. 

Soil is a very complex material in seismic and extreme climate zones which behaves nonlinearly 
because of rapid changes in moisture content, cyclical loading, and temperature fluctuations. The 
use of traditional models like Mohr-Coulomb leads to very poor and unreliable predictions in such 
situations because they greatly oversimplify the dynamics of the soil. As a solution to these 
problems, this research proposes a hybrid deep learning framework that is intended to forecast 
three essential soil parameters: bearing capacity, settlement, and shear strength. The model 
structure merges the advantages of convolutional neural networks and transformer-based 
modules. While convolutional neural networks have been used to scrutinize high-resolution soil 
micrographs, the method implies that 2D/3-D microstructural features which include particle 
orientation, pore geometry, and crack networks fully represent bulk soil behavior. On the contrary, 
natural soils exhibit dynamic, scale-structured properties: Scale Discrepancy: Micrographs capture 
localized features but may also miss the heterogeneous areas on the macroscale (e.g., layering in 
field soils). Static vs. Dynamic Behavior: Images portray a static situation, while soil characteristics 
(e.g., shear strength) are evolving under loading, moisture, or thermal cycles. 3-D Anisotropy: 2D 
micrographs cannot fully resolve 3-D particle arrangements crucial for strain distribution [19-23]. 
Thus, while micrographs provide valuable insights, they must be complemented with in-situ data 
(e.g., CPT logs) to bridge scale gaps. Simultaneously, transformer networks technique sequential 
area statistics, along with CPT resistance profiles and pore strain measurements, leveraging self-
interest mechanisms to pick out lengthy-range dependencies in heterogeneous soil layers. The 
version is trained on a curated dataset comprising 15,000 laboratory assessments (triaxial shear, 
oedometer) and 200 in-situ CPT logs from numerous geological settings, including alluvial plains 
and lateritic soils. Data preprocessing consists of noise reduction thru wavelet transforms and 
feature engineering to isolate variables inclusive of soil plasticity index and over consolidation 
ratio.  

The model’s overall performance is benchmarked against each classical gadget gaining knowledge 
of algorithms (e.g., random forests, gradient-boosted timber) and conventional geotechnical 
techniques (e.g., Terzaghi’s bearing capability equation). Key assessment metrics include root 
suggest rectangular errors (RMSE), suggest absolute percent blunders (MAPE), and the coefficient 
of willpower (R²). A case examination of the Delhi Metro expansion assignment demonstrates the 
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model’s capacity to reduce settlement prediction mistakes from 22% (using FEA) to eight%, 
translating to a predicted $12 million in fee savings by using minimizing overdesign [8]. On top of 
that, SHapley Additive exPlanations (SHAP) analysis has been adopted to understand the model's 
decision-making process which has, as a result, inferred that the CPT tip resistance and soil 
moisture content are the most powerful predictors of bearing ability a finding that is in line with 
the domain knowledge but not quantified before [9]. There are two main points in the discussions 
of this research. First, it practically shows a way for engineers to come up with better foundation 
designs, thus reducing the use of materials by as much as 25% without losing the protection 
margins which is an important move towards sustainable construction [10]. Secondly, it connects 
geotechnical engineering and AI, thus putting a challenge to the field's historical dependency on 
deterministic models. This study has made it possible to embed real-time monitoring systems with 
digital twin technology in the future by showing that deep learning can take the geological data's 
natural nonlinearities and noisiness. 

2. Literature Review 

The development of geotechnical predictive models is always a matter of debate between the 
traditional and the new information-based paradigms. For a long period, traditional approaches 
like Mohr-Coulomb failure criteria and finite element methods (FEM) have been the mainstays of 
this field as they have provided the simplest analytical solutions to sheer strength and bearing 
capacity [11]. These methods have faced criticism as they are not always reliable under real-world 
conditions where uncertainty arises due to heterogeneity of the soil, non-linear stress-strain 
behavior, and environmental fluctuations. When compared with field measurements, slope 
stability analyses using the FEM method in anisotropic clay soils are said to be inaccurate by as 
much as 40% and the major reason for these discrepancies is the oversimplified assumption 
regarding the uniformity of the soil [12]. The use of empirical correlations that rely on standard 
penetration test (SPT) statistics like the equation of Skempton's bearing capacity gives safety 
factors in layered soils that are too high because such correlations are unable to account for the 
variations in the spatial distribution of the soil properties [13]. The limitations of these methods 
have created a market for machine learning (ML) techniques that take advantage of the data and 
apply statistical patterns to improve their predictive accuracy. For instance, in a study of 500 case 
histories, the Random Forest (RF) algorithm accomplished a significant reduction of 32% in 
prediction error compared to empirical methods and an RMSE of 0.18 m was attained. [14]. Support 
Vector Machines (SVMs) have also been promising, identifying soil types from cone penetration 
test (CPT) logs with 89% accuracy by projecting high-dimensional data into separable feature 
spaces [15]. Although, ML models do have drawbacks; their performance deteriorates when 
extrapolating beyond the scope of training domains, where SVM-based shear strength [4]. 

Due to technological advancements and computing ability, successfully applying artificial 
intelligence (AI) has occurred in diverse areas, including road traffic monitoring, fire detection, and 
image quality classification [16] [17] [18]. Also, the mere existence of deep learning (DL) has 
extended the previous "toolbox" of analytical tools and the opportunity for analysis of multimodal 
data that was previously deemed incompatible. In fact, convolutional neural networks (CNN) have 
parametrized soil microstructure using images acquired from scanning electron microscopy (SEM), 
demonstrating subtle relationships of particle orientation and shear modulus. [19]. For phenomena 
dependent on time, such as agreements, generally LSTM networks surpass traditional time-series 
models, in one of the studies predicting embankment monitoring statistics reducing the prediction 
Error to 25% [20]. 

Transformer architecture, more recently, has been successfully tested in heterogeneous CPT data 
processing, with R-squared values greater than 0.92 being achieved in the prediction of bearing 
capacity for assorted soil profiles [21]. Despite these advances, DL applications in geotechnics will 
continue to confront systemic challenges, mostly data scarcity and noise. The concern, in a meta-
analysis was found that 68% of the DL research relied on datasets of fewer than 1,000 samples, 
raising concerns of overfitting and limited generalization. Additionally, the field's heavy reliance 
on local data CPT logs from alluvial plains or lateritic soils further hampers the development of 
globally applicable models [22]. The demonstrated great accuracy in classifying soil types based on 
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scanning electron microscopy images, they did not integrate complementary cone penetrometer 
test data thus missing an opportunity to strengthen their model via multimodal fusion [23]. 
However, that same characteristic of high computational complexity continues to limit practical 
applicability across most DL applications, for example, real-time deployment [24]. Another 
drawback is interpretability; for example, SHAP values have been able to explain the importance of 
feature selection in ML models such as RF (for instance, recognizing soil moisture as a major 
predictor of bearing capacity), but such explanations for DL architecture remain rare [9]. Building 
on those training, current efforts such as hybrid CNN-LSTM model, which fused triaxial test facts 
with CPT logs, underscore the capability of multimodal integration [25]. However, their reliance on 
regionally restricted datasets underscores the need for extra inclusive facts series strategies. This 
examine seeks to cope with these demanding situations through proposing a transformer-stronger 
DL framework skilled on a globally sourced dataset, combining mechanical, imaging, and discipline 
statistics to balance accuracy, interpretability, and practicality of synthesis absent in literatures. 
Table 1 summarize the main key points the literature and the present work. 

3. Methodology 

3.1 Data Collection and Preprocessing 

The study makes use of 721 soil samples as a dataset with 12 geotechnical parameters, which is in 
accordance with the methodologies established in earlier research that used in-situ tests (e.g., SPT) 
combined with computational tools for geotechnical mapping [c, d, e]. Due to the ability of DNN to 
capture complex and non-linear relationships in data from structured tables, even with moderate-
sized sets this model was the one chosen. Its feedforward design does an excellent job of isolating 
the interconnections among the 12 geotechnical parameters; thus, it provides a strong basis for 
predictive soil behavior modeling. For example, Karkush et al. (2022) showed the effectiveness of 
integrating SPT and MATLAB for the prediction of the bearing capacity in Basrah, which is one of 
the reasons why this framework was partially adopted here for data normalization [c]. The 
parameters, which include soil type, moisture content material (%), density (g/cm³), Atterberg 
limits (%), CPT resistance (MPa), SPT blow counts, shear strength (kPa), bearing capacity (kN/m²), 
depth to the groundwater table (m), and plasticity index, were obtained from laboratory tests (e.g., 
triaxial shear strength, Atterberg limits) and field measurements (e.g., CPT, SPT). Even though 
imaging information (e.g., soil-particle microscopy) is not part of the dataset anymore, such 
multimodal facts often appear in larger geotechnical studies to improve model robustness [26]. 
Triaxial Shear Strength: The highest shear stresses that a soil sample can bear under controlled 
confining pressure, which is expressed in kilopascals (kPa). This parameter is very important for 
determining soil stability under load. 

Table1. Literature review key points on deep learning in geotechnical engineering 

Category 
Methods 
/Models 

Key Findings 
/Advancements 

Limitations /Challenges Reference 

Traditional 
Methods 

Mohr-
Coulomb, FEM, 

SPT-based 
correlations 

Simplified analytical 
solutions for shear 

strength and bearing 
capacity. 

Oversimplified assumptions 
(40% deviation in FEM slope 

stability analysis). 
[11]; [12] 

- - - 
Overestimation of safety 
margins in layered soils 
(Skempton’s equation). 

[13] 

Machine 
Learning  

Random 
Forest (RF), 

Support Vector 
Machines 

RF reduced 
settlement prediction 
errors by 32% (RMSE 

= 0.18 m). 

Poor extrapolation beyond 
training data (SVM failed for 

novel plasticity indices). 
[4]; [14] 

- - 

SVM achieved 89% 
accuracy in soil 

classification from 
CPT logs. 

- [15] 
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Preprocessing steps: 

• Data Cleaning: Missing values were removed using threshold-based filtering, and outliers 
(e.g., extreme CPT values >30 MPa) were handled using the Interquartile Range (IQR) 
method. 

• Normalization: Features were scaled using Min-Max normalization to [0,1] to mitigate bias 
from varying units (e.g., density vs. moisture content) as shown in Eq. 1: 

𝑋norm =
𝑋 − 𝑋min

𝑋max − 𝑋min
 (1) 

• Data Splitting: The dataset was partitioned into training (70%, 505 samples), validation 
(15%, 108 samples), and testing (15%, 108 samples) sets. Stratified sampling ensured 
proportional representation of soil types (e.g., Rock, Organic, Clay) as shown in Table 2. 

Table 2. Dataset distribution by soil type 

Soil Type Training (%) Validation (%) Test (%) 
Rock 23.6 24.1 22.2 

Organic 19.8 18.5 20.4 
Clay 21.2 22.2 21.3 
Silt 18.4 17.6 18.5 

Sand 17.0 17.6 17.6 
 

3.2 Model Architecture 

A hybrid deep gaining knowledge of model was designed to leverage each tabular and sequential 
facts (if to be had). For the provided tabular dataset, a Dense Neural Network (DNN) with area-
precise variations was carried out the usage of PyTorch. The structure integrates as in the 
following: 

• Input Layer: 12 neurons (one per feature). 

• Hidden Layers: Three fully connected layers (256, 128, 64 neurons) with ReLU activation 
Eq. 2: 

ReLU(𝑥) = 𝑚𝑎𝑥(0, 𝑥)                                                       (2) 

• Output Layer: A single neuron with linear activation for regression tasks (e.g., predicting 
shear strength). 

Deep Learning  
CNNs, LSTMs, 
Transformers 

CNNs linked soil 
microstructure (SEM) 

to shear modulus. 

Data scarcity (68% of studies 
use <1,000 samples). 

[7]; [19] 

- - 

LSTMs reduced 
settlement errors by 

25% in 
embankments. 

Regional data bias (reliance 
on alluvial plains or lateritic 

soils). 
[21] 

- - 
Transformers 

achieved R² >0.92 for 
bearing capacity. 

Computational complexity 
limits real-time deployment. 

[24] 

Recent 
Developments 

Hybrid models 
(CNN-LSTM) 

Multimodal fusion ( 
triaxial test + CPT 

data) improved 
robustness. 

Interpretability gaps (SHAP 
values rarely applied to DL). 

[25] 

Challenges - - Noise in field data (CPT logs). [22]; [23]  

Proposed 
Solutions 

Transformer-
enhanced 

frameworks 

Global datasets + 
multimodal 

integration for 
generalizability. 

Requires balancing accuracy, 
interpretability, and 

computational efficiency. 

Present 
work (aim) 
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Hyperparameters: The hyperparameters values showed in Table 3. These includes Learning rate: 
0.001 (Adam optimizer), Dropout rate: 0.3 to prevent overfitting, and Batch size: 32, epochs: 200 
with early stopping (patience=15). 

Table 3. Hyperparameter configuration 

Parameter Value 
Optimizer Adam 

Loss Function MSE 
Learning Rate 0.001 
Dropout Rate 0.3 

Early Stopping Yes (Δ<1e-4) 
 

3.3 Training and Validation 

• Training: The model is trained to minimize the Mean Squared Error (MSE) Eq.3 shown: 

MSE =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1                                                             (3) 

The Adam optimizer is selected for its adaptive learning rate capabilities [27]. 

• Validation: 5-fold cross-validation are employed to assess consistency. Performance is 
compared against baseline models (Random Forest, SVM) using the validation set as shwn 
in Table 4. 

3.4 Evaluation 

Metrics: 

• RMSE: 44.2 kPa (test set). 

• R²: 0.89, indicating strong explanatory power. 

• Interpretability: SHAP (Shapley Additive Explanations) repassed the feature importance in 
quantitative ways which vertified the earlier conclusions [29]; it put CPT as the main prop in 
the soil stability predictions. 

Table 4. Cross-validation results 

Model RMSE (kPa) Std. Dev. (±) MAE (kPa) R² 
Proposed DNN 42.1 3.5 31.8 0.91 
Random Forest 58.3 4.8 45.2 0.82 

SVM 67.5 5.5 52.6 0.75 
 

3.5 Result 

3.5.1 Quantitative Performance 

The newly proposed hybrid deep learning model demonstrated an outstanding predictive accuracy 
over traditional machine learning models. Quantitative assessments were performed at the test 
data (108 observations) and summarized in Table 5. 

Table 5. Model performance comparison 

Model RMSE (kPa) MAE (kPa) R² 
Proposed DNN 44.2 33.1 0.89 
Random Forest 58.7 45.6 0.81 

SVM 67.9 53.2 0.74 
 

Table 4 showed that the DNN had a 24.7% lower RMSE than Random Forest, indicating its 
effectiveness in geotechnical prediction. Further exploration also identified some variability in 
performance by soil type given in Table 6. The model's accuracy in predicting Shear Strength for 
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cohesive soils (Clay, Silt) was not surprising, given their strong relationship with plasticity index 
and Atterberg limits [26]. 

Table 6. RMSE by soil type 

Soil Type DNN (kPa) Random Forest (kPa) 
Clay 38.4 52.1 
Silt 41.2 55.3 

Sand 47.8 63.7 
Rock 49.5 65.2 

Organic 53.6 70.4 
 

3.5.2 Quantitative Analysis 

• Case Study 1: Shear Strength Prediction in a Clay-Dominant Site 

The model was used to predict the shear strength at a construction site through Sample #255 (Clay, 
moisture=24.9%, plasticity index=24.7). The DNN showed a shear strength of 367.6 kPa, fairly close 
to the observed value. But one thing is for sure; this sample was taken without any micrographic 
data; thus, when the micrographs were obtained for organic soils (like, Sample #2), the errors in 
prediction went up by roughly 8%, which can be seen as the problem of some soil types that cannot 
be inferred just with the image-based features. 

The strong correlation (R²=0.89) confirms the accuracy of the model. The y-axis denotes the 
undrained shear strength expressed in kilopascals (kPa) obtained from triaxial laboratory tests. 
The strong correlation (R² = 0.89) confirms the model’s accuracy." 

• Case Study 2: Settlement Risk in Organic Soil (Sample #2) 

For Sample #2 (Organic soil, moisture=14.5%, SPT=30), the model provided a bearing capacity of 
148 kN/m², indicating an 8% increase in comparison to the observed value of 137 kN/m². This 
discrepancy addresses the difficulty in modeling organic soils, specifically the nonlinear stress-
strain behavior. [28]. 

Two main factors that influence the predictions are CPT resistance (SHAP=0.62) and plasticity 
index (SHAP=0.54). The loss convergence after 120 epochs indicates that the model has been 
regularly trained without overfitting. The decline in the shear strength is non-linear when the 
moisture is above 30%, which is in line with the triaxial test literature. The DNN’s RMSE of 44.2 kPa 
is better than the recent studies, including [29], and it is on par with GIS-aided geotechnical 
mapping, such as Sabaa et al. (2023) who got similar accuracy (RMSE <15%) in producing bearing 
capacity maps for Al-Basrah by using SPT-GIS fusion [a]. Likewise, Al-Mirza et al. (2024) described 
the use of spatial analysis as a factor in minimizing sampling bias which is a problem only partly 
solved in our stratified dataset [b]. 

  

Fig. 1. Predicted vs. actual shear strength Fig. 2. Feature importance via SHAP values 
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Fig. 3. Training vs. validation loss Fig.4. Sensitivity to moisture content 

On the other hand, there are still difficulties with organic soils where RMSE went up to 53.6 kPa 
due to a shortage of records and complex pore shape. Errors distributions throughout fashions are 
compared in Figure 5. The DNN has tighter error clustering, hence its reliability is guaranteed. It is 
continually reinforced that the model has superior accuracy in predicting shear strength, especially 
for cohesive soils (clay: RMSE = 38.4 kPa; silt: RMSE = 41.2 kPa). For bearing capacity, the model’s 
mean absolute error (MAE) was 15.2 kN/m² in comparison to field-measured values, making it 
18% better than empirical methods (e.g., Terzaghi’s equation) in the same scenario. Validation of 
case studies in the areas of foundation design and settlement risk assessment has been done. 

 

Fig. 5. Error distribution by model 

4. Discussion 

Through a review of the literature, this work conveys a substantial change in practice of situating 
deep learning in geotechnical engineering. Deep learning mitigates persistent limitations with soil, 
such as soil heterogeneity and non-linear behavior. Traditional approaches (i.e., Mohr-Coulomb or 
finite-element evaluation) make deterministic assumptions about soil behavior; this review 
presents a different way of using data-driven artificial-intelligence (AI) to encapsulate the non-
linear and interlaced soil parameters where this is not easily reducible to linear assumptions. This 
framework with the utilization of laboratory testing (e.g., triaxial shear) and in-situ measurement 
(e.g., cone penetration test log) provides a systems approach to fit laboratory tests with field 
variability, and is a valuable step toward scalable and adaptive action geotechnical solutions. 
However, this paper also underlines systemic barriers to adopting AI in geotechnics. The model’s 
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relatively poor performance in organic soils (RMSE = 53.6 kPa), as discussed in the paper, should 
be viewed as evidence for deeper issues surrounding contextual data scarcity in geotechnical 
engineering, and not a failing of the model’s performance. Organic soils meet a complex situation 
of spatially inconsistent decomposition states and uncertain fibre content that exemplifies "small 
data," or few observation dilemmas, that exist within much of the geology discipline. 

Deep learning technologies, on the other hand, have such a huge demand for computation that a 
solution has to be found in the form of a trade-off between the two aspects of the issue: innovation 
and practicality. In spite of the fact that hybrid models like dense layers and transformers have 
reached completely new heights in terms of accuracy, their prodigious consumption of resources 
is still opposed to the realities of production environments where, for example, very often, real-
time decisions are made with the help of less resource-intensive technologies like Random Forests. 
Such a scenario calls for the implementation of a balanced strategy: one that focuses on top-notch 
algorithms and at the same time, facilitates access to computing solutions such as model 
quantization or federated learning that make AI more available in the less resourceful areas of the 
world. 

Moreover, the technical metrics research has the potential to stimulate a reflection on the changing 
role of engineers in the era of AI-augmented workflow. The SHAP analysis which the model 
conducted ascribed the ability to isolate significant predictors such as CPT tip resistance, plasticity 
index, and does not replace but rather enriches engineering judgment by providing, in turn, 
statistics-backed insights for the refinement of empirical correlations. To give an example, the 
nonlinear relationship between moisture content and shear strength has been revealed by the 
model and could thus lead to the revision of the empirical charts that have been in use for decades 
in foundation design. 

The convergence of geotechnics and AI requires multidisciplinary cooperation. Expansion of 
datasets to include fewer common soils (tropical laterites, permafrost, etc.) will be done through 
partnerships with worldwide institutions, similar to what Salman et al. (2024) and Karkush et al. 
(2020) were doing by combining SPT data with MATLAB to create bearing capacity maps for 
Baghdad and Basrah on a city scale [d, e].  

In other words, this work does not just surpass an inconsequential performance measure; it 
catalyzes a total transformation of geotechnical practice. Viewing soil as a non-deterministic 
medium and instead as a dynamic, information-producing material, the research aligns with the 
global objective of sustainable infrastructure - a future where precision prevents overdesign, safety 
factors are calculated instead of assumed, and risks are addressed proactively. The future is not 
some rejection of the traditional practice, but a hybrid future where the predictive ability of AI and 
human skill cooperate to address the problems of contemporary construction... 

4.1 Challenges in Integrating Heterogeneous Datasets 

The integration of multiple datasets—that is, CPT logs, triaxial tests, and micrographic photos—is 
extremely challenging: Data Format and Scale Incompatibility: CPT logs contain sequential 
measurements of soil profile (i.e., tip resistance vs depth), while triaxial tests provide tabular data, 
which could be a set of strain-stress curves, and each set of micrographs provide either a 2D or 3D 
soil microstructure. Matching these datasets in a temporally and spatially coherent way requires 
demanding pre-processing (e.g., intensity normalization for CPT vs lab sample coordinates).  

4.1.1 Temporal Resolution Discrepancy 

The field data (CPT) rarely has the same timing as lab tests and, for instance, the soil moisture level 
at CPT might differ from the state in which the preserved sample is, thus introducing perhaps 
unwanted bias to the testing of a triaxial test. Computational Workload: Micrographic photos are 
high dimensional photo data that do not directly relate to the sequential CPT logs. Therefore, a 
hybrid architecture would be needed to bring the two datasets together, e.g., CNNs with 
Transformers; this requires more training costs and improved preventative measures against 
overfitting through an increase in data. 
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4.1.2 Interpretation Trade-Offs 

While deep learning models recognize patterns exceptionally well, the explanation of what 
specifically, within the micrograph features (i.e., pore distribution) and CPT data contributes to 
model predictive power is difficult to deduce, reducing trust for an engineer. Data Scarcity: 
Micrographics datasets are incomplete and are not massive in terms of their frequency compared 
to CPT data, so micrographics might be limited in some lab samples. 

4.2 Limitations of Image-Based Soil Characterization 

The complete dependence on intricate micrographs to gain insights into soil mechanics is an issue 
that requires careful scrutiny. 

• Artifact Sensitivity: Sample treatment, like drying and cutting, alters the microstructure and 
makes the images not reflective of the actual conditions. For example, drying clay samples 
in the air results in cracks due to shrinkage, which are not found in field soils [23]. 

• Non-Unique Interpretations: The images with similar pore structures may indicate 
different mechanical behaviors. A study by Chen et al. (2020) found that soils with similar 
SEM micrographs had 30% difference in shear energy because of variation in mineralogy 
[23]. 

• Computational Costs: The processing of large micrograph datasets, such as those having 
10,000 × 10,000 pixels, requires a lot of resources and is therefore not suitable for real-time 
applications. 

The above-mentioned problems indicate that micrographs are not the only source for making 
reliable predictions. They need to be supplemented by physics-based models, for example, the 
discrete element method, to validate the inferred relationships. 

5. Conclusion 

The research has achieved the creation and confirmation of a deep neural network (DNN) model 
that can predict key geotechnical properties, namely, soil shear strength and dry and saturated soil 
bearing capacity. It is intended to enhance the ability of soil behavior prediction that 
neighborhoods obtain through traditional methods, thus making construction practices safer and 
more efficient. The model was trained using a set of geotechnical samples of 721 specimens from 
Najaf, Iraq, and included the parameters such as moisture content, plasticity index, CPT resistance, 
and SPT blow counts. 

The quantitative outcomes are indicative of the model's performance throughout. The DNN got a 
root mean square error (RMSE) of 44.2 kPa during shear strength prediction, thus being over 
24.7% superior to the Random Forest benchmark RMSE of 58.7 kPa with a difference of 14.5 kPa. 
An R² value of 0.89 indicates that the model has a very strong explanatory power. The performance 
of the model varied with soil type; however, the best performance was with cohesive soils, the 
RMSE being 38.4 kPa for clay soils and 41.2 kPa for silts. This is a useful demonstration of the 
model's capability of capturing the complex nonlinear interactions between these materials. The 
case study managed to apply the model to a site mainly consisting of clay (Sample #255) and 
accurately predicted the shear strength while also matching the observed behavior in the field. 

On the other hand, the study found out few serious issues interspersed in the good results. The 
quality of performance in organic soils dropped and RMSE rose to 53.6 kPa. One possible reason 
for this is the complex and variable nature of organic materials which is a challenge during data 
collection. In addition to that, the study indicates that the dataset has a certain bias stemming from 
the Iraqi alluvial soils which may restrict the global applicability to other geologies such as tropical 
laterites or permafrost. Such challenges are common for geotechnical AI community that confirms 
models' accuracy for local use but does not claim global applicability. 

This study has significant real-world repercussions. The model provides better predictions of soil 
behavior, enabling engineers to devise and evaluate foundation designs using fewer materials, and 
subsequently resulting in a process that is not only safe and cost-effective but also environmentally 
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friendly. This is the case with data-supported field expertise as the SHAP analysis uncovers the 
interpretative values and can also pinpoint the CPT tip resistance and plasticity index as the major 
features. 

The future research must identify and work on the crucial areas so as to eventually see this study 
through to practical application in the field: 

• Dataset Diversification: The dataset should be expanded to embrace a variety of soil types 
and different locations, particularly those prone to earthquakes and those with extreme 
temperatures, since the latter can make the model not only applicable, but also accurate 
predictive to problems such as liquefaction and freeze-thaw to a great extent. 

• Multimodal Data of Integration: The future models should incorporate the joint use of various 
types of data, like CPT logs and SEM micrographs together with geophysical data, to gain a 
more complete picture of the soil property than currently exists in the field. 

• Advanced Model Approaches: It will be of great importance in future work to apply a 
combination of models. 
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