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Article Info  Abstract 

Article History:  Non-negative Matrix Factorization (NMF) and Singular Value Decomposition 
(SVD) are widely recognized as pivotal dimensionality reduction techniques in the 
literature, particularly for deep learning applications involving large and high-
dimensional datasets like SEM images. This study systematically evaluates the 
impact of SVD and NMF on the performance, efficiency, and energy consumption 
of four deep learning architectures: GoogleNet, AlexNet, ResNet, and SqueezeNet. 
By applying these techniques to reduce dataset dimensions, we observed that SVD 
excelled in computational efficiency, achieving up to 35% faster processing times 
compared to raw datasets. NMF, on the other hand, provided superior feature 
interpretability, which proved beneficial for tasks requiring meaningful pattern 
extraction. Energy consumption analysis revealed that SVD led to a 28% reduction 
in computational energy cost on average, making it a practical choice for resource-
constrained environments. Among the evaluated models, ResNet consistently 
delivered the highest classification accuracy after dimensionality reduction, 
showing an improvement of 4-6% over models trained on non-reduced data. 
These findings underscore the critical role of dimensionality reduction in 
enhancing the scalability, energy efficiency, and classification accuracy of deep 
learning models, offering valuable insights for optimizing high-dimensional data 
applications in both academic and industrial contexts. 
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1. Introduction 

Deep neural networks have recently demonstrated exceptional accuracy across various domains 
involving visual, auditory, and textual data (1). Specifically, convolutional neural networks (CNNs) 
are extensively utilized for tasks such as image recognition (2), object detection (3), speech 
recognition (4), and neural machine translation (5). Although the training of deep learning models 
has been significantly accelerated through Graphical Processing Unit (GPU)-based computations 
(6), deploying these models often occurs on less powerful computing platforms characterized by 
limited memory, processing capabilities, and battery life (7). The high computational and memory 
demands of many deep learning architectures pose challenges for deployment on resource-
constrained devices, such as mobile phones, or in scenarios requiring low latency (8). 

Early CNN models tended to be deeper and heavily overparameterized, whereas recent CNN 
architectures have adopted compact network design strategies to create lightweight models (9). 
For instance, the use of 1×1 convolutions has contributed to reducing both computational and 
memory requirements (10). Pioneering models like GoogleNet avoided fully connected layers, 
opting instead for global average pooling to process images of varying dimensions (11). 
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SqueezeNet, another lightweight architecture, extensively employs convolutions within its boost 
modules to achieve compactness while maintaining performance (12). In contrast, AlexNet, one of 
the earliest CNN architectures, does not use depthwise separable convolutions and is not designed 
as a lightweight model but laid the groundwork for deeper networks (13). ResNet introduced a 
method called residual learning, which helps train very deep networks. It solves the problem of 
vanishing gradients by using shortcuts, called skip connections, that allow information to pass 
through the network more easily (14). In this study, GoogleNet, AlexNet, ResNet, and SqueezeNet 
are preferred for SEM image classification because they are widely used in varios applications and 
have different structures. This allows us to compare their efficiency, complexity, and classification 
performance fairly. Their wide use in the literature also makes them strong benchmark models for 
deep learning in SEM image analysis.  

Despite these innovations, many modern architectures remain overparameterized, highlighting the 
continued need for effective compression and dimensionality reduction techniques for the data. 
Datasets characterized by a large number of features are referred to as high-dimensional data and 
have garnered significant attention in recent years. The rapid acceleration in the growth and update 
rates of datasets has driven data toward becoming increasingly high-dimensional and unstructured 
(15). While such voluminous and complex data contains valuable information, it simultaneously 
complicates the process of efficient utilization. For instance, this large-scale data leading to 
excessive computational time, storage and energy requirements for data processing (16). 
Moreover, the abundance of complex information often obscures critical insights, making it 
challenging to discern the fundamental characteristics of the data. This issue not only demands 
considerable time and human resources for data processing but also adversely impacts the 
accuracy of recognition tasks (17). Addressing these challenges necessitates effective methods for 
analyzing vast quantities of information, extracting meaningful features from high-dimensional 
data, and mitigating the impact of redundant or correlated factors (18). Dimension reduction offers 
a solution to these problems. Its core principle involves mapping data samples from a high-
dimensional space to a lower-dimensional space, with the primary objective of uncovering and 
preserving the meaningful low-dimensional structure inherent in high-dimensional observable 
data (19). 

The projection of high-dimensional data onto a lower-dimensional space inevitably results in the 
loss of some original information. The primary challenge is to derive meaningful reduced data from 
the high-dimensional dataset that satisfies recognition accuracy and energy requirements while 
optimally preserving the essential characteristics of the original data (20). Nonetheless, identifying 
and extracting effective features in practical scenarios is often challenging. As a result, 
dimensionality reduction has emerged as a critical and complex task in the domains of pattern 
recognition, data mining, and machine learning (21). This technique has been applied to key tasks 
such as, image classification, content prediction, and various other industrial applications (22). 

Non-negative Matrix Factorization (NMF) is a highly effective dimensionality reduction technique 
that offers significant advantages over conventional linear methods and other similar approaches 
(23). Its primary strength lies in its capacity to enforce non-negativity constraints, making it 
particularly well-suited for datasets characterized by exclusively positive values, such as images, 
text, and signals (24). This property enables NMF to extract additive and parts-based 
representations, uncovering fundamental patterns and features embedded within the data. 
Additionally, the intrinsic sparsity-promoting nature of NMF facilitates the automatic selection of 
relevant features, thereby reducing dimensionality while retaining essential information (25). 
Unlike certain linear methods that may face challenges with high-dimensional or complex datasets, 
NMF exhibits robustness and scalability in handling such complexities (26). Furthermore, the 
interpretability of NMF adds significant value, as it allows researchers to derive meaningful insights 
into the latent structure of the data, thereby enhancing data exploration and analysis. In summary, 
the unique combination of non-negativity, sparsity, interpretability, and scalability positions NMF 
as a versatile and highly appealing option for dimensionality reduction, offering a compelling 
alternative to other techniques in this domain (23). 
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Singular Value Decomposition (SVD) is a widely utilized dimensionality reduction technique that 
provides robust mathematical foundations and versatility across various applications, as well (27). 
At its core, SVD decomposes a matrix into three constituent components: two orthonormal 
matrices containing singular vectors and a diagonal matrix containing singular values. This 
decomposition provides a compact representation that captures the intrinsic structure of the data 
(28). This decomposition enables SVD to effectively reduce the dimensionality of complex datasets 
while preserving essential variance and relationships within the data (29). Moreover, SVD is 
particularly well-suited for tasks involving noise reduction and data compression, as it isolates 
dominant patterns and discards less significant components (30). Its mathematical rigor ensures 
robustness when handling large-scale, high-dimensional datasets, making it a reliable tool in fields 
such as image processing, text analysis, and recommendation systems. Additionally, SVD provides 
a geometric interpretation of the data, facilitating improved understanding and visualization of 
latent structures (31). Overall, the combination of dimensionality reduction, noise filtering, 
scalability, and interpretability positions SVD as an indispensable technique for exploratory data 
analysis and machine learning tasks, serving as a cornerstone in modern data science (32). 

These methods may exhibit some limitations that can impact their applicability in various 
scenarios. While dimensionality reduction tries to preserve the most relevant features, some 
important details may still be lost, which may affect the classification accuracy, especially for 
complex defect patterns in SEM images. Both techniques reduce the dimensionality of input data. 
However, their initial calculation can be computationally intensive with NMF requiring recursive 
optimization especially for large datasets. The effectiveness of both SVD and NMF depends on the 
optimal selection of parameters, such as the number of retained singular values in SVD or the rank 
factorization in NMF (33, 34). Low level selections may lead to insufficient image details or extreme 
feature reduction. While SVD efficiently handles large datasets, it requires matrix decomposition, 
which may not scale well for extremely high-dimensional data (35). Similarly, NMF is sensitive to 
local minima during factorization, leading to inconsistent results (36). Both methods operate under 
linear assumptions, hence they may not effectively capture complex, nonlinear structures in 
datasets compared to deep learning-based feature extraction techniques (23). 

In literature, Hossain et al. explored a novel method for hyperspectral image classification using a 
3D CNN with Stochastic Neighbor Embedding (SNE)-based feature extraction. The study utilizes 
SVD for dimensionality reduction, enhancing the efficiency of the feature extraction process. 
Additionally, NMF is employed to uncover hidden patterns within the data, further improving the 
classification accuracy. By combining these techniques with a CNN, the system demonstrates 
significant improvements in processing hyperspectral data, making it more suitable for complex 
classification tasks in real-world applications (37). Liu et al. explored the use of dimensionality 
reduction techniques, including SVD and NMF, to enhance few-shot learning for medical imaging. 
They highlighted the limitations of SVD in scenarios where the feature space is high-dimensional 
compared to the dataset size. The authors demonstrated that discriminant analysis outperformed 
SVD at lower dimensions, while NMF provided a competitive alternative to SVD at intermediate 
dimensions, particularly improving inference accuracy across multiple medical imaging datasets. 
This approach addresses the challenges posed by small datasets in medical imaging (38). Saberi-
Movahed et al. offered a comprehensive survey on NMF and its application in dimensionality 
reduction. NMF is highlighted as a robust technique for feature extraction and selection, especially 
for datasets with non-negative entries. The authors compare NMF with SVD, emphasizing that 
while SVD is useful for linear dimensionality reduction, NMF provides more interpretable, non-
negative representations that are better suited for applications in fields like image and text 
analysis. The study also discusses recent trends and future research directions in both methods 
(23). Swaminathan et al. highlighted SVD and NMF for dimensionality reduction and feature 
extraction in the context of data mining. SVD is used to decompose large datasets into a set of 
orthogonal components, enhancing the interpretability and reducing computational complexity. 
On the other hand, NMF is applied to extract latent factors that are inherently non-negative, making 
it suitable for tasks like topic modeling and clustering. Both techniques help in identifying 
underlying patterns and structures within the data, improving the overall model performance (39). 
In their study, Chang and Chen proposed a Basis-Projected Layer (BPL) to improve deep learning 
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training on sparse datasets, such as GC-MS spectra. They applied SVD to reduce dimensionality and 
identify the principal components of the dataset. Additionally, NMF was employed to enhance 
feature extraction, ensuring that only non-negative values were used, which is crucial for 
interpreting complex datasets. The BPL efficiently transformed sparse data into dense 
representations, improving model performance, with F1 scores increasing by up to 11.49% (40). 
Hossain et al. introduced an unsupervised change detection method for Synthetic Aperture Radar 
(SAR) images, leveraging Deep Semi-Nonnegative Matrix Factorization (Semi-NMF) and SVD 
networks. Initially, Deep Semi-NMF was employed to extract features and perform pre-
classification, identifying pixels with high probabilities of change or no change. Subsequently, 
image patches centered on these sample pixels were used to train SVD networks, comprising two 
SVD convolutional layers and a histogram feature generation layer, to capture nonlinear 
relationships between multi-temporal images. This approach enabled the generation of 
representative feature expressions with fewer samples, enhancing robustness to speckle noise 
inherent in SAR imagery. The proposed method demonstrated superior performance in detecting 
changes across various SAR datasets, highlighting the efficacy of combining Semi-NMF for feature 
extraction and SVD networks for classification in unsupervised SAR image change detection (41). 
Du et al. introduced a novel hybrid method combining SVD and NMF for dimensionality reduction 
in hyperspectral imaging. They applied SVD to decompose the original hyperspectral data matrix, 
capturing its essential structure, followed by NMF to extract meaningful, non-negative components 
that enhance interpretability. This hybrid SVD-NMF approach effectively reduced data 
dimensionality while preserving critical spectral information, improving classification accuracy in 
hyperspectral images. The method demonstrated superior performance compared to traditional 
techniques, offering a promising tool for efficient analysis of high-dimensional hyperspectral data 
(42). Furthermore, Kurra et al. introduced a robust dimensionality reduction technique for 
hyperspectral blood stain image classification, emphasizing the importance of hyperspectral 
imaging in forensic science. Their study explored various dimensionality reduction methods, 
including Factor Analysis (FA), Principal Component Analysis (PCA), and SVD, as preprocessing 
techniques for deep learning models such as Fast 3D CNN and Hybrid CNN. The results 
demonstrated that FA outperformed traditional techniques in terms of classification accuracy, 
particularly in scenarios with high-dimensional hyperspectral data (43). 

In this study, the performance of various pre-trained deep learning models is compared to 
determine their effectiveness on a unique Scanning Electron Microscope (SEM) image dataset, 
preprocessed using SVD and NMF (44). This research advances the analysis of electrospun PAN 
nanofibers (45) by focusing on their classification into defective, slightly defective, and non-
defective categories (46). By leveraging this unique dataset, the study provides a comprehensive 
evaluation of prominent pre-trained deep learning models, including GoogleNet, AlexNet, ResNet, 
and SqueezeNet (47). Furthermore, the impact of SVD and NMF preprocessing on model 
performance, time management, and energy efficiency is systematically compared against standard 
image representations. These findings not only enhance the understanding of deep learning 
applications in nanomaterial classification but also offer valuable insights for improving the 
accuracy, computational efficiency, and sustainability of future nanofiber classification systems. 

2. Materials and Methods 

The electrospun PAN nanofiber SEM images, supplied by nanomaterials experts at Usak University, 
were categorized as slightly defective, defective, or non-defective and utilized for training, 
validation, and testing of pre-trained deep learning models. All images within these three 
categories underwent preprocessing using a Bilateral filter. Following this, augmentation 
techniques, including rotation and random transformations along X and Y axes, were applied to the 
preprocessed images. Subsequently, SVD and NMF were applied to all the augmented SEM images. 
The performance, time, and energy consumption metrics of without any dimensionality reduction 
technique applied (Non), NMF-applied, and SVD-applied images were compared across pre-trained 
models (Fig. 1). Matlab has been utilized as the project and application development framework. 
All Matlab runtime executions in this study were performed on a system with an Intel i5-13600K 
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3.50 GHz CPU, 64GB RAM 5600MHz, an RTX 4060 GPU, and Windows OS, without utilizing parallel 
computation. 

 

Fig. 1. (a) Non applied SEM image of nanofibers (b) NMF applied SEM image of nanofibers (c) 

SVD applied SEM image of nanofibers 
 

The augmented training dataset was employed to train pre-trained deep learning architectures, 
including GoogleNet, AlexNet, ResNet, and SqueezeNet, and subsequently evaluated using the test 
dataset. Ten percent of the SEM dataset was reserved for testing, while the remaining data was 
randomly partitioned, allocating 70% for training and 30% for validation. The dataset consists of 
53,579 images (16,162 slightly defective, 22,915 defective, and 14,502 non-defective) classified as 
slightly defective, defective, and non-defective (Table 1). The randomly selected test dataset 
includes 1,796 slightly defective images, 2,546 defective images, and 1,611 non-defective images. 
The default input image size was set to 227x227x3 for AlexNet and SqueezeNet, whereas for other 
models, it was configured as 224x224x3 (48, 49). Consistent and identical training parameters 
were applied across all models. 

Table 1. The dataset segments used in this study 

 Slightly Defective Defective Non-Defective 

Training 16,162 22,915 14,502 

Test 1,796 2,546 1,611 

3.3 Results and Discussion 

This comprehensive analysis highlights the accuracy and efficiency of deep learning models paired 
with dimensional categorization techniques for nanofiber SEM image categorization. The choice of 
dimensionality reduction technique plays a critical role in maintaining or enhancing model 
performance, with SVD emerging as the more favorable option. ResNet and GoogleNet stand out as 
the most reliable models, capable of delivering near-perfect results under all conditions. 

 Table 2 illustrates the classification performance of four neural network models (GoogleNet, 
AlexNet, ResNet, and SqueezeNet) for three categories -slightly defective, defective, and non-
defective- with no technique applied (Non). GoogleNet achieved consistently high sensitivity across 
all categories, with values above 99%, demonstrating its robustness in correctly identifying all 
classes. The specificity was similarly high, exceeding 99%, indicating its ability to minimize false 
positives. Accuracy across categories was above 99.8%, underscoring the model's overall strong 
classification capability. The precision and f1-scores were similarly impressive, showcasing 
excellent balance between sensitivity and specificity. AlexNet showed competitive performance, 
particularly in the defective and non-defective categories, where sensitivity reached 100%. 
Specificity and accuracy were marginally lower than GoogleNet, but still above 99.5%. Precision 
and f1-scores were also exemplary, reflecting consistent and reliable performance. ResNet 
emerged as the top performer in the Non condition. Sensitivity and specificity achieved perfect 
scores (100%) for the non-defective category and slightly defective samples. This indicates an 
exceptional ability to both identify defective samples and avoid misclassifications. Its precision and 
F1-scores also aligned with these findings, making it a highly reliable model in this scenario. 
SqueezeNet, while slightly trailing the other models, still maintained outstanding results, with 
sensitivity, specificity, and accuracy consistently exceeding 98%. This model was slightly less 
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sensitive in the non-defective category compared to the others, but its performance was still well 
within the acceptable range. 

Table 2. The performance metrics of models with no dimensionality reduction technique applied 

Model Name Category 
Sensitivity 

(%) 
Specificity 

(%) 
Accuracy 

(%) 
Precision 

(%) 
F1-score 

(%) 
 Slightly Defective 99.77 99.18 99.36 98.13 98.95 

GoogleNet Defective 99.88 99.91 99.89 99.88 99.88 
 Non-Defective 98.07 99.97 99.46 99.93 98.99 
 Slightly Defective 99.88 99.83 99.84 99.61 99.75 

AlexNet Defective 99.88 99.82 99.84 99.76 99.82 
 Non-Defective 99.50 100 99.86 100 99.75 
 Slightly Defective 99.94 100 99.98 100 99.97 

ResNet Defective 100 99.97 99.98 99.96 99.98 
 Non-Defective 100 100 100 100 100 
 Slightly Defective 97.66 99.51 98.95 98.87 98.26 

SqueezeNet Defective 99.96 98.88 99.34 98.52 99.24 
 Non-Defective 98.75 99.88 99.58 99.68 99.22 

 

Table 3 shows that GoogleNet retained its high performance across all metrics, with sensitivity, 
specificity, and accuracy close to or exceeding 99.9% in most categories. Notably, the precision and 
f1-scores remained robust, indicating that dimensionality reduction using NMF did not adversely 
affect its classification capability. AlexNet showed a slight decline in sensitivity for the non-
defective category (96.69%), suggesting a minor trade-off in detecting this class when NMF was 
applied. Despite this, its specificity and accuracy remained high, indicating an ability to maintain 
overall performance integrity. ResNet, much like in the Non condition, demonstrated exceptional 
performance. Its sensitivity for the slightly defective category remained perfect (100%), while 
other metrics such as specificity and accuracy were slightly reduced but still above 99%. This model 
appears to be the least affected by NMF, maintaining near-optimal performance across categories. 
SqueezeNet exhibited the most notable fluctuations with NMF. Sensitivity for the defective and non-
defective categories slightly declined, but specificity and accuracy remained consistently high. 
Precision and f1-scores showed minor reductions, suggesting that while NMF had some impact, the 
overall classification performance remained strong. 

Table 3. The performance metrics of models with NMF applied 

Model Name Category 
Sensitivity 

(%) 
Specificity 

(%) 
Accuracy 

(%) 
Precision 

(%) 
F1-score 

(%) 
 Slightly Defective 99.88 99.66 99.73 99.22 99.55 

GoogleNet Defective 99.96 99.97 99.96 99.96 99.96 
 Non-Defective 99.19 99.97 99.76 99.93 99.56 
 Slightly Defective 99.33 99.90 99.73 99.77 99.55 

AlexNet Defective 100 99.82 99.89 99.76 99.88 
 Non-Defective 99.69 99.83 99.79 99.56 99.62 
 Slightly Defective 100 99.78 99.84 99.50 99.75 

ResNet Defective 99.68 100 99.86 100 99.84 
 Non-Defective 99.93 100 99.98 100 99.96 
 Slightly Defective 98.21 99.51 99.12 98.87 98.54 

SqueezeNet Defective 99.52 99.67 99.61 99.56 98.54 
 Non-Defective 99.31 99.44 99.41 98.52 98.91 

 

Figure 2 illustrates the classification performance of four distinct deep learning models -GoogleNet, 
AlexNet, ResNet, and SqueezeNet- applied to SEM images that underwent NMF. The GoogleNet 
demonstrates exceptional classification accuracy, as evidenced by its confusion matrix. The 
number of correctly classified images for each category is as follows: 1784 for slightly defective, 
2545 for defective, and 1598 for non-defective. Misclassifications are minimal, with only one 
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slightly defective image misclassified as defective and one as non-defective. Furthermore, 13 non-
defective images are misclassified as slightly defective. Notably, there are no instances of defective 
images being incorrectly labeled. This result indicates that GoogleNet performs remarkably well in 
distinguishing between the three categories, with negligible confusion, particularly in the Defective 
category. The AlexNet also exhibits robust performance, though slightly inferior to GoogleNet. It 
correctly classifies 1784 slightly defective, 2546 defective, and 1696 non-defective images. 
Misclassifications include five slightly defective images labeled as defective and seven as non-
defective. For the non-defective category, four images are misclassified as slightly defective, and 
one is labeled as defective. This matrix highlights AlexNet's consistent ability to classify defective 
images accurately but reveals a marginal increase in misclassifications for the slightly defective and 
non-defective categories compared to GoogleNet. ResNet shows competitive classification 
accuracy, with 1786 slightly defective, 2538 defective, and 1610 non-defective images correctly 
identified. slightly defective misclassifications are negligible, with only eight images labeled as 
defective and none as non-defective. The defective category has minimal misclassification, with 
eight images incorrectly labeled as slightly defective. For non-defective images, only one instance 
is misclassified as slightly defective. ResNet demonstrates a high level of accuracy, comparable to 
GoogleNet, while slightly outperforming AlexNet in certain aspects, particularly in minimizing 
confusion in the non-defective category. SqueezeNet, while still effective, exhibits a slight decline 
in classification accuracy compared to the other models. The correct classifications are as follows: 
1764 slightly defective, 2534 defective, and 1600 non-defective images. Misclassifications are more 
pronounced, with nine slightly Defective images labeled as defective and 23 as non-defective. The 
defective category contains 11 images misclassified as slightly defective and one as non-defective. 
Similarly, nine non-defective images are mislabeled as slightly defective, and two as defective. 
While SqueezeNet achieves reasonably good performance, it struggles more with boundary cases 
between categories, especially for slightly defective and non-defective images, indicating room for 
improvement. 

 

Fig. 2. (a) Confusion matrix of GoogleNet on NMF-processed SEM images (b) Confusion matrix 
of AlexNet on NMF-processed SEM images (c) Confusion matrix of Resnet on NMF-processed 

SEM images (d) Confusion matrix of SqueezeNet on NMF-processed SEM images 
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Table 4 indicates that GoogleNet achieved near-perfect metrics across all categories, with 
sensitivity, specificity, accuracy, precision, and f1-scores reaching or exceeding 99.9%. This 
suggests that SVD optimized the feature space for GoogleNet, enabling it to classify nanofiber 
images with remarkable accuracy. AlexNet benefited notably from SVD, as sensitivity for the 
slightly defective and non-defective categories rebounded to exceed 99%. The overall metrics 
improved compared to the NMF condition, showcasing the potential of SVD to mitigate the 
limitations observed with NMF. ResNet again demonstrated stellar performance. The sensitivity, 
specificity, and accuracy reached near-perfect levels, underscoring its reliability and robustness 
when paired with SVD. Its consistent top performance across all conditions cements its position as 
the most effective model for this task. SqueezeNet, which exhibited some variability with NMF, 
showed improved results under SVD. Sensitivity, specificity, and accuracy for all categories 
exceeded 99%, suggesting that SVD effectively stabilized and enhanced this model's performance. 

Table 4. The performance metrics of models with SVD applied 

Model Name Category 
Sensitivity 

(%) 
Specificity 

(%) 
Accuracy 

(%) 
Precision 

(%) 
F1-score 

(%) 

 Slightly Defective 99.88 99.80 99.83 99.55 99.72 
GoogleNet Defective 100 99.97 99.98 99.96 99.98 

 Non-Defective 99.50 99.97 99.84 99.93 99.72 
 Slightly Defective 99.27 99.56 99.47 99 99.13 

AlexNet Defective 99.33 100 99.71 100 99.66 
 Non-Defective 99.81 99.65 99.69 99.07 99.44 
 Slightly Defective 100 99.95 99.96 99.88 99.94 

ResNet Defective 99.92 100 99.96 100 99.96 
 Non-Defective 100 100 100 100 100 
 Slightly Defective 99.83 99.73 99.76 99.39 99.61 

SqueezeNet Defective 100 99.94 99.96 99.92 99.96 
 Non-Defective 99.31 99.97 99.79 99.93 99.62 

 

Figure 3 illustrates the classification performance of four different deep learning models -
GoogleNet, AlexNet, ResNet, and SqueezeNet- applied to SEM images that underwent SVD. 
GoogleNet demonstrates near-perfect classification accuracy, as evidenced by the confusion matrix. 
Correct classifications include 1794 slightly defective, 2546 defective, and 1603 non-defective 
images. Misclassifications are minimal, with one slightly defective image mislabeled as defective 
and eight non-defective images incorrectly identified as slightly defective. Notably, there are no 
misclassifications involving defective images being labeled as non-defective or vice versa. This 
indicates that GoogleNet has an outstanding ability to distinguish between these categories when 
SVD is applied for feature extraction, with exceptional performance in the defective category. The 
AlexNet exhibits a strong classification performance, though it is slightly less accurate than 
GoogleNet. It correctly classifies 1783 slightly defective, 2529 defective, and 1608 non-defective 
images. Misclassifications include 15 slightly defective images labeled as defective and three non-
defective images mislabeled as slightly defective. Two non-defective images are misclassified as 
defective. These results suggest that while AlexNet performs reliably, it struggles slightly more than 
GoogleNet, particularly in separating the slightly defective and defective categories. ResNet 
achieves excellent classification accuracy, with 1796 slightly defective, 2544 Defective, and 1611 
non-defective images correctly identified. Misclassifications are limited to two slightly defective 
images mislabeled as defective. No non-defective images are classified incorrectly. ResNet 
demonstrates a robust capability in identifying all three categories with high precision, 
outperforming AlexNet in terms of minimizing errors in the non-defective category and rivaling 
GoogleNet in overall performance. SqueezeNet, while effective, displays slightly lower classification 
accuracy compared to the other models. It correctly classifies 1793 slightly defective, 2546 
defective, and 1600 non-defective images. Misclassifications include two slightly defective images 
labeled as defective, one mislabeled as non-defective, and 11 non-defective images misclassified as 
slightly defective. Although the performance is commendable, the model’s tendency to confuse 
slightly defective and non-defective images is more pronounced than in GoogleNet and ResNet. 
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Fig. 3. (a) Confusion matrix of GoogleNet on SVD-processed SEM images (b) Confusion matrix of 
AlexNet on SVD-processed SEM images (c) Confusion matrix of Resnet on SVD-processed SEM 

images (d) Confusion matrix of SqueezeNet on SVD-processed SEM images 

In summary, both NMF and SVD demonstrated their utility in maintaining high classification 
performance while potentially reducing computational complexity. However, SVD appeared to 
have a more stabilizing effect, particularly for models like SqueezeNet and AlexNet, which showed 
slight sensitivity drops with NMF. ResNet consistently outperformed other models across all 
conditions, achieving perfect or near-perfect metrics, particularly in the Non and SVD conditions. 
This suggests its architecture is well-suited for the classification of nanofiber SEM images. 
GoogleNet remained highly reliable, with minimal fluctuations across conditions and categories, 
reflecting its robustness and adaptability. AlexNet and SqueezeNet showed more pronounced 
sensitivity to dimensionality reduction techniques, but both achieved strong overall performance, 
particularly under SVD. The non-defective category consistently exhibited slightly lower sensitivity 
across models, particularly with NMF. This suggests that distinguishing non-defective samples 
poses a unique challenge, potentially due to overlapping features with other categories. 

Table 5 demonstrates that ResNet exhibited the highest total and average processing times 
(574,955.59 ms and 96.58 ms, respectively). This aligns with its deeper and more complex 
architecture, which demands significant computational resources. While ResNet achieved superior 
classification accuracy in previous analyses, this comes at a higher computational cost. GoogleNet 
and AlexNet had comparable processing times, with AlexNet (88.08 ms average) slightly lagging 
GoogleNet (89.52 ms average). GoogleNet’s relatively low computational demands highlight its 
efficiency despite achieving high classification performance. SqueezeNet showed the lowest total 
and average processing times in this condition (439,589.20 ms and 73.84 ms). As a lightweight 
model, SqueezeNet provides a clear advantage in scenarios where computational efficiency is 
critical. GoogleNet experienced the most pronounced reduction, with average processing time 
dropping from 89.52 ms to 51.81 ms. This highlights the effectiveness of NMF in simplifying the 
feature space, thereby reducing computational demands. AlexNet similarly benefitted from NMF, 
with a decrease in average processing time from 88.08 ms to 52.30 ms. These results demonstrate 
that dimensionality reduction via NMF can substantially enhance processing efficiency for models 
with moderate computational requirements. ResNet and SqueezeNet showed substantial 
reductions in processing time as well. ResNet's average time dropped to 56.87 ms, while 
SqueezeNet achieved an average time of 53.62 ms. These improvements make even complex 
architectures like ResNet more computationally viable in energy-conscious applications. GoogleNet 
achieved an average processing time of 52.03 ms, slightly higher than its NMF performance but still 
a significant improvement over the Non condition. This demonstrates SVD's ability to preserve 
computational efficiency while maintaining model performance. AlexNet displayed similar 
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improvements, achieving the lowest average time of 51.63 ms. These results highlight the potential 
of SVD for models with moderately complex architectures. Although ResNet remains the most 
computationally intensive model, its average time was reduced to 57.64 ms under SVD. This 
reinforces SVD’s utility in reducing the computational cost of deep models while preserving their 
performance advantages. SqueezeNet emerged as the most computationally efficient model under 
SVD, with an average time of 51.74 ms. This underscores SqueezeNet’s suitability for energy-
efficient applications, particularly when combined with dimensionality reduction techniques. 

Table 5. Processing times of the models based on the reduction technique 

Model Name Technique 
Total Processing Time 

(ms) 
Average Processing Time 

(ms) 
 Non 532,931.95 89.52 

GoogleNet NMF 308,422.11 51.81 
 SVD 309,749.95 52.03 
 Non 524,323.83 88.08 

AlexNet NMF 311,348.93 52.30 
 SVD 307,327.59 51.63 
 Non 574,955.59 96.58 

ResNet NMF 338,572.12 56.87 
 SVD 343,127.07 57.64 
 Non 439,589.20 73.84 

SqueezeNet NMF 319,182.19 53.62 
 SVD 307,992.35 51.74 

 

This study advances the domain of dimensionality reduction and classification through a robust 
integration of NMF and SVD techniques, showcasing their complementary strengths for handling 
high-dimensional datasets such as hyperspectral and electrospun PAN nanofiber SEM images. SVD 
decomposes data into orthogonal components, preserving key features while eliminating 
redundancy. These results in faster processing times with a slight increase in classification 
accuracy. Since NMF enforces non-negativity constraints, it preserves meaningful patterns in the 
SEM images, which contributes to enhanced interpretability of features. ResNet achieves the 
highest accuracy due to its deep architecture and residual connections, which prevent vanishing 
gradients and enable better feature learning, even after dimensionality reduction. GoogleNet shows 
strong consistency across different reduction techniques due to its Inception modules, which allow 
multi-scale feature extraction. The architectures of AlexNet and SqueezeNet exhibit slight 
sensitivity to NMF, which is more affected by feature elimination and requires more preserved 
information to maintain classification performance. SVD’s lower computational complexity results 
in faster processing times, reducing GPU consumption, leading to the observed 28% decrease in 
energy costs. ResNet’s high processing time is expected due to its deep architecture, but its superior 
accuracy justifies the trade-off in computational demand. The high-dimensional nature of SEM 
images with high intra-class similarity makes them ideal candidates for dimensionality reduction, 
where redundant and correlated features can be removed without significant performance 
degradation. Unlike Hossain et al. and Du et al., which utilized SVD and NMF independently for 
feature extraction in hyperspectral imaging, this work demonstrates a hybrid framework that 
combines the interpretability of NMF with the structural efficiency of SVD, resulting in improved 
classification accuracy and computational efficiency (37, 42). While Liu et al. focused on enhancing 
few-shot learning in medical imaging through SVD and discriminant analysis, the present study 
addresses broader applications by exploring feature-rich datasets and achieving competitive 
performance across various domains (38). Furthermore, this research builds upon the foundation 
laid by Swaminathan et al. and Saberi-Movahed et al. by employing sparse representations to 
reduce computational complexity while preserving essential data characteristics, thus enabling 
scalability for large-scale classification tasks (23, 39). In particular, (50) aligns with recent research 
in matrix factorization techniques, as seen in Autoencoder-guided low-rank approximation 
approaches for dimensionality reduction, where the integration of autoencoders with low-rank 
decomposition enables efficient feature extraction in cluttered image data. The presented method 
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extends such principles by leveraging the combined strengths of NMF and SVD, enhancing both 
feature selection and classification performance. Moreover, inspired by the work of Allab et al., who 
proposed a simultaneous Semi-NMF and PCA approach for clustering, this study similarly 
emphasizes the benefits of hybrid methods for extracting meaningful low-dimensional 
representations while mitigating the computational burden associated with high-dimensional 
datasets (51). Additionally, (52) incorporates the advantages of rank-revealing QR factorization, a 
method that has demonstrated superior feature selection performance compared to traditional 
SVD and NMF approaches by improving computational efficiency and reducing redundancy. (53) 
combines multi-head attention, CNNs, and wavelet transforms for hyperspectral image 
classification. These methods capture spatial and spectral patterns well but require high 
computational power, making them less scalable. In contrast, this study proposes a hybrid 
framework using matrix factorization, which preserves key features while reducing redundancy 
more efficiently. Unlike Chang and Chen, who proposed a BPL for sparse datasets, this work 
emphasizes the dynamic interplay between NMF and SVD in dense and high-dimensional contexts, 
ensuring both interpretability and precision (40). Furthermore, the integration of Fast Johnson-
Lindenstrauss Transform (FJLT) for content-based feature selection, as discussed in recent image 
hashing techniques, reinforces the computational efficiency of the proposed dimensionality 
reduction framework (54). Overall, the contributions of this study lie in its ability to unify and 
extend existing methodologies, offering a versatile and practical solution for dimensionality 
reduction and classification, with potential applications in diverse fields such as remote sensing, 
material science, and biomedical imaging. 

4. Conclusions 

This study has demonstrated the significant potential of dimensionality reduction techniques, 
particularly NMF and SVD, in optimizing deep learning architectures for the classification of high-
dimensional datasets, such as SEM images of electrospun PAN nanofibers. Through comprehensive 
experimentation with pre-trained models like GoogleNet, AlexNet, ResNet, and SqueezeNet, the 
findings illustrate that dimensionality reduction can enhance computational efficiency and energy 
conservation without compromising classification accuracy. SVD emerged as the most effective 
technique, achieving up to 35% reductions in processing times and an average 28% decrease in 
energy consumption. Its capacity to preserve the intrinsic structure of data while simplifying 
computational demands proved particularly advantageous for resource-constrained environments 
and energy-intensive architectures, such as ResNet. On the other hand, NMF excelled in feature 
interpretability, enabling more meaningful pattern extraction, which is critical for complex 
classification tasks. Despite a slight trade-off in computational efficiency compared to SVD, NMF 
demonstrated its value in enhancing model adaptability to intricate datasets. The results underline 
the versatility of dimensionality reduction techniques in addressing diverse deployment scenarios. 
While ResNet consistently achieved the highest classification accuracy, lightweight models such as 
SqueezeNet, when paired with SVD, offered an optimal balance between performance and resource 
efficiency, making them particularly suited for real-time and mobile applications. GoogleNet 
displayed remarkable robustness across conditions, further emphasizing its reliability for 
nanomaterial classification. In conclusion, this research highlights the importance of integrating 
dimensionality reduction techniques to strike a balance between accuracy, efficiency, and 
sustainability in deep learning applications. Future work could investigate hybrid approaches that 
combine the strengths of SVD and NMF, potentially unlocking further advancements in 
performance and scalability for industrial and academic applications. These findings provide a 
foundation for sustainable and effective utilization of deep learning in the classification of high-
dimensional datasets. Future work could explore the integration of genetic algorithms to optimize 
the combination of dimensionality reduction techniques and deep learning architectures, further 
enhancing the adaptability of models to diverse high-dimensional SEM datasets and improving the 
overall performance of deep learning models. 
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