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Article Info  Abstract 

Article History:  Traditionally California bearing ratio (CBR) is obtained by conducting laboratory 
testing, which is often time-consuming, laborious, and costly. This delays the 
design and construction processes of important structures. Recently, several 
researchers have predicted CBR using ML algorithms. This study focused on 
understanding the uses of various ML algorithms in the prediction of CBR of 
treated and natural soils, and other applications. Factors like OMC (30%), MDD 
(29%), LL (25%), PL (20%), and PI (19%) were mostly used as contributing factors 
for estimating CBR. ANN, RF, and CNN were the best models for predicting 
settlement of shallow foundation, bearing capacity of piles and slope stability, and 
landslide identification, respectively. DNN, GEP, and ELM-CSO were the best 
models in estimating CBR for granular soil, fine-grained soil, and lateritic soil, 
respectively, and RFR, AB-DT, LR, and ANN for other types of soils. ANN and BBO-
MLP were the best models for expansive clay soil treated with HARHA, and pond 
ash treated with lime and lime sludge, whereas ANN was for lateritic soil treated 
with cement and RHA, sand with quartz, feldspar, calcite, corund, amorphous, and 
clay with pozzolan and lime powder, respectively. The quality and quantity of 
available training data were fundamental to observing the capacity of models, 
highlighting the importance of richer, better-labeled datasets.  
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1. Introduction 

California bearing ratio (CBR) is widely used as a key factor to assess the strength of subgrade 
and determine pavement thickness. CBR determines the relative force required to penetrate a soil 
sample compared to a standard material. CBR is determined in the laboratory by placing a 
standard diameter plunger into a sample of compacted soil [1]. This evaluates the relative quality 
of subgrade soil. These laboratory tests encountered numerous obstacles such as inappropriate 
compaction, difficulties in preserving proper moisture content, improper alignment of the pistol 
during penetration, swelling in soil samples after soaking, and errors in recording test results. 
The traditional method of CBR test requires a substantial amount of time (minimum 4 days per 
sample per composition), money, and experienced and trained laboratory staff. The field test of 
CBR comprises driving a piston into the soil mass and soil subgrade using a loading jack. This 
requires more labor for carrying bulky instruments, making boreholes in the field, and skilled 
operators to get proper results. Field compaction may not accurately match with laboratory 
compaction which may lead to erroneous results [2]. This delays the design and construction 
processes of important structures. Recently, there has been an increasing demand for a faster, 
more precise, and much less expensive alternative, especially given the increasing complexity of 
infrastructure projects and new sustainable construction practices. This has attracted 
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considerable interest in exploring machine learning (ML) algorithms as predictive tools for 
estimating CBR [3]. Over the last decade, numerous ML methods have been investigated to 
forecast the CBR value. This includes Artificial Neural Network (ANN) [4], Decision Tree (DT) [5], 
Support Vector Machine (SVM) [6], and ensemble models such as Random Forest (RF) [7], 
Extreme Gradient Boosting (XGB) [1], and Light Gradient Boosting (LightGBM) [8]. The training 
of such models mainly takes on data relating to soil characteristics; including particle size 
distribution (fine content (FC), gravel content (GC), sand content (SC)), Atterberg limits (liquid 
limit (LL), plasticity index (PI), plastic limit (PL), shrinkage limit(SL)), compaction parameters 
(maximum dry density (MDD), optimum moisture content (OMC)), natural moisture content 
(NMC), Specific gravity(G) [9]. The MDD is a key variable, with studies indicating its substantial 
impact on CBR predictions [10]. While MDD is important, other factors like particle size 
distribution, including gravel and sand content, were essential for accurate CBR prediction [9, 5]. 
ML models depend on data quality, quantity, and choices of appropriate algorithms. Issues such 
as overfitting, model interpretability, and generalizability for diverse soil types were still a 
challenge [3]. This study is an effort to overview the ML model that functions superior in 
predicting the CBR value of soil. Efforts have also been made to find the most common soil 
properties being used to build such a model. This paper elaborates on the studies conducted using 
ML algorithms to predict various soil properties and narrates the review related to the prediction 
of CBR from natural soil as well as treated/stabilized soil. It also briefly summarizes the reviews 
and highlights the conclusions and future direction of this study. 

2. Uses of Machine Learning (ML) in Geotechnical Engineering 

The application of ML offers numerous advantages with respect to conventional approaches in 
the field of geotechnical engineering, through enhanced forecasting capabilities and efficiency in 
data processing. In comparison to regression, the ML model can handle several outputs and 
responses, whereas regression models can handle a single response at a time [11]. ML techniques, 
such as ANN, DT, and SVM, excel in modeling complex, non-linear relationships of geotechnical 
materials like soil, which traditional methods often struggle to capture due to their reliance on 
simplified assumptions [12-13].  

 

Fig. 1. Structure of the study on application of ML in Geotechnical Engineering 

ML can significantly enhance site characterization and scour assessment, providing more reliable 
estimation and real-time monitoring capabilities [14]. However, challenges persist, including the 
need for large, high-quality datasets and the chances of overfitting, which can undermine model 
reliability [15]. Additionally, traditional methods, while laborious, often provide a more 
straightforward interpretable framework that can be beneficial in certain contexts, highlighting 
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the need for a balanced approach that integrates both methodologies for optimal outcomes in 
geotechnical applications [13]. The ML techniques, contrary to the traditional statistical and 
empirical methods that depend on previously available data regarding relationships in data, have 
very much been adapted to represent the complex behavior of geotechnical engineering materials 
[16]. Similarly, a novel parameter estimation model was presented by [17] in a study on 
Backpropagation (BP) neural networks along with geotechnical properties using MATLAB. They 
chose the expert system method from the BP neural network theory to forecast geotechnical 
parameters because it had a convenient programming function and strong nonlinear fitting ability 
and did not need the distribution of the drilling hole. The data source for their study was mainly 
from geotechnical investigation and engineering geological survey including hydrogeological 
survey. It was concluded that the forecasting capability of the model satisfied the requirement. A 
structure of the study showing the flow of the application of ML in geotechnical engineering is 
presented in Fig. 1.  

2.1 Foundations 

Finite Element Methods (FEM) are precise but resource-demanding and Boundary Element 
Methods (BEM) reduce computational load but are incapable of handling heterogeneous and 
nonlinear conditions [18]. Researchers [19] predicted the settlement of bigger-diameter helical 
piles in cohesive soil using ML algorithms. They have created a complete database by linking fields 
and calibrating numerical models. A total of 40 load cases were considered to develop a database 
of 3600 numerical models for training and validating four different ML algorithms such as DT, RF, 
ANN, and Adaboost. They evaluated the models using cross-validation techniques and assessed 
them on a separate dataset. The results confirmed that the DT (R2 values of 0.92) and RF (R2 values 
of 0.96) models had high accuracy. Moreover, ML algorithms also demonstrated great potential 
in projecting the bearing capacity of piles. Researchers [20] carried out an ML analysis to estimate 
the bearing capacity of piles. They used cohesionless soil for the study. A dataset of 59 cases was 
employed to train and validate six different ML models. They were optimized by using the particle 
swarm optimization (PSO) algorithm. From the results, it was observed that among all, the 
optimized XGB model was superior with an R2 value of 0.9615, and the PSO algorithm is efficient 
in hyperparameter tuning. Researchers [21] investigated the use of ML in predicting the 
geotechnical axial capacity of reinforced concrete-driven piles. A dataset of 439 piles from six 
projects in Penang, Malaysia was used. 80% of the data set was used to train the model. The 
remaining 20% was used for testing the model. The RF model stood to be the superior for 
forecasting pile geotechnical axial capacity with an R2 value of 0.962. Researchers [22] examined 
the ability of ANNs to predict foundation settlement more effectively. The model predictions were 
also evaluated with three traditional methods. A total of 189 case histories were compiled from 
existing literature. Input parameters included the footing width, average SPT blow count, footing 
geometry, applied pressure, and embedment ratio; and the target variable was the settlement. It 
was found that ANN outperformed the traditional approaches. The ANN was particularly excellent 
in predicting a wide interval of settlements between 0.6 and 121 mm, while the other traditional 
methods showed limitations for large settlements. Sensitivity analysis showed SPT blow count, 
footing width, and applied pressure as the most relevant factors with 33.3%, 23.2%, and 17.7%, 
respectively. Researchers [23] discussed the usage of ML techniques to forecast the dynamic 
response of geogrid-reinforced foundation beds for industrial machines using ANN and GP. The 
consultant ANN and GP models based on field test data were written for parameters such as 
geogrid depth, shear strain, excitation angle, damping ratio, natural frequency, shear modulus, 
and operating frequency. They found that both the GP and ANN models can be successfully used 
to estimate the dynamic response, although GP turned out to be a slightly better model. The most 
critical parameter was operating frequency. 

2.2 Geohazard Assessment 

Researchers [24] used ML algorithms for mapping landslide susceptibility prediction in the Abha 
Basin, Saudi Arabia. They used an inventory map of landslides and twelve landslide-conditioning 
factors to train and validate seven different ML models. The models were assessed through a 
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comparison of the predicted susceptibility to the actual landslide occurrences. It was found that 
linear discriminant analysis (LDA) and RF model performed with good accuracy. Researchers [25] 
gave a new approach that combined both deep learning and ML methods to recognize landslides 
of natural terrain through integrated geotechnical data. In this research, they used landslide-
related data, such as topographic, geological, and rainfall, to build three general-purpose 
geodatabases. They implemented and compared five different algorithms RF, LR, SVM, CNN, and 
boosting methods, over the datasets. They have also shown an application of the current method 
with a case study that was executed at Lantau in Hong Kong. They found that CNN was the best 
model with an accuracy of 92.5% in the RecLD dataset and that it outperformed other algorithms. 
Boosting methods were the second most accurate and then RF, LR, and SVM. Similarly, 
researchers [26] used SVM to predict maximum ground surface settlement (MGS) beneath a road 
embankment, with embankment height, applied surcharge, and side slope as inputs. Four kernel 
functions were used to design the SVM network. The RBF kernel function outperforms the SVM 
(mean absolute relative error (MARE) = 0.048 and root mean square error (RMSE) = 0.007). The 
SVM model was compared with an ANN for performance evaluation, and it was found that SVM 
RBF improves MGS prediction accuracy over neural networks. 

2.3 Soil Mechanics 

Researchers [27] estimated the residual angle of friction of clay soil using characteristics such as 
index properties of the soil to train and validate different models based on ANN and SVM. From 
the result, it was seen that the SVM model was superior compared to ANN models in forecasting 
the residual strength of clay soils. A comparison of four ML algorithms for forecasting the shear 
strength of soft soil was carried out [28]. The datasets were obtained from 188 samples of plastic 
clay soil gathered from bridge construction projects in Vietnam. For predicting shear strength, 
the four ML techniques were Genetic Algorithm Adaptive Network based Fuzzy Inference System 
(GANFIS), ANN, Particle Swarm Optimization Adaptive Network based Fuzzy Inference System 
(PANFIS), and SVR. Evaluation of performance was done using different criteria such as RMSE and 
Pearson coefficient of correlation (R). The PANFIS model showed the highest accuracy in 
prediction (R=0.601, RMSE=0.038) of the strength of the soil. Researchers [29] used ANNs to 
estimate the plasticity index, MDD, and OMC of Clayey soil (CH, CL, and MH classes) stabilized 
with lime. The ANN model was validated on a fresh data set. The sensitivity of each parameter 
was also carried out. They concluded that the ANN model predicted PI, MDD, and OMC of a lime-
stabilized clayey soil with high accuracy. Researchers [30] provided a series of procedures for 
creating a deep learning predictive model (DNN) predicting the geo-mechanical attributes of 
samples of marlstone sampled from the South Pars region of southwest Iran. They have predicted 
unconfined compressive strength (UCS), specific gravity (G), elasticity modulus(E), and an angle 
of internal friction. The models were used on a dataset obtained by conducting multiple 
geotechnical tests while evaluating the geotechnical parameters of 120 samples. They suggested 
that the proposed DNN-based model showed peak accuracy (=0.95), precision (=0.97), and the 
minimum error rate (RMSE = 0.17, mean absolute error (MAE) = 0.13, and mean square error 
(MSE) = 0.11). This model was an accurate predictor of geotechnical indices in terms of R2 (0.925 
for E, 0.941 for G, 0.933 for UCS, and 0.954 for the angle of internal friction). Researchers [31] 
developed an ML algorithm to predict permeability by optimizing the image sample data 
enhancement process to get a sufficient training dataset. They trained an extreme learning 
machine neural network to predict the permeability of sandstone and compared its relative error 
with other established ML methods. They applied the same data collection and forecasting 
method to granite and bentonite to verify the correctness of the technique. The recommended 
method accurately predicted the gas permeability of different geomaterials with low error rates 
(4.1782% for sandstone and granite, 3.2479% for bentonite). RF as an ML algorithm in 
geotechnical engineering was used by [32] for forecasting the UCS of soil. The key features were 
soil content, water-holding capacity, relative density, OMC, and plasticity index. The model was 
assessed using correlation coefficient (R), MAE, and RMSE. They observed that the RF model could 
efficiently predict UCS values for a wide range of soils with higher accuracy than those of 
conventional empirical models. Researchers [33] have developed a broad-based model for 
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machine-learned geotechnical subsurface modeling that essentially includes spatial 
autocorrelations. They applied geotechnical distance fields (GDFs) to six local mapping ML 
methods: GB, ETs, RF, XGBoost, KNN, and general regression neural network (GRNN). These GDFs 
allowed the ML models to learn the spatial association among the sampled and unknown 
locations, and therefore, enhance the accuracy and spatial continuity compared with the 
conventional XY coordinate fields. GDF-ML is generic and applicable to multi-variable and high-
dimensional datasets, as well as incomplete datasets. They concluded that the GDF-ET method 
results in an accurate and speedy interpretation of soil property profiles with quantified 
statistical uncertainty. 

Researchers [34] used ML to predict key tunnel boring machines (TBM) operational parameters. 
The ML models employed to develop prediction models were Bayesian ridge regression (BR), 
nearest neighbors’ regression, RF, GTB (Gradient Tree Boosting), and SVM. Two different DNNs, 
CNN (convolutional neural network), and long short-term memory network (LSTM) were also 
evaluated. The GTB and LSTM methods provided the best prediction accuracy. 

2.4 Slope Stability Analysis 

ML Algorithms are also being used to predict and analyze slope stability by finding the 
relationship between slope stability and influential factors based on available slope data. 
However, ML model accuracy depends greatly on the appropriate setting of hyperparameters. 
Different optimization algorithms, like the firefly algorithm (FA) and PSO were used to optimize 
hyperparameters while improving the accuracy of prediction [35]. 

Table 1. Summary of the literature on the application of ML in Geotechnical Engineering 

Reference Input parameter used Model used R2/R 
Number of 
data used 

Target variable 

Researchers 
[27] 

LL, PI, CF, ΔPI 
SVM 0.954 

137 
Residual friction 

angle ANN 0.888 

Researchers 
[28] 

LL, PL, CC, NMC 

PANFIS 0.601 

188 Shear Strength 
GANFIS 0.569 

SVR 0.549 

ANN 0.49 

Researchers 
[20] 

L, A, σ', ɸs, ɸt 

PSO-DT 0.9428 

59 
Bearing Capacity 

of piles on 
cohesionless soil. 

PSO-KNN 0.7706 

PSO-MLP 0.8408 

PSO-RF 0.9235 

PSO-SVR 0.8222 

PSO-XGB 0.9807 

ANN N/A 

Researchers 
[29] 

LL, PL, LC 

ANN 0.94 280 PI 

ANN 0.94 122 OMC 

ANN 0.94 122 MDD 

Researchers 
[22] 

B, q, N, L/B, Df/B ANN 0.865 N/A 

Settlement of 
shallow 

foundations on 
cohesionless 

soils 

Researchers 
[21] 

Dp, As, Ab, Ab, Sp, Ns, 
Nb, S1, S2 

SVM 0.956 

439 

Geotechnical 
axial capacity  
of reinforced 

concrete-driven 
pile 

RF 0.962 

DT 0.959 

KNN 0.919 
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Notation Used: MGS = Maximum ground surface settlement, CC = Clay Content, MLP = Multilayer 
perceptron, L = Length of the pile, A = Cross-sectional area of the pile, ɸt = Soil shear resistance 
angle at the tip of the pile, ɸs = Soil shear resistance angle at the shaft of the pile, σ' = Effective 
stress at the tip of the pile, ΔPI = Deviation from the A-line in casagrande's classification chart = 
PI-0.73(LL-20), β = Side slope, h = Embankment height, q = Surcharge, RBF = Radial basis function, 
LC = Lime content, B = Footing width, N = Average SPT blow count, L/B = Footing geometry, Df/B 
= Footing embedment ratio, CF = Clay fraction, Dp= Pile depth, As = Pile shaft area, Ab = Pile base 
area, Sp = Pile shape, Ns = Shaft SPT-N, Nb = Base SPT-N, S1 = Soil along pile shaft, S2 = Soil at pile 
base, Duw=Dry unit weight, CoU=Coefficient of uniformity, CoC=Coefficient of curvature, 
ClayA=Clay activity, LS=Liner shrinkage, DFS=Differential free swell. 

From the above studies, it was observed that the best ML models depended on the specific 
location and data set and the predicted variable. ML algorithms were used to predict UCS, ground 
settlement, internal angle of friction, specific gravity, modulus of elasticity, slope stability, 
geotechnical axial capacity, etc. It was also observed that ML algorithms outperformed traditional 
statistical techniques. ANN was the best ML algorithm in many cases. RMSE, MAE, R, and MSE 
were used as a validation parameter for verifying the precision of the ML model. Table 1 presents 
the summary of the literature on the application of ML in Geotechnical Engineering. 

3. Prediction of CBR of Natural Soil 

Estimating the CBR of the soil is primarily required in geotechnical and pavement engineering for 
its crucial role in the design of flexible pavement. Recent advancement in artificial intelligence 
(AI) and ML offers alternative solutions with much-enhanced accuracy and efficiency of 
prediction. Initial attempts at predicting CBR were based largely on statistical correlations 
between soil properties and CBR values. Researchers [36] proved ANNs to be effective in 
predicting CBR values while identifying important input parameters by sensitivity analysis.  

Recent studies have also focused on hybrid and ensemble ML models. Researchers [37] studied 
the impact of the physical properties of soil on the Un-soaked CBR of soil. A total of 99 soil samples 
were collected from Nigeria to develop a simplified CBR model using ANN and Least Square 
Regression (LSR). Both the ANN and LSR models forecasted CBR quite similarly to its laboratory 
value. The model without the percentage passing through the 200-micron sieve ranked as top. 
Researchers [38] hybridized ANN with optimization algorithms, such as gradient-based 
optimization (GBO) and firefly algorithms, and nearly perfect R² values were obtained from the 
training and testing phases. 

Researchers [6] compared SVM, RF, and ANN models and concluded that the RMSE and R2 values 
of RF were maximum. Researchers [10] forecasted the CBR of soils for pavement designs using 
ML algorithms. A total of 679 data were taken from published literature for this study. ML models 
such as MLP, KNN regressor, Support Vector Regression (SVR), Random Forest regressor (RFR), 
and Multilinear regression (MLR) were used. Analysis showed that RFR was the best model 
followed by KNN, MLP, SVR, and MLR. MDD of soils followed by the percentage of gravel was the 
supreme dependent parameter of CBR's outcome. Researchers [39] used five ANN models with a 
database of 521 records based on CBR and eight other index variables from standard laboratory 
tests of soil to predict CBR. Deep Neural Networks (DNNs) were applied in forecasting the CBR of 
subgrade soil [40] Various soil characteristics such as grain-size distribution, Atterberg limits, 
and compaction characteristics were considered as input variables. The results indicate that 
DNNs give better performance on CBR prediction compared with shallow ANNs and conventional 
MLR models. 

Researchers [41] fused ELM with PSO to develop an accurate prediction model. They also 
optimized DT with meta-heuristic techniques for superior prediction accuracy (R2 = 0.996). Such 
recent findings have led to novel hybrid methods compositing various ML algorithms with 
optimization techniques. Researchers [5] found that the hybrid model (AB-DT) was more reliable 
than the single model (DT). From the result, it was revealed that the suggested AB-DT model can 
forecast successfully and precisely the CBR values, and MDD was the most important parameter 
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influencing CBR value. Researchers [42] combined meta-heuristic algorithms with Least Square 
Support Vector Regression for an overfitting solution. Researchers [43] highlighted the demerit 
of conventional statistical methods that failed to capture the complex interdependencies among 
the different soil properties like plasticity, gradation, and compaction-related characteristics. 
Researchers [44] introduced the GMDH model, which optimized network architecture based on 
input variables and showed better performance than MLR. Research like [45] strongly shows the 
ability of ML and AI to substitute empirical methods to make fast and economical CBR estimations. 
Table 2 represents a brief overview of various literature that employed ML algorithms to forecast 
the CBR value of natural soil. The ANN was the top performing and the most frequently used ML 
model for CBR prediction. 

Table 2. Summary of the literature in predicting the CBR value of natural soil 

References Input Parameter 
Model 
used 

R2 
Number of soil 

samples 

Researchers [6] 
NMC, FC, SC, GC, G, LL, 

PL 

SVM 0.7 

480 

RF 0.94 

MLR 0.3 

ANN 0.43 

M5 TREE 0.16 

Researchers [36] 
MDD, OMC, LL, PI, FC, 

SC, GC 
ANN 0.78 358 

Researchers [10] 
FC, SC, GC, LL, PL, 

OMC, MDD 

KNNR 0.86 

697 

SVR 0.86 

RFR 0.93 

MLP 0.9 

MLR 0.7 

Researchers [46] 
FC, SC, GC, LL, PL, 

OMC, MDD 

ELM-CSO 0.996 
149 

ELM 0.974 

Researchers [39] 
FC, SC, GC, LL, PL, 

OMC, MDD, PI 
ANN 0.96 70 

Researchers [40] 
FC, SC, GC, LL, PL, 

OMC, MDD, PI 
ANN 0.945 77 

Researchers [38] 
FC, SC, GC, LL, PL, 
OMC, MDD, PI, SL 

ANN 0.997 100 

Researchers [43] 
FC, SC, GC, LL, OMC, 

γd, PI 

ANN 0.91 
354 

GEP 0.918 

Researchers [5] 
FC, SC, GC, LL, PL, PI, 

OMC, MDD 

DT 0.815 
214 

AB-DT 0.967 

Researchers [4] 

FC, LL, OMC, MDD, PL, 
PI 

DNN M-1 0.836 105 

FC, LL, OMC, MDD, PL, 
PI 

DNN M-2 0.36 175 

FC, OMC, MDD DNN M-3 0.965 282 

Researchers [47] 
D10, D60, D30, D50, 

Cu, Cc 

DNN 0.999 
90 

MLR 0.957 

Researchers [48] MDD, G LR 0.92 34 
 

Hybrid models are the combination of one or more different types of ML models to enhance 
overall performance like combining the interpreting ability of DT and predicting ability of Neural 
Networks to achieve better results than a single model could achieve. For more information about 
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Hybrid Models, readers can refer to the cited article for RF [2], XGB [9], Light GBM  [8], etc. From 
the above study, it was observed that ML and AI are the most accurate and fast techniques to 
predict the CBR of natural soil with the available dataset. However, from this study, it was not 
clear whether soil characteristics of different soil types can be combined or not. No study has 
shown the influence of different soil types on predicting CBR. Therefore, a study may be 
conducted to verify the impact of soil types on CBR estimation using ML and AI algorithms. 

4. Prediction of CBR of Treated Soil 

A soil sample mixed with admixtures such as lime, cement, rice husk, etc. to enhance the strength 
of the soil is known as treated soil. In this section prediction of CBR of treated soil sample data is 
reviewed. Prediction of CBR of treated soil is challenging as there are different additives and 
different treatment methods which makes it difficult to generalize prediction for different 
treatment methods. Developing models for this prediction requires a complex interaction 
between soil characteristics and additives. Moreover, Datasets of treated soil are hard to find. 
However, ML (for example ANN model) has the potential to address this complexity by learning 
the relationship and dependencies between soil properties and additive types from large datasets 
[49]. ML can also adapt to different soil conditions and additive types, identify patterns, and 
provide accurate predictions. ML can also optimize additive combinations and quantities for 
specific soil conditions. The geographical location of soil samples used for the training of the ML 
model can influence the model’s predictive ability [50]. ML models offer enhanced precision in 
estimating CBR values compared to traditional methods [49-50]. 

Different researchers have used ML models for the forecasting of CBR of problematic soil such as 
expansive soil and black cotton soil treated with different admixtures. Researchers [51] 
investigated the stabilization of expansive soil subgrades for pavement construction by using 
bagasse ash (BA) as well as geotextile reinforcement. The CBR value of soil was estimated using 
the ANN model. The treated soil was 6.84% stronger than the natural soil. The MLR analysis tool 
was 91% reliable in predicting the CBR value. Similarly, researchers [52] used Gaussian process 
regression (GPR) in forecasting the CBR of expansive soil treated with hydrated lime-activated 
rice husk ash (HARHA). GPR performed better than the previously constructed models of ANN 
and GEP for the forecasting of CBR. Sensitivity analysis revealed that HARHA was the most 
important parameter. Researchers [53] explored the application of three distinct algorithms of an 
artificial neural network- namely, Levenberg-Marquardt Backpropagation, Bayesian 
Programming, and Conjugate Gradient algorithms-for assessing strength performance for 
expansive soils treated with HARHA. The study found that all the ANN algorithms could forecast 
the values of CBR and UCS of the HARHA-treated soil with good accuracy, and the LMBP algorithm 
performed better than the others. Researchers [8] validated the predictability of CBR of 
agricultural and industrial waste mixed expansive soils. This study used Light Gradient Boosting 
(LGB) as an ML algorithm. The result obtained was, Pearson correlation coefficient (R) = 0.9452, 
RMSE = 0.3225, and MAE = 0.2522. The important feature in predicting the CBR value was found 
in order as: ash content, MDD, ash type, OMC, LL, and PL. Researchers [54] presented and 
compared the predictive capacity of the three ML models namely, Multivariate Adaptive 
Regression Splines (MARS), RF, and Gradient Boosting Machines (GBM) for the estimation of the 
CBR value of expansive soil stabilized with sawdust ash, ordinary Portland cement (OPC) and 
quarry. The RF model indicated better predictive potentiality as compared to MARS and GBM. The 
influence of stabilizers, incorporated into the model creation process, had considerably improved 
predictive accuracy. Researchers [55] applied multiple regression analysis to forecast the CBR of 
cement and waste glass admixture-treated black cotton soil. The model obtained had precisely 
predicted the CBR with a coefficient of multiple determination, R² equal to 0.98 for the standard 
proctor compactive effort and 0.94 for the treated proctor compactive effort. 

Similar studies were also conducted for lateritic soil. Researchers [46] discussed employing an 
integrated extreme learning machine-cooperation search optimizer approach toward forecasting 
the CBR of lateritic soils. Two models were developed namely ELM-CSO and ELM. It assesses the 
ability of models pertaining to minimizing the MAE, MSE, RMSE, or maximizing R and R2. The 
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values of CBR were better predicted with the model ELM-CSO than with the ELM model. 
Researchers [56] focused on efficient model development for forecasting the CBR value of cement 
and RHA (Rice husk ash) mixed lateritic soil. For this study, 1288 samples were used and the data 
gathered was analyzed using three ANN algorithms. The model’s ability was assessed by a set of 
statistical performance indicators, namely R², and RMSE. Based on the results they reported that 
the ANN model was the best technique for forecasting the lateritic soil's CBR values. 

Similar studies were also carried out using clay soil. Researchers [57] did the strength prediction 
of difficult clayey soils treated with nano-scale combinations of natural source pozzolan (NNP) 
and lime powder (NL) using MLR, ANN, and FL. In the developed model, the performance criteria 
suggested that ANN as well as FL techniques predict the value of CBR and PI accurately, but in 
better terms, ANN is preferred compared to FL. Similarly, researchers [58] used a soft computing 
approach to estimate Nigerian black clay CBR values, using ANNs and MLPs. The models were 
trained with the feed forward back propagation algorithm to predict the unsoaked and soaked 
CBR value of black clay stabilized with cement kiln dust. 

Researchers [59] used MR and ANN models to foresee the CBR of pond ash from a thermal power 
plant. The plant was stabilized with lime and lime sludge. The period of curing was the most 
crucial parameter affecting the estimation of treated pond ash CBR value. The ANN model was 
superior among the two. Similarly, in another study, researchers [7] studied the application of 
two ML techniques, namely RF and M5P model tree, for forecasting the CBR value of pond ash 
from a thermal power plant. The pond ash was mixed with lime and industrial waste lime sludge. 
The output of statistical parameters shows that RF performed better than M5P. The curing period 
was the dominating factor in estimating the CBR value. 

Some researchers studied the application of ML algorithms in determining the CBR of fine-grained 
soil treated using admixtures. Researchers [60] estimated the soaked CBR of fine-grained plastic 
soils using ML algorithms. A total of 1011 data sets were taken from a highway project for this 
study. Three ML algorithms, GPR, Kernel Ridge Regression (KRR), and KNN were used in this 
study. The GPR model developed by the FCM data division method (GPRF) proved to be the 
superior model for predicting the CBR of fine-grained plastic soils. The K-fold data division 
method was also proved to be effective in preventing overfitting of the models. It was also found 
that the geological location of the soil samples used for developing the models can significantly 
affect the models' predictive ability. Researchers [61] applied soft computing systems in 
estimating the value of CBR for the fine-grained soil combined with QD and lime, and RHA and 
lime. Then, the CBR values of the soils were estimated using Simple Linear Regression (SLR), MLR, 
ANN, and SVM. They found that the ANN model surpassed all the models because it gave the 
highest R2 value for both QD-lime and RHA-lime stabilized soils. The optimal content of QD-lime 
stabilized soil was found to be 40% QD and 4% lime and that for RHA-lime stabilized soil was 
12% RHA and 4% lime. 

Similar experiments were also conducted with sand. Researchers [62] explored the application of 
evolutionary polynomial regressions (EPR) and ANN in forecasting the UCS and CBR of micro 
silica-lime stabilized sulfate silty sand. They used 90 CBR and UCS tests on sulfate silty sand 
treated with various percentages of micro silica and lime. Similarly, researchers [63] used ANN 
and MR models to estimate the CBR of Aegean sands. The work had its basis on nine different 
sands of the Aegean with contrasting soil properties. Laboratory tests on the sands were 
conducted for an extensive dataset through various parameters like the distribution of particle 
size, Atterberg limits, and CBR. Among both, the ANN model was superior in predicting CBR 
values. Researchers [64] used eight ML models, which include RF, Least Median of Squares 
Regression (LMSR), ANN, Elastic Net Regularization Regression (ENRR), GPR, Lazy K-star (LKS), 
M-5 Model Trees Alternating Model Trees (AMT) to foresee the CBR of geosynthetic reinforced 
subgrade. The data used for calibrating and validating the models were collected from earlier 
studies, covering various soil types. The input parameters for the model's development include 
soil properties, geosynthetic reinforcement properties, and the position of reinforcement layers.  
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The results showed that ANN models showed better prediction accuracy in predicting the CBR 
value. Numerous studies [9, 65] have shown that the accuracy of the ANN model was the highest 
in predicting CBR value. Researchers [9] found the effects of gradation and compaction 
characteristics on the CBR of granular materials in subbase and landfill liner construction. 
Experimental data and six different computational intelligence models ANN, GP, Evolutionary 
Polynomial Regression (EPR), RF, XGBoost, and Response Surface Methodology (RSM) were used 
to predict CBR value. Accuracy for ANN was 88%, followed by GP, EPR, and RF with a similar 
accuracy of 85%, while XGBoost was the least 81%. It was also found that the optimum 
performance of CBR depends on D50 (Particle size at which 50% of the sample is finer) and D60 

(Particle size at which 60% of the sample is finer). Researchers [66] applied ANNs to foresee the 
CBR of remolded soils.  Three types of soil normally found in the central region of India such as 
yellow soil, copra soil, and murum soil were used. Two ANN models, specifically GRNN and MLPN 
with the Levenberg-Marquardt back-propagation algorithm were developed using MATLAB. 
GRNN model was superior in forecasting the CBR in terms of R2. Researchers [65] explored the 
usability of chemically stabilized Coal Gangue (CG), a coal mining byproduct, as a sustainable 
filling material for earthworks by estimating its engineering properties using ANN and RF models. 
The Chemicals used were lime and gypsum. Parametric analysis revealed that for obtaining 
maximum unsoaked and soaked CBR, the optimum contents of gypsum and lime were 1.50% and 
4%, respectively, and for UCS, it was 1.50% and 6%, respectively. Both ANN and RF models 
demonstrated high accuracy, with ANN being slightly superior. 

Table 3. Summary of literature predicted the CBR value of treated soil 

References 
Techniques 

used 
Additives used 

Sample 
size 

R2/R 
Soil 

Properties 
used 

Soil type 

Researchers 
[53] 

ANN 
hydrated-lime 
activated rice 

husk ash 
121 

More 
than 0.9 

OMC, CA, 
MDD, LL, PL, 

PI 

Expansive clay 
Soil 

Researchers 
[66] 

MLPN Remolded the 
Soil 

60 
0.97 LL, SC, FC, PI, 

OMC, MDD 
Yellow, Copra 

and Murum 
GRNN 0.99 

Researchers 
[69] 

BBO-MLP 
Lime and Lime 

sludge 
51 0.997 MDD, NMC pond ash 

Researchers 
[56] 

ANN 
Cement and 

Rice husk ash 
1288 0.99 

LL, PI, MDD, 
OMC 

Lateritic 

Researchers 
[59] 

ANN 
Lime and Lime 

sludge 
51 

More 
than 
0.96 

MDD, OMC pond ash 
MR 

Researchers 
[63] 

ANN Quartz, 
Feldspar, 

Calcite, Corund, 
Amorphous 

N/A 

0.978 
G, Cu, Cc, 

MDD, OMC 
Sand 

MR 0.812 

Researchers 
[57] 

MLR 
Pozzolan and 
lime powder 

120 

0.869 
G, LL, PL, 

OMC, MDD 
Clay ANN 0.989 

FL 0.975 
 

Researchers [67] investigated the possibilities of AI methods in estimating the CBR of soil 

stabilized with alum sludge. They concluded that AI could estimate CBR with high accuracy 

for MAE values ranging between 0.30 to 0.51, and R2 values between 0.94 to 0.99. The number 

of hammers for compaction was the most important parameter, and MDD and mixture were the 
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least important. Researchers [68] utilized the MLR algorithm to forecast the CBR values of the 

Makkah area soil of Saudi Arabia, based on less complicated tests like the Los Angeles 

Abrasion test, sieve analysis, OMC, and MDD. The results provided a good relationship 

between the CBR and sieve analysis parameters, OMC, and MDD, with R2 = 0.95.  Table 3 

summarizes the literature which predicted the CBR value of treated soil. From the above studies, 
it can be said that the CBR values obtained from treated or treated soil could easily be predicted 
using ML algorithms. Many researchers have considered only one or two types of additives to 
treat the soil to improve its capacity.  However, limited research could be seen in predicting the 
CBR using different additives. The most effective additives of all were not compared to predicting 
the CBR using ML algorithms.  Fig. 2 represents the soil properties used as an input parameter for 
CBR prediction. It is observed from Fig. 2 that OMC is the most frequently used as input for 
modeling CBR followed by MDD, LL, PL, and PI. 

 

Fig. 2. Most commonly used soil properties as input parameters for CBR prediction 

5. Summary and Conclusion 

This study focuses on reviewing the literature related to the application of machine learning in 
forecasting the CBR of natural and treated soils. In addition to that, a few applications of machine 
learning in geotechnical engineering such as foundation engineering, slope stability, geohazard 
assessment, and soil mechanics were carried out. The important findings of the reviews are given 
below. 

• ANN (0.865) was found to be the best model for forecasting the settlement of shallow 
foundations. 

• The rank of ML models was RF (0.962), DT (0.959), SVM (0.956), and KNN (0.919) for 
forecasting load bearing capacity of the driven pile, whereas PSO-XGB (0.9807) was found 
to be the best model for forecasting bearing capacity of piles on cohesionless soils. 
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• Though SVM (0.964) was the best in terms of AUC, however, for practical consideration, RF 
was found to be the best model for forecasting slope stability. 

• RF (AUC=0.951) was the best model in forecasting landslide susceptibility, whereas CNN 
was found to be the best in landslide identification. 

• PANFIS, SVM, and ANN were the best models in forecasting shear strength, residual friction 
angle, and plasticity index, respectively for clay soil. The superior models for predicting PI, 
MDD, and OMC was ANN.  

• In the case of CBR of natural soils, DNN (0.99), GEP (0.918), and ELM-CSO (0.996) were the 
best models for granular soil, fine-grained soil, and lateritic soil, respectively. Several 
studies have found the best models as RF (0.94), RFR (0.93), AB-DT (0.967), and LR (0.92). 
However, multiple studies have found that ANN (0.96/0.945/0.997/0.91/0.78) was the 
best model, and the most frequently used model was the ANN. 

• In the case of CBR of treated soils, ANN (>0.90), BBO-MLP (0.997), ANN (0.99), ANN/MR 
(>0.96), ANN (0.978), ANN (0.989) was found to be the best models for expansive clay soil 
with HARHA, pond ash with lime and lime sludge, lateritic soil with cement and RHA, pond 
ash with lime and lime sludge, sand with Quartz, feldspar, calcite, corund, amorphous, and 
clay with pozzolan and lime powder, respectively.  GRNN (0.99) was found to be the best 
model for yellow, copra, and murum soil remolding.  

• OMC was the most frequently used input for modeling CBR followed by MDD, LL, PL, and PI. 

Though ML models are advantageous over other techniques and tedious laboratory experiments, 
they have also certain limitations. While ML made CBR prediction easy and reliable, ML also faced 
challenges such as limited data availability, variation of soil properties for different soil, and 
difficulty in selecting input features. ML models may also suffer from overfitting, underfitting, or 
poor generalizability when applied to different datasets. ML also faced significant challenges 
when additives were used as it required complex interaction between soil characteristics and 
additives. 

RF has superior predictive accuracy and reduces overfitting by ensemble learning but it can also 
be intensive with large datasets, and the complication of the model can hinder interpretability. 
ANN can learn complex nonlinear relations and is suitable for various types, but the training 
process is complex and difficult to select hyperparameters. SVM performs well with high 
dimensional data and has different kernel functions that can adapt to various types of data, but it 
takes a lot of time to train large datasets, and performance is largely dependent on parameter 
selection. DT is easy to visualize. It can perform numerical and categorical problems and has a 
certain level of robustness against missing data, but this model uses a greedy tree which may lead 
to getting stuck in local optimal solutions. DNN can detect complex features and has better 
generalizability than simple networks, but it has problems too and needs modification when 
problems arise since network architecture is initialized at the beginning and it depends on the 
family of ANN. 

Future research on CBR prediction should focus on using deep learning techniques like CNN to 
detect complicated associations among soil properties and CBR values and developing hybrid 
models that integrate traditional methods with ML algorithms that could enhance interpretability 
and applicability. Similarly, ensemble models like RF and GB can be explored to combine the 
strengths of multiple algorithms and improve prediction accuracy. Moreover, Big data analytics 
should be utilized to handle and extract insights from large-scale geotechnical datasets, 
incorporating regional and global soil variability. Advanced engineering features such as 
automated feature selection, dimensionality reduction, and the use of domain-specific knowledge 
to create interaction terms, are essential to improve model inputs and understanding the 
interplay between influencing factors. These directions would pave the way for more robust, 
accurate, and generalizable predictive models in forecasting CBR. 
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