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 Computational Fluid Dynamics (CFD) simulation of viscoplastic fluid flows is 
challenging. It is critical to capture the shape of the yield surfaces that limit 
yielded and unyielded flow regions. These are highly sensitive to numerical 
schemes, which usually rely on calculating velocity derivatives and require 
highly refined computational grids and strict convergence criteria. In this work, 
CFD and Deep Neural Networks (DNN) were coupled to develop a model to 
predict yield surface morphologies for the flow of Bingham fluids in a square 
cavity. Our main goal is to predict the behavior of viscoplastic fluids using a 
Machine Learning (ML) approach based on CFD results. Design of Experiments 
techniques were employed in defining the base cases, i.e., combinations of 
Bingham and Reynolds numbers (Bn and Re) to compose the DNN training data. 
The DNN predicted the viscosity fields in the problem domain given Bn and Re. 
These results were postprocessed using masks to create binary images. The 
chosen architecture was an encoder-decoder since the input and output data had 
different dimensions. The results of the surrogate model were adequate, giving 
a Mean Squared Error of 0.0015 for the training data and 0.002 for the testing 
data. The DNN-predicted images were consistent with those generated from 
CFD, corroborating the proposed technique as an excellent alternative to be 
implemented in more complex applications. The combination of CFD and ML is a 
promising alternative for predicting complex fluid behavior in diverse and 
challenging scenarios with faster and computationally less expensive resources. 
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1. Introduction 

A class of non-Newtonian fluids, called yield stress or viscoplastic fluids, receives much 

attention for its broad applicability in engineering. These fluids have the characteristic of 

presenting yield stress, a minimum stress level required for the material to flow. Below the 

yield stress, the material behaves as a solid. This non-smooth behavior is a model for the 

complex behavior of some macromolecular materials. At a specific range of stresses, these 

materials undergo some molecular configuration changes that cause the drop of their 

viscosity from a high plateau (solid-like behavior) to a value much lower in the range of a 

fluid’s viscosity [1]. The primary examples of viscoplastic fluids of engineering interest 

include gels, muds, creams, and molten polymers. Viscoplastic fluids are also referred to as 

Bingham fluids after the seminal book by E.E. Bingham [2] and the widely employed 

mathematical model for viscoplastic fluids, the Bingham equation [3]. 
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The flow of viscoplastic fluids is usually complex because there may be regions below and 

above their yield stress along the flow domain. So, the fluid moves with yielded regions 

(stresses above the yield stress), in which the flow is viscous, and unyielded regions 

(stresses below the yield stress), in which the movement is the type of rigid body motion, 

with negligible strain rate. The unyielded regions along the flow usually increase heat and 

material flow resistance, pressure drop, and pumping power requirements. 

The computational modeling of viscoplastic flows using computational fluid dynamics 

(CFD) has the challenge of capturing the frontiers of the yielded and unyielded regions 

called yield surfaces. The shape of yield surfaces is sensitive to the fluid’s rheology, 

geometry, and operation conditions. Due to the modeling of the non-smooth material 

behavior, which depends on local values of stresses, the CFD simulations of viscoplastic 

flows are computationally intense. They are memory and time-consuming and must rely 

on finer grids compared to simulations of Newtonian fluid flows under the same 

conditions.  

Numerous works have addressed viscoplastic flows inside lid-driven cavities to test CFD 

modeling and methods. Like in Newtonian flow, a primary vortex usually occurs in the 

cavity's center. The shear in such a vortex is so mild that its center usually does not yield. 

Figure 1 shows a schematic of the flow of a viscoplastic fluid inside a lid-driven cavity, with 

streamlines and yielded and unyielded regions represented in white and black, 

respectively. 

Some works that employed the lid-driven cavity benchmark with viscoplastic fluids are 

summarized in the sequence. The work by Frey et al. [4] presented numerical 

approximations via Galerkin-least-squares-type formulation in a lid-driven cavity, with 

different ranges of Reynolds and Bingham numbers, providing reliable results for 

comparing the morphology of yielded and unyielded zones. Dos Santos et al. [5] also 

studied the lid-driven cavity, employing a regularized viscosity model and providing a 

parametrical analysis of the problem. The authors discussed the criterion (stress x strain 

rate) for the yielded and unyielded regions, where they found that using the strain rate 

provides smoother yield surfaces than those originating from the stress criterion. Syrakos 

et al. [6] examined the inertia effects of a Bingham fluid in a lid-driven cavity by modifying 

the viscosity function to employ the regularization of Papanastasiou [7]. By varying the 

range of both Bingham and Reynolds numbers up to 100 and 5000, respectively, they found 

that the discretization error increases with the Bingham number due to the 

discontinuation of the flow around the yielded regions caused by the increase of the 

truncation error of the regularization. Syrakos et al. [8] investigated a transient version of 

the lid-driven cavity for Newtonian and Bingham fluids, where a sudden flow stoppage and 

its effects are analyzed. Such study presents benchmark cases, covering Reynolds and 

Bingham numbers from 1 to 1000 and 1 to 10, respectively, to be used in further 

investigations. Kefayati & Huilgol [9] studied the mixed convection in the lid-driven cavity 

filled with Bingham fluids by solving the model equations via the Lattice Boltzmann 

Method (LBM). Using such modeling, the authors could find results equivalent to those of 

more traditional methods, like the finite volume method (FVM). The study also presents 

an analysis of heat transfer, showing the influence of temperature and of the Prandtl 

number on flow behavior. Mahmood et al. [10] studied the lid-driven cavity with single and 
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double lids, also considering Bingham fluids. They found out that, for the double lid, the 

creation of the unyielded regions happens at the exact center of the cavity, increasing its 

size as the Bingham number grows. Also, for lower Bingham numbers, the behavior is more 

symmetric when compared to higher values. Thohura et al. [11] studied Bingham fluids in 

skewed lid-driven cavities. The study covers skew angles from 45° to 135°, Bingham 

numbers from 0 to 500, and Reynolds numbers up to 1000, providing benchmark results 

for the problem. Bui et al. [12] also study skewed cavities, besides square and rectangular 

ones, focusing on the behavior of Carbopol 940, which was modeled via a combination of 

Herschel-Bulkley and Papanastasiou models. While keeping the Reynolds number fixed at 

a value of 0.001, the authors analyzed the effect of the Oldroyd number, ranging from 0 to 

50. Ferrari and Franco [13] studied squared cavities, modeling transient viscoplastic flows 

with the LBM method. Covering a range of Reynolds numbers up to 20000 and Bingham 

numbers up to 10, the authors analyzed the behavior of the flow until a steady state was 

reached. The results showed that the time to reach a stationary state increases as the 

Bingham number grows despite the Reynolds number. Ferrari and Franco [14] expanded 

their previous study by analyzing the steady and unsteady behavior of a viscoplastic fluid 

in a cubic cavity, extending the existing dataset. Once again, using the LBM method, the 

authors found that the three-dimensional approach appears more unstable than the bi-

dimensional one, where some aspects of the flow could not be captured. The authors 

recommend using a Herschel-Bulkley fluid for comparison, as it is easier to compare with 

real fluids. 

 

Fig. 1. A representation of viscoplastic fluid flow inside a lid-driven cavity 

In recent years, deep neural networks (DNN) have become a versatile and valuable tool for 

optimizing results in several computational tasks by predicting complex aspects in diverse 

application contexts. The consistent and relevant results observed through DNN 

applications generated interest in their use in several fields, such as fluid dynamics. In this 

context, their use has been highlighted as a valuable method for modeling and predicting 

many properties and features in many Computational Fluid Dynamics (CFD) applications 

[15]. It is known that traditional CFD models can be computationally expensive and time-

consuming, especially in complex geometries or refined mesh cases. In this context, 

surrogate models via DNNs have emerged as a promising alternative to accelerate CFD 
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simulations while maintaining good accuracy [16]. Thus, DNNs are an alternative to help 

reduce simulations’ computational costs using CFD-generated data.   

Many numerical methods can provide high-fidelity solutions for viscoplastic flows that 

may be post-processed to give the morphology of yielded and unyielded regions along the 

computational domain. If the shape of yield surfaces is the primary interest, such problems 

could be simplified if only this object of interest is solved, reducing time and computational 

cost in pre-processing and post-processing. Previous works have explored this concept 

using machine learning models trained to reproduce and generate CFD-like solutions for 

many applications. For example, Convolutional Neural Networks (CNN) architectures, 

coupled with CFD, have been used in heat transfer [17] [18] [19] [20], air/hydrofoil 

optimization [21] [22], ship designs [23], hemodynamics [24], prediction of porous media 

[25], performance of solar collectors in [26] and thermal analysis of bearings [27]. Other 

DNN architectures, such as fully connected with backpropagation, can be found in the 

works of Kim & Park [28] who applied in indoor airflow prediction, Sang et al. [29] for the 

prediction of wind load of buildings and Hussain et al. [30], in the modeling of mixed 

convection in nanofluids. However, regarding viscoplastic flows, the application of DNNs 

is relatively scarce in the literature. Muravleva et al. [31] used a combination of proper 

orthogonal decomposition (POD) and a fully connected DNN to build reduced-order 

models for Bingham flows in ducts. Kumar et al. [32] applied an DNN to simulate the flow 

of a viscoplastic fluid in a pipe, implementing physical governing equations as the loss 

function. Similarly, Zhang [33] developed an Augmented Lagrange Method Physics 

Informed Neural Network (ALM-PINN) to solve steady-state one-dimensional Poiseuille 

flow and bi-dimensional plane lid-driven cavity for Stokes flow of Bingham fluids. Although 

the current model is limited to small Bingham numbers, using such architecture, the 

authors could induce feasible loss functions for the network by formulating them as a 

linear combination of the mean squared error of the governing equations, providing a 

mesh-free feature, and developing a versatile network configuration. 

Driven by the promising use of machine learning, the current study proposes the use of a 

DNN, in the form of an encoder-decoder architecture, combined with CFD data, as a 

surrogate model to predict viscosity contours and yield surfaces for viscoplastic flows 

inside a lid-driven cavity and different combinations of Bingham and Reynolds numbers. 

This work also includes the steps to create a custom dataset from CFD simulations, a 

detailed configuration of the encoder-decoder neural network, and the analysis of the 

model’s performance. As the main objective, this study aims to introduce a versatile 

approach to studying viscoplastic flows in the lid-driven cavity by applying DNNs. With the 

excellent accuracy achieved in this work, we expect to establish a foundation for future 

research in this field and motivate the computational fluid dynamics community to use the 

capabilities of neural networks, especially when dealing with fluids of complex behavior. 

2. Methodology 

This section covers all the methods utilized in this work to support the steps taken to 

achieve the current results and for future use.  
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2.1. Problem Description 

The system under analysis is a bi-dimensional square, representing a cavity filled with a 

viscoplastic fluid. The flow behavior in such fluids is characterized by the yield stress, the 

stress level above which the material behaves as a viscous fluid. Below the yield stress, the 

material would behave as a solid or, as accepted nowadays, as a highly viscous fluid. At 

unyielded regions, strain rates are negligible.  

As presented in Figure 1, the cavity upper lid moves with tangential velocity v0, causing 

the flow inside the cavity. The remaining edges represent the walls of the cavity, which 

have length L. Two dimensionless numbers are associated with this physical problem: the 

Reynolds and Bingham numbers. The Reynolds number (Re) indicates the flow regime and 

measures the imbalance between inertial and viscous forces. The Bingham number (Bn) 

measures the fluid’s degree of viscoplasticity relative to the system scale. As previously 

mentioned, Figure 1 is a schematic of the described system, which depicts a representative 

configuration of yielded and unyielded regions in white and black, respectively. 

2.2. Mathematical Modeling 

To model the problem, the flow was considered incompressible and in steady state. The 

balance equations of mass and momentum, Equations (1) and (2), respectively, were used. 

𝛻 ∙ 𝒗 = 0 (1) 

𝜌[(𝛻 ∙ 𝒗)𝒗] = −𝛻𝑃 + 𝛻 ∙ 𝝉 (2) 

in which v represents the velocity vector, P is the pressure field and ρ is the fluid`s density. 

In Equation (2), τ represents the extra stress tensor, mathematically expressed by: 

𝝉 = 2𝜂(𝛾̇)𝑫 (3) 

where D is the strain rate tensor and 𝜂(𝛾̇) represents the viscosity function. In the viscosity 

function, 𝛾̇ is the magnitude of the strain rate tensor, which is mathematically represented 

as: 

𝛾̇ = √2𝑡𝑟(𝑫 ∙ 𝑫) (4) 

where the tr represents the trace operator. 

The viscosity function for viscoplastic liquids was modeled using the Bingham model [2], 

regularized as a bi-viscosity model as follows [34]: 

𝜂(𝛾̇) = 𝜏0

(2 −
𝛾̇

𝛾̇𝑐
)

𝛾̇𝑐
+ 𝑘, 𝑖𝑓 𝛾̇ <  𝛾̇𝑐   (5) 

𝜂(𝛾̇) =
𝜏0

𝛾̇
+ 𝑘, 𝑖𝑓 𝛾̇ >  𝛾̇𝑐   (6) 

where k is a consistency parameter and τ0 is the yield stress. The Bingham original model 

predicts infinite viscosity at stresses lower than τ0 and the viscosity as in Equation (6) for 

stresses above τ0. The present regularized model uses the critical shear rate, 𝛾𝑐̇ , to give a 
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continuous stress behavior as a function of the shear rate avoiding infinite viscosity. Below 

the 𝛾𝑐̇ , Equation (5) predicts high viscosities, and above 𝛾𝑐̇ , Equation (6) predicts the same 

viscosity as the Bingham model. Equations (5) and (6) approximate the original model 

behavior as 𝛾𝑐̇  is lower. So 𝛾𝑐̇  must be chosen at a low value to approximate the results 

expected for the Bingham original model. In this work, the relation 𝛾𝑐̇/𝑣0  was chosen to be 

always lower than 0.05, because we have detected that the simulation results were 

insensitive to 𝛾𝑐̇for any 𝛾𝑐̇𝐿/𝑣0 lower than 0.05. As previously mentioned, Bingham (Bn) 

and Reynolds (Re) are the main dimensionless numbers of this problem, which are 

mathematically given, respectively, by: 

𝐵𝑛 =
𝜏0𝐿

𝑘𝑣0
 (7) 

𝑅𝑒 =
𝜌𝐿𝑣0

𝑘
 (8) 

In this problem, Bn and Re numbers are varied, ranging from 1 to 10 and 1 to 250, 

respectively. 

2.3. Numerical Modeling 

The software used to solve the governing equations was ANSYS Fluent 2023R2 [34]. For 

the pressure-velocity scheme, COUPLED was adopted, and for pressure and momentum 

interpolation, the second-order model was employed. The convergence criteria for mass 

and momentum were set to 10-10. The numerical mesh was built by dividing the domain 

into a grid of 200x200 finite volumes, which was considered by using the works of 

Neofytou [35], Dos Santos et al. [5] and Kefayati & Huilgol [9] as references, which reported 

that such configuration provided reliable results regarding the velocity profiles and the 

morphology of the yielded and unyielded surfaces of the fluid. The boundary conditions 

set for the problem (see Fig. 1 for reference) are prescribed velocity v0, at the lid (upper), 

which is defined by the Re number; the remaining boundaries (left, right and bottom) of 

the cavity are considered as no-slip walls. 

 

Fig. 2. Velocity profile comparison for model validation: (a) U velocity; (b) V velocity 
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A verification was performed to ensure that both model and mesh were adequately 

employed. For this, the u and v velocity profiles along the y and x axis were compared with 

those from [35] and [9] for Bn = 1 and Re = 100, which are shown in Figure 2. The result 

shown in Figure 2 shows that both the model and mesh are in accordance with the other 

studies. 

2.4. Design of Experiments for Data Generation 

The dataset used to train the artificial neural network was created using Desing of 

Experiments (DOE) methods with a statistical basis. According to Montgomery & Wiley 

[36], employing such techniques increases experiment performance and provides high-

quality data. Thus, two experimental methods were used to apply the DOE: Central 

Composite Design (CCD) and Latin Hypercube Sampling (LHS). 

The CCD compromises a set of points in the design space, which is defined by the limits of 

the variables. Those points include 2k factorial model points, where k is the number of 

factors or variables, axial points, and a central point. As pointed out by Cunegatto et al. [37] 

and Cunegatto et al. [38], using a CCD provides a general idea of the outputs within the 

design space. The values for the CCD employed in this work are shown in Table 1 below: 

Table 1. Values of the CCD design space. 

Variable 
Levels 

Low axial 
level 

Low 2k 
value 

Central 
value 

High 2k 
value 

High axial 
value 

Bn 1 2.318 5.5 8.682 10 
Re 1 37.465 125.5 213.535 250 

 

For a problem with two variables, such as the one presented here, a Central Composite 

Design provides nine points. However, as mentioned by Misiulia et al. [39], a surrogate 

model requires a certain amount of information to understand and capture the 

relationship between the input and output data. Due to this and based on the suggestion of 

Yang & Palazzolo [27], the LHS was also employed for the data generation. 

According to Stein [40], LHS is a sampling method used to produce input values for 

function predictions. Since the number of points generated by CCD is fixed, using LHS 

allows the generation of more sampling points. So, to provide enough data to train the 

surrogate model, a set of 111 samples was generated using the LHS, resulting in a total of 

120 points. Those extra samples were generated considering the points provided by the 

CCD to avoid overlapping. 

2.5. Deep Neural Network (DNN) 

The core idea of using artificial neural networks as surrogate models as a predictive tool is 

to reduce time in preparing and solving traditional CFD models, that is, for subsequent 

analysis, since it requires the CFD data to learn the patterns. That is, for the algorithm to 

be able to make reliable predictions, it must learn from some data. Thus, in the current 

work, CFD data is used to teach the algorithm, and, consequently, the predictions are based 

on the data used in the learning, much like statistical models that use the available data to 

make predictions using an equation. In machine learning modeling, it is essential to divide 

the dataset (collection of CFD results in this case) into training and testing examples; the 
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first is used to teach the algorithm and the second, which are examples unseen during 

training, are used to evaluate the model. In the current study, the DNN needs to predict the 

viscosity contours of the flow inside the lid-driven cavity for a certain combination of Bn 

and Re numbers, two numerical parameters.  

One key characteristic of the current study is that geometry is fixed. For any variable 

combination, the square cavity remains the same. The only thing that changes is the 

behavior of the viscosity, which is influenced by the input parameters. Knowing such 

information is crucial in defining the architecture of the neural network. For example, in 

the work of Thuerey et al. [21], many geometry configurations are studied, so the DNN 

must receive the geometry information to predict the desired outcome, which, in their case, 

is an image. Thus, the architecture employed by the authors was a Convolutional Neural 

Network (CNN). 

As previously mentioned, two numerical parameters define the problem and are used as 

the input parameters for the neural network. Thus, the DNN should use the information 

and convert it to the output, which is the viscosity contour. Such a process can be achieved 

by using an architecture known as encoder-decoder. According to Minaee et al. [41], the 

encoder-decoder model can learn to map data from input to output using two stages: the 

encoder, which compresses the input data into a latent-space representation, and the 

decoder, which uses the latent-space representation to predict the output. The encoder-

decoder architecture used in the present work is shown in Figure 3. 

The neural network was built in Python computational language by using the TensorFlow 

[42] and Keras [43] libraries. As shown in Figure 3, each layer in the architecture is labeled 

as ‘Dense’, the denomination used in Keras library for fully connected layers, meaning that 

the neurons in a current layer are connected to the ones in the previous layer. The 

activation function used in the current work for such layers is the Rectified Linear Unit 

(ReLU). Also, the values under each layer represent the number of neurons within it. The 

architecture shows a symmetric behavior about the latent-space layer, as stated by Géron 

[44], in a way that the encoder gradually reduces the input data to create a compact 

representation in the latent-space layer. Then, the decoder rebuilt the compact 

representation, progressively expanding the dimension. The output, also a fully connected 

layer, is expanded to the size of the desired image, which in this case is 224x224x3, 

resulting in over 150 thousand neurons that carry the information of the image. Then, the 

image is recreated by reshaping the output layer into a shape of 224x224 pixels and three-

color channels. 

As mentioned in Section 2.4, the dataset was built by CFD simulations of the points 

provided by the DOE methods. Then, the viscosity images were collected and saved into a 

folder. A data frame containing the input variables, image type, and image directory was 

created to manipulate the data. Since the original shape of the image differs from 224x224 

pixels, the images were resized using the OpenCV library [45].This library was also used to 

read the images from the folder and transform them into an array with the NumPy library 

[46]. 
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Fig. 3. Encoder-decoder neural network architecture 

A crucial part of the data treatment is the data scaling. Machine learning algorithms have 

issues in their performance when the data have different scales [44]. For example, the Re 

numbers used in this work vary from 1 to 250, while the Bn number ranges from 1 to 10, 

which is a great difference between them. So, both input and output data were scaled to 

perform well. For the input values (Bn and Re), a min-max scaling was used (Eq. (9)), 

resulting in a range of 0 to 1 for both parameters. As for the output images, the main reason 

that they were transformed into an array is that each pixel value can be manipulated, 

allowing its scaling. Since the colors from an image vary from 0 to 255, the scaling was 

done by dividing each pixel value by 255, resulting in a range of 0 to 1 for the output image. 

This range was also the reason for using the Sigmoid activation function at the output layer 

of the neural network since it ranges from 0 to 1. 

𝑥𝑖
′ =

𝑥𝑖 − 𝑚𝑖𝑛 (𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛 (𝑥)
 (9) 

where xi’ is the single scaled variable, xi is the single variable, min(x) is the minimum value 

of the variable x and max(x) is its maximum value. In the previous section, some 

hyperparameters were mentioned, such as the activation functions, the number of layers, 

and the number of neurons in each layer. However, a few more hyperparameters are 

needed to provide the complete setup of the employed neural network. 

• Train/test split: The dataset was randomly divided to feed the neural network, with 

80% used for training and the remaining 20% used for testing. 

• Optimizer: The optimizer is an algorithm that helps the neural network adjust its 

weights to minimize the loss during training. The optimizer chosen in this work is 

Adam (Adaptive Momentum Estimation). The Adam optimizer has its 

hyperparameters, the momentum decay and scaling decay, which were set to 0.9 

and 0.999, respectively. 
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• Learning rate: This hyperparameter is related to the optimizer and determines how 

quickly the weights are adjusted. Since a low value may cause the training process 

to be slow, and a high value may cause divergence, a tuning was performed, which 

returned 0.007 as an adequate value. 

• Batch size: it defines the number of training samples used in each iteration of weight 

adjustment. Tuning was also performed, and a value of 8 batches was adopted. 

• Number of Epochs: This defines the number of times the training data passes 

through the neural network during training. One epoch is complete when all the 

training data, i.e., batches, pass through the neural network once. In this work, 150 

epochs were used. 

As mentioned above, the optimizer minimizes the loss function when the neural network 

weights are adjusted during training. The loss function evaluates the neural network's 

performance, sharing a similar trait as the residuals in CFD, by comparing the predicted 

values with the CFD data at each epoch. Among the loss functions utilized in machine 

learning, the Mean Squared Error (MSE) was chosen for this study since the DNN predicts 

the scalar value of each pixel in the image. The MSE is mathematically expressed by 

Equation (10): 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖𝑗𝑘 − 𝑦𝑖𝑗𝑘̂)

2
𝑁

𝑖,𝑗,𝑘=1

 
(10) 

where N represents the total number of pixels, y is the predicted value, 𝑦̂ is the CFD value, 

i represents the index of the image length, j is the height index and k is the color channel 

index. 

3. Results 

This section thoroughly examines the problem as a physical phenomenon, focusing on the 

viscosity field and the morphology of yield and unyielded regions along the flow. In the 

sequence, the performance of the DNN is discussed, where comparisons between 

predicted and CFD viscosity contours are performed, along with the training metrics. 

Lastly, we explore using masks to generate the yield surfaces, i.e., the morphology of 

yielded and unyielded regions, using the predicted viscosity contours as a basis. 

3.1. Viscosity and Yield Stress Physics 

Before diving into the problem itself, a brief analysis of Re and Bn numbers is performed. 

The Reynolds number (Eq. (8)) is one of the most important dimensionless numbers in 

fluid dynamics, as it predicts the behavior of a flow by calculating the ratio between the 

inertial and viscous forces [47]. As the Reynolds number increases, the influence of the 

viscous force becomes less significant, which makes it way more challenging to hold the 

fluid’s disturbance, resulting in more momentum in the flow. As observed, the viscosity, 

i.e., viscous force, is essential in defining a fluid’s behavior. This property becomes more 

complex regarding viscoplastic fluids (Bingham plastics) because it is non-constant and 

dependent on yield stress. The connection between the viscous force and yield stress is 

found in the Bingham number (Eq. (7)), representing the ratio between yield and viscous 

stresses [48]. So, as the Bingham number increases, the stress levels required to yield the 
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material are higher. Conversely, the decrease in Bn makes the fluid yield more easily, even 

behaving as Newtonian if Bn = 0. So, by analyzing Equations (7) and (8), it’s essential to 

notice that the only parameters not interchangeable between Bn and Re are τ0 and ρ, hence 

why those properties are the ones that define the dimensionless numbers in this work, as 

mentioned in Section 2. 

Returning to the lid-driven cavity problem, Figure 4 presents viscosity contours for 

different combinations of Re and Bn numbers. Just as a matter of convenience, the viscosity 

values for each image were scaled from 0 to 1 using the min-max scaling (Eq. (9)), where 

the red color indicates a very viscous zone, and the blue color indicates a zone with low 

viscosity. As observed, the main characteristic of the problem is the presence of two 

distinct viscous regions, which, according to Bui et al. [12], are called the dead zone at the 

bottom and the moving rigid zone at the upper central region of the cavity. For a low 

Reynolds number, the viscosity is symmetrically distributed, as the inertial forces are 

balanced. The moving rigid zone tends to concentrate on the left side for higher Reynolds 

numbers. In contrast, the dead zone is nearly unaffected by the Reynolds number. 

 

Fig. 4. Dimensionless viscosity contours for different Reynolds and Bingham numbers 

Those two regions are developed due to fluid movement inside the cavity, shown in the 

form of velocity contours in Figure 5. As the fluid flows from left to right, it forms a vortex 

characterized by unyielded fluid in rigid body motion. The position of the vortex changes 

as the Reynolds number increases, moving to the right side of the cavity due to the increase 

in the momentum when the fluid hits the wall, quite the opposite of the moving rigid zone 

in the viscosity contours. Consequently, the vortex influences the moving rigid zone, which 

has its formation beside it. However, when considering the Bingham number, the flow 

becomes slower as the fluid is more rigid, which alters the position and size of the vortex, 

which is the case for the development of larger moving rigid zones. As for the dead zone, it 

is formed due to the low movement of the fluid at the bottom of the cavity, as it is far from 

the motion source (lid). In addition, its size slightly decreases from the augment of Re but 

increases as Bn grows. 

Another important result that can be extracted from viscoplastic flows is its morphology, 

characterized by the unyielded and yielded regions and the flow aspect when under and 

above the fluid’s yield stress, respectively. Generally, this information is obtained by an iso-

surface, using either the critical shear rate for Herschel-Bulkley modeling or the yield 

stress as a threshold, where the yielded region is white and the unyielded is black. Figure 

6 shows the morphology of the cases analyzed in Figures 4 and 5. 
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In this work, a critical shear rate of 0.05 was used as the input for the Herschel-Bulkley 

model and, subsequently, as the threshold of the iso-surfaces. This representation is 

relatable to the viscosity contours, where comparing the unyielded (black) zones with the 

viscous zones in the viscosity contours is possible. Despite the viscosity contours providing 

the overview of the property, it does not tell exactly where the fluid yields, hence why the 

morphology representation is commonly found in the literature, as it precisely shows that 

information. Due to the similarity between both viscosity contours and morphology, the 

same analysis regarding the formation of the unyielded zones done previously also applies 

here, and, in terms of computational vision, the morphology can be characterized as the 

mask of the viscosity contour. 

 

Fig. 5. Dimensionless velocity contours and streamlines for different Reynolds and 
Bingham numbers 

 

Fig. 6. Morphology of the flow for different Reynolds and Bingham numbers. 

3.2. DNN Performance 

As mentioned in Section 2, MSE was employed as the loss function and as a measure of the 

accuracy of the encoder-decoder neural network in predicting the viscosity fields. The MSE 

quantifies the average squared difference between predicted and CFD values, and a lower 

MSE means a better alignment between the data. 

In the tests performed in this work, the model demonstrated satisfactory MSE values on 

both training and testing datasets. The MSE reached approximately 0.0015 for the training 

set, a value good enough to showcase the network's ability to learn and adapt to the 

training data. As for the testing set, the MSE was around 0.002, indicative of the model's 

generalization performance to unseen data. Figure 7 illustrates the training and testing 

loss over epochs during training to represent the neural network's learning progress 

visually. The x-axis represents the training epochs, while the y-axis depicts the 

corresponding loss (MSE) values. 
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Fig. 7. Training process of the neural network 

The training loss curve (blue) demonstrates a steady decrease over the initial epochs, 

indicative of the model learning from the training data. However, as the training 

progresses, the loss presents fluctuations, slowing the training a bit, although still 

decreasing its value. The zoomed section in Figure 7 presents a more detailed examination 

of the model's performance within a specific range of epochs, from 105 to 150, highlighting 

the network's behavior during the final training phase. The testing loss curve (orange), 

which evaluates the model's performance on unseen data, also presents a similar trend, 

affirming the generalization ability of the deep neural network. 

To bring a better understanding of the model's capability to predict the viscosity fields, 

Figure 8 shows the visual representation of the CFD fields and the corresponding 

prediction of the viscosity fields (scaled from 0 to 1), alongside with the difference 

(absolute error) between the images for five different samples of the training set.  

Comparing CFD and model viscosity fields can highlight areas of agreement and 

discrepancy between the predicted and actual values. Simultaneously, the absolute error 

image portrays the spatial distribution of errors, which is the absolute difference of the 

pixels, accentuating regions where the model either excels or encounters difficulties. 

Overall, looking at the images side by side and observing the model's capability to capture 

and reproduce the actual phenomena is possible, providing reliable predictions.  

It is important to emphasize that all the original images were resized to a smaller 

resolution, from 1600x1600 to 224x224, to provide quicker training for the model and 

reduce its computational cost. However, the tradeoff for lowering the resolution is losing 

information from the original image (high resolution). Thus, since the model did not 

account for the missed information, the predictions presented a higher discrepancy, 

resulting in differences in the average error plots in Figure 8, especially in the regions 

where the viscosity gradients are present. Overall, the results obtained by the model are 

adequate and provide a good overview of the viscosity field behavior for a Bingham fluid 

flow inside the lid-driven cavity. However, the current setting is limited, as only 120 images 

were used in the training, and the predictions present some errors in delicate regions, 

which might influence the pos-processing, especially when the flow morphology is 

extracted. Another limitation of the current model is that the exact (real) viscosity values 

for each pixel (node) are not considered, only the color value itself. Still, the morphology 
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can be extracted from the current results. As mentioned in the last section, the yielded and 

unyielded regions are affected by the viscosity field behavior, and the prediction errors 

might propagate into the computational domain. In this section, we use a mask, i.e., a 

threshold value, to separate regions on an image to capture the shapes of the yielded and 

unyielded regions. Since the exact values of the strain rate and stress are not present, the 

creation of the mask relies on defining a color threshold for the predicted viscosity fields.  

From the RGB prediction image, the primary reference for the mask is the blue color, which 

represents a low viscosity in the viscosity fields, indicating a region where the fluid is 

yielded. So, the task is to find the threshold separating the blue color from the others to 

create a binarized image (black and white) representing the morphology. So, for this, the 

blue channel of the predicted viscosity field image serves as the basis for creating the 

binary mask. A thresholding algorithm was applied, where the intensity of the pixels was 

tested from 0 to 255, and a pixel intensity of 110 provided the best results. Thus, values 

over 110 are classified as yielded zones (white), while those below the threshold represent 

unyielded regions (black). Figure 9 shows the resulting mask, the predicted viscosity field, 

the CFD data, and the difference between them, considering the same examples in Figure 

9.  
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Fig. 8. Viscosity field predictions and absolute error for five testing samples 

Based on the results shown in Figure 9, it is possible to confirm that the model predictions 

are reliable. Still, using masks to identify the yielded and unyielded zones is also adequate. 

The yielded zones are depicted in white, while the unyielded regions are represented in 

black. This binary mask offers an intuitive and easily interpretable fluid morphology 

predicted by the neural network. Also, despite the absolute differences presented in Figure 

9, the morphology was not significantly affected, resulting in accurate representations of 

the real phenomena, as highlighted by the different images.  However, a critical piece of 

information should be considered. Depending on the colors and intensity of the predicted 

image, the threshold to generate the mask should change. Despite being simple and proven 

to be a reliable way to reproduce the flow’s morphology, it is essential to apply it carefully, 

as the physical values are not used since the model did not calculate them to generate 

consistent predictions. 

4. Conclusions 

In the present study, the lid-driven cavity problem with viscoplastic liquids was revisited 

by coupling Computational Fluid Dynamics (CFD) results and artificial neural networks to 

reproduce and predict the shape of yielded/unyielded regions for different Bingham (Bn) 

and Reynolds (Re) numbers. The dataset was created via Design of Experiments (DOE), 

where the samples were generated using the Central Composite Design and Latin 

Hypercube Sampling techniques. Those samples were simulated via CFD, which provided 

the images of the viscosity fields and the binary images of the flow’s morphology for the 

training and testing of the artificial neural network. The chosen network architecture for 

the task was an encoder-decoder, which encoded the given Bn and Re and decoded them 

into the corresponding viscosity field. 

Before the network training, the CFD modeling was evaluated, and the comparison with 

the literature showed enough agreement to provide the data to train the neural network. 

The training was evaluated by the Mean Squared Error (MSE) metric, which compared the 

values for each pixel between the predicted and CFD images. A further approach to the 
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problem was also explored by using the predicted viscosity fields to create binary images 

representing the flow's morphological behavior. In this approach, the use of masks to 

separate the yielded and unyielded regions was proposed. This involved the extraction of 

the adequate color channel and, later, defining a threshold intensity to separate the pixels.   

 

Fig. 9. Generated masks from the predicted viscosity fields for yielded and unyielded 
regions 

 As for the results of this study, they provided insights into the effectiveness of an encoder-

decoder like neural network architecture in predicting viscosity fields. The quantitative 

analysis, measured by Mean Squared Error (MSE), showed a robust performance during 

training and validation, indicating the model's remarkable generalization capability. Such 

performance resulted in solutions that agreed with the CFD data, providing reliable 

predictions of viscosity fields for different flow configurations and allowing post-

processing to extract the data regarding the flow’s morphology.  This feature was proposed 
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by creating binary images from the blue channel of the predicted image, which allowed a 

clear visual interpretation and highlighted the yielded and unyielded zones of the fluid. 

These binarized images are interesting in the analysis of viscoplastic flows, as they reveal 

crucial information about the fluid behavior. Thus, the proposed masks originating from 

the model’s prediction provided a valid alternative for post-processing the results of the 

current model since the physical values were not considered. Despite the absence of such 

information, the resulting masks adequately represented the phenomenon, as the 

differences from the CFD data were minor.  

It shall be reinforced that the current model was developed for a specific case test, but 

could be applied to other flows and geometries, such as flows in contractions and 

expansions. As observed in this study, the encoder-decoder architecture proved to be a 

versatile way to model problems with different types of input and output by transforming 

and associating the information provided by each source. This further opens new 

perspectives of fluid modeling by coupling intelligent systems with CFD to create fast and 

reliable solutions for engineering problems. 
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