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Article Info  Abstract 

Article History:  In today's world, steel pipelines are an essential part of the infrastructure for 
various industries, such as oil and gas, energy, and industry. However, their flaws 
can lead to major accidents, resource loss, and environmental hazards. Therefore, 
it is crucial to identify defects early on and accurately determine them to ensure 
the safe and efficient operation of pipeline transportation systems. During 
research, a technique was developed for automatically detecting and classifying 
defects in steel oil and gas pipelines using neural networks. This method processes 
image data from an in-line inspection system. The initial data for this analysis 
comes from optical inspections of oil and gas pipelines. The study involved 
developing and testing a method that can detect defects in oil pipelines 
automatically with significant accuracy using data from optical examinations. 
Optical examination can be performed using both specialized endoscopic 
equipment and a crawler robot. The processing of diagnostic results using a neural 
network and data library can be done on an external medium or integrated into a 
diagnostic system for in-line monitoring. Testing of the pipe defect recognition 
method during optical inspection of the inner pipe surface demonstrated good 
results for detecting corrosion and erosion defects (response rates of 67% and 
68%, respectively, with mAP values of up to 49% and 65%). Crack-type defects 
were identified with lower accuracy (response rate of 57%, mAP up to 42%). 
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1. Introduction 

The existing methods of inline diagnostics of steel pipelines include the use of ultrasonic, eddy 
current, and magnetic flaw detectors. The use of this devices allows us to determine the type of 
defect and its geometric parameters with high accuracy. However, in steel pipes with small 
diameters, such as those used in oil and gas fields systems with diameters less than 250 millimeters, 
it can be challenging to perform these types of diagnostic procedures due to the lack of specialized 
equipment and technical tools [1].  

For pipes of this type, an optical examination of the inner surface is a simpler and more natural 
method, according to which one can judge the integrity and reliability of the pipes. The length of 
these pipes can be considerable, amounting to several kilometers, significantly complicating the 
processing of photographic and video data obtained during the examination. This process requires 
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a lot of time, but an increase in processing speed and data quality can be achieved through the use 
of a specialized neural network. Optical control methods in conjunction with neural networks for 
processing and detection of emergency situations and defects, are developing extremely actively 
and are used in various industrial and transport sectors [2]. The efficiency, detection speed, and 
accuracy of neural networks in identifying individual defects and emergency situations are steadily 
improving. 

In recent scientific works [3], there has been an increase in the use of various machine learning 
methods for diagnosing oil and gas pipes and identifying internal defects. In that regard, the most 
interesting studies are [4,5], which conduct a deep analysis of the applied use of various machine 
learning algorithms and establish the possibility of detecting and segmenting defects in oil and gas 
pipelines in the optical range (in particular, corrosion and crack defects). In addition, research [6,7] 
has significant potential, where corrosion and erosion datasets are formed and defects of this type 
in pipelines are determined. 

Researchers are developing and testing various algorithms [8, 9], which forms a representative 
array of information on their effectiveness for solving specific production problems. This confirms 
that the use of computer vision methods will soon find a direct response in the methodological 
foundations of diagnostics of oil and gas equipment in general and determining pipe defects in 
particular. The development of a general methodology and further adoption of the corresponding 
standard at the national and international level are expected. Obviously, this will happen based on 
the results of testing various algorithms, taking into account their effectiveness and accuracy of 
detection and segmentation of defects. It is also likely that the most effective approaches will be 
determined for various control methods (optical, ultrasonic, eddy current, radiographic). 

The aim of this research was to develop a neural network capable of processing and segmenting 
defects with high accuracy, including bulges, corrosion, cracks, and erosion, in oil and gas steel 
pipes during optical examination. The distinctive features of this study from any previously 
published works in scientific periodicals is that to form a dataset of pipes with defects, JSC All-Union 
Scientific Research Institute for the Construction and Operation of Pipelines and Fuel and Energy 
Complex Facilities (VNIIST) used video and photo materials from optical inspection of field oil and 
gas pipelines collected by the institute in the period of 1980-2020s (the institute itself was founded 
in the USSR in 1948). In addition, based on the dataset, a specialized YOLO (You Only Look Once) 
neural network was trained to recognize specific defects in oil and gas equipment. (The main 
abbreviations are presented in Appendix 1.). 

During the research, we analyzed the most critical types of defects and created a dataset for each 
one (based on internal surveys of steel pipes, used in oil and gas field transportation systems). For 
each type of defect, the dataset contained at least 100 images. Then, we trained a neural network 
to segment images of bulges, corrosion, cracks, and erosion in steel pipes using the results of optical 
examination. Based on this neural network, the software was developed. The results of the study 
will lead to the creation of an improved methodological apparatus and software solutions for 
robotic means of conducting diagnostic examination of pipeline systems. This is an important part 
of the technical condition monitoring system, which is necessary for a long-term and safe operation 
of objects. 

The remainder of this paper is organized as follows:  the section “In-line diagnostics and the main 
types of defects in steel pipelines” provides an overview of approaches for gathering of optical data 
from the inner pipe surfaces. Section “The formation of a neural network and the creation of a 
library of defects” outlines dataset construction and preprocessing. Also it contains information 
about the selection and architecture of neural network to be used with the data. In section “Training 
a neural network to detect pipe defects and analyzing the results” we provide both visual and 
quantitative results. These include images of recognized defects and metric plots—to evaluate the 
model’s performance. We conclude the paper in section “Conclusions” where we summarize the 
obtained information and outline future researches. 
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2. In-Line Diagnostics and The Main Types of Defects in Steel Pipelines 

The formation of a database of defects was based on images obtained from inspections of oil and 
gas systems transporting borehole products. These images were collected through endoscopic 
examinations of the systems or using a crawler robot (see Figure 1). All sites where optical data 
was collected were made from steel pipes. Among the most common defects in the received 
information package are bulges, corrosion, cracks, and erosion. This is generally due to a wide 
range of conditions (physical and chemical processes) that change and predetermine these defects' 
occurrence. Such violations lead to a significant decrease in the reliability and strength 
characteristics of the pipe system, resulting in the pipes ceasing to fulfill their main transport 
function [10].  

 
Fig. 1. Examples of a crawler  and an in-tube endoscope for optical examination of pipes 

The issue of the frequency of frame capture of the inner surface of the pipes is crucial for ongoing 
research. Therefore, it seems reasonable to split the video stream into frames at a frequency of 20 
frames per second for optical diagnostics. Based on the speed of movement of a self-propelled 
robotic platform or endoscope moving in a straight line, this frequency is the minimum necessary. 
When diagnostic equipment moves at a speed of 1 cm per second, this frame rate allows us to 
capture damages up to 0.5 mm in size. If smaller defects need to be captured, the frame rate needs 
to be increased. The recorded video stream needs to be processed and analyzed frame by frame. 
After that, the results of processing are analyzed and combined every 20 consecutive frames. This 
process allows us to identify the most damaged areas, their approximate location, size, geometric 
shape, and color distribution. 

To create an accurate image of the pipe's surface, a wide-angle camera and illuminator system 
should be used. They should be fixed in such a way that the entire pipe falls within the camera's 
field of view. Then, the part of the frame around the perimeter of the pipe that is in focus is selected, 
forming a ring. The center of this ring is the optical center of the lens [11]. This process results in 
an annular panoramic image of the pipe. Next, either direct processing of the video data can be 
done, or each individual frame can be preprocessed to reduce geometric distortion. Geometric 
distortions can occur due to the lens's distortion.  These distortions cause straight lines in the image 
to bend, creating a "barrel" effect that reduces distance from the optical center. However, the part 
of the image that corresponds to the plane of the optical axis remains undistorted.  

No additional image preprocessing unit has been developed in the software that was created to 
eliminate distortion effects. Instead, a direct assessment of defects observed in the optics was 
carried out without scanning images. This approach has a slightly lower accuracy in general, 
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particularly with respect to minor defects such as pitting and hairlines. However, it is also less 
resource-intensive and significantly faster. 

There are numerous different types of defects on the inner surface of steel pipes, and their 
systematics and specific features are reflected in various regulatory documents. These include ISO 
11971:2020 Steel and iron castings — Visual testing of surface quality, ISO 3183:2019 Petroleum 
and natural gas industries — Steel pipe for pipeline transportation systems; ISO 11960:2020 
Petroleum and natural gas industries — Steel pipes for use as casing or tubing for wells; ISO 7005-
1:2011 Part 1: Steel flanges for industrial and general service piping systems. 

In their research, the authors [12,13] and [14] rely on international regulatory documents and the 
classification of defects. It should be noted that national or industry classifiers can also be used, 
where the characteristics of defects can be presented in more detail. National classifiers can be 
linked to pipe manufacturers and manufacturers of equipment used in diagnostics. Among Russian 
regulatory documents, the taxonomy of in-pipe defects is most fully presented in GOST R 59496-
2021 Welded steel pipes. Welded joint defects. Terms and definitions and in the current OST 14-
82-82 “Industry quality management system for ferrous metallurgy products. Departmental 
quality control of products. Seamless rolled steel pipes. Surface defects. Terms and definitions”. 
Unfortunately, at the moment, various scientific works on the detection of defects in steel pipes 
using neural network technologies do not cover all types of defects (regardless of their 
classification). This is often due to the lack of a representative and high-quality sample of defects 
for use in neural network training [15]. The defects can be divided into three categories: pipe 
geometry defects, pipe wall defects, and welded joint defects (Figure 2). 

 
Fig. 2. Main categories of defect types in steel pipelines 

Due to the lack of frame-by-frame pre-processing in this study, geometric distortions were not 
eliminated and images obtained from the side surface of the crawler or endoscope were not 
processed (only images from the front camera were used). As a result, some potential defects at 
pipe connections may have been missed. To solve this problem, it is necessary to consider the issue 
of distortions or, even better, conduct panoramic or side-by-side shooting. In such a case, defect 
detection will be maximized within the optical range [16]. 

In this regard, as part of the ongoing research, it was decided not to consider defects in pipe 
connections separately (since either a different type of survey or additional data preprocessing is 
required), but to limit ourselves to determining defects in the inner surface of the pipe body. The 
most common defects affecting the strength of the inner surface of the steel pipe body are the 
following: bulges, corrosion, cracks and erosion. Potholes and delaminations are relatively 
common, but there were no defects of these types in the available set of photo and video data used 
for the study. Let's take a closer look at the defects analyzed in the study. 
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The bulge is a local, gentle deflection of the pipe wall, with possible thinning in some areas. It 
indicates a local loss of strength and bearing capacity of the pipe, as well as a violation of the 
geometric shape. This may be caused by cyclic loads. Bulges can be convex or concave, and their 
presence leads to a change in the flow rate of liquid, which increases the impact of the transported 
material on the pipe walls in that area. It should be noted that the number of bulges is relatively 
small in the data set. This defect is rare and difficult to detect visually from inside the pipe. For steel 
pipes, the most common type of defect is corrosion. Corrosion can be of various types, such as 
rivulet, pitting, and solid. The generated data library takes into account all these types of corrosion 
damage to pipes. In general, corrosion refers to the spontaneous chemical interaction of metal with 
its environment, resulting in a change in its composition and properties. This process occurs 
without the need for external energy input. The corrosion process involves the chemical reaction 
between the metal and the medium. 

Therefore, if a metal structure loses its bearing capacity due to exposure to a dry hydrocarbon gas 
stream containing abrasive particles, this is not considered as corrosion-related damage. If 
aggressive components such as moisture, hydrogen sulfide and carbon dioxide are present in the 
gas and the destruction occurs as a result of the chemical interaction between the pipe metal and 
these components, then we can talk about corrosion damage to the metal. The consequence of 
corrosion is always a change in the properties of the metal (chemical and mechanical), and as a 
result, a change in the operational characteristics of the pipeline. However, a pipe affected by 
corrosion may continue to function without failure for a certain period of time. 

Cracks are a common type of defect in metal pipes. They can occur either longitudinally or 
annularly, and can be found in the base metal or at a welded joint. Our database takes into account 
all these possibilities. It should be noted that cracks are often caused by stress concentrators, such 
as non-welds, sinks, or other defects in the pipe or weld. Additionally, pressure drops in the pipe 
can also lead to cracks. Both of these factors can contribute to the formation of a crack in a pipe.  
The last type of defect in steel pipes that we will consider is erosion. This is a gradual loss of 
material from the pipe wall caused by the flow of liquid and particles that are transported through 
it. The impact of these particles on the wall and the resulting cavitation effects lead to local 
deterioration of the inner surface of the pipe.  

A number of scientific studies, such as [17] and [18], have also conducted optical diagnostics of 
pipes using crawler robots, successfully detecting defects using machine learning techniques. Other 
studies obtained positive results by acquiring and processing magneto metric and acoustic data 
using neural networks [19]. The algorithms and neural networks applied demonstrated relatively 
high accuracy in detecting defects such as corrosion and cracks (about 69–75%), which is 
considered a good result for field studies, given the low quality of the initial data and limited 
statistical samples. Of course, the results obtained so far cannot be compared to those obtained by 
using machine learning on diagnostic samples in a laboratory setting. This is especially true for 
experiments on individual metal plates with defects. When learning occurs on such samples 
(cleaned of contaminants) under direct illumination, as well as on a flat, rather than a concave 
surface, the results of defect recognition can be extremely high.  

For example, in [20], the proposed GAN-based augmentation scheme significantly improves the 
performance of CNN for classifying surface defects. The classically augmented CNN yields 
sensitivity and specificity of 90.28% and 98.06%, respectively. In contrast, the synthetically 
augmented CNN yields better results with sensitivity and specificity of 95.33% and 99.16%, 
respectively. Unfortunately, it is extremely difficult to obtain similar results in sensitivity and 
specificity in the field; this is probably not due to the quality of the proposed algorithms, but rather 
to a large number of external factors. Despite these factors, researchers are making quite successful 
attempts to increase the performance of a neural network and increase the accuracy of detecting 
various types of deviations, defects and objects [21]. However, the issue of testing the results 
obtained on a large volume of field data and the applicability of the developed algorithms and 
networks for solving specific diagnostic problems remain the subject of further research. A 
separate problem which is highlighted by a number of works such as [22] and [23], is the binding 
of a pipeline defect to a specific point along the route. It is important to not only determine the 
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presence or absence of a defect, but also to indicate the problem area. In steel pipes, due to the 
possibility of using them as signal amplifiers, such a problem is not as severe [24]. But it represents 
a certain challenge for the detection and localization of defects in polymer reinforced and plastic 
pipes [25].  

During the standard in-tube optical inspection, the flaw detector records all observed pipe defects, 
determining their geometric parameters and referring them to the picket along the route. In this 
case, binding was carried out to a specific frame that was received. At the same time, no selection 
of acceptable or unacceptable defects was made. All potential defects were recorded in the 
processed frame. Determining acceptable and unacceptable defects for a specific type of pipe 
requires creating an additional add-on in the software. To do this, it will first be necessary to 
determine the geometric parameters of the defect (information on frame size, focal length, 
illumination, etc., will need to be provided to the neural network) as well as information on 
acceptable defect sizes for this pipe type (a defect library linked to regulatory and technical 
documentation requirements must be created).  

In general, this suggests the need for a three-stage development of an in-tube optical diagnostic 
system that uses neural networks to recognize defects [26]. At the first stage, the neural network 
would be trained to recognize defects from a live video feed (based on the results of this study). At 
the second stage, either a system would be developed to combat distortion (by creating a scan of 
the frame) or the neural network would be refined to recognize defects when shooting from side 
cameras (taking into account connection defects). Finally, at the third stage, a representative 
library would be assembled containing data on the geometric parameters of defects and their 
acceptability for pipes of different types and brands. This would allow for secondary processing of 
diagnostic results, not only to mark defective zones but also to determine the acceptability or 
unacceptability of a defect. Next, let's move on to solving the main goal of this research: recognizing 
defects in steel pipes from live video footage. 

3. The Formation of a Neural Network and The Creation of a Library of Defects 

As part of the study, a library of images containing a total of 500 images was used. These images of 
steel pipes were captured through in-line photography of different types of oil and gas steel pipes. 
This library served as the foundation for the development of a learning neural network. During the 
creation of this system, advanced techniques from the field of artificial intelligence, specifically 
machine learning, were employed. 

So, the YOLO neural network was used as a basis. This network makes it possible to achieve high 
accuracy and speed in detecting defects in pipelines. The YOLO system, developed by Joseph 
Redmon and others, considers object detection as a regression task on spatially separated 
bounding boxes and associated class probabilities. It examines the entire image during testing, so 
its predictions are based on the global context of the image. The YOLO algorithm uses a 
convolutional neural network, which is a deep learning algorithm that takes an input image and 
assigns importance (studied weights and offsets) to aspects or objects in the image, distinguishing 
one from the other. Compared to other algorithms, images require much less preprocessing with 
this method.  

Figure 3 shows the architecture of the YOLO network. The basic idea is to reduce the feature 
dimensionality using convolutional layers alternating with 1x1 convolutions that compress 
features from preceding layers. YOLOv8 consists of several key components. Backbone - this is the 
core part of the model designed to extract features from the input image. YOLOv8 uses a new 
Backbone architecture designed to improve the efficiency and accuracy of the model. Neck -this 
section connects the Backbone to the Head and is responsible for aggregating and passing on the 
extracted features. YOLOv8 uses structures such as Spatial Pyramid Pooling - Fast (SPPF) and Path 
Aggregation Network (PANet), which improve the model's ability to handle contextual information 
and different scales of objects. Head (output part) - this component is responsible for predicting 
the coordinates of bounding boxes, object classes, and assessing the confidence in detection. 
YOLOv8 uses a new Anchor-Free head, which simplifies the prediction process and improves the 
accuracy of the model. 
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Fig. 3. Architecture of a convolutional neural network. The top right part of the diagram shows 

the model parameters: depth_multiple – model depth multiplier (0.33, 0.5, 0.75, 1.0, 1.25). 
Width_multiple – model width multiplier, ratio – scaling factors 

Important improvements in YOLOv8 include the Anchor-Free approach. It involves abandoning the 
use of pre-defined anchor boxes, allowing the model to be more flexible and accurate in detecting 
objects of different sizes and shapes. A new loss function is also used, which contributes to more 
stable and efficient model training. An improved backbone network is also used. The updated 
Backbone improves the efficiency of feature extraction, which contributes to increased detection 
accuracy. The input image fed to the network has the size: 640×640×3 (RGB image with three 
channels). It is fed to convolutional layers (Conv), which reduce the dimensionality and extract 
features. The network processes this image through a series of convolutional layers, each of which 
performs a convolution using different kernel sizes. Convolutional layers reduce the dimensionality 
of the image and increase the number of channels. C2f (Cross Stage Partial with Fusion) is used - an 
improved version of Cross Stage Partial (CSP) blocks, responsible for efficient feature extraction 
and SPPF (Spatial Pyramid Pooling - Fast) – a layer that uses multiple levels of MaxPool2d to 
improve the model's perception of different scales of objects, allowing the model to focus on the 
most significant features [27]. 

YOLO convolutional layers are alternated with 1x1 convolutions, which help to reduce the number 
of features between main convolutional layers, thus reducing the computational load and 
increasing the efficiency of the model. MaxPooling layers with a 2x2 kernel and a stride of 2 are also 
used to reduce the image size, halving its width and height at each stage. This helps to preserve 
important features while reducing the image's size. The convolutional layers are followed by two 
fully connected layers. The first fully connected layer contains 4096 neurons, and the second 
contains 30 output neurons, which are responsible for predicting the coordinates of bounding 
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boxes and object classes. These layers complete the image processing and form the final 
predictions. 

Three outputs (P3, P4, P5) are responsible for detecting objects at different scales: P3 (80×80) – 
for small objects, P4 (40×40) – for medium objects, P5 (20×20) – for large objects. The network 
uses Conv2d convolutional layers to predict Bounding Box, Class, Objectness Score. 

During the training process, visualization was performed to monitor the effectiveness of the 
training. The learning rate is a very sensitive parameter. With a very high learning rate, the error 
curve will have an unacceptable shape. With a low learning rate, the error will decrease very slowly 
even after a large number of epochs. With a high learning rate, the error initially decreases quickly 
but then becomes stuck in a local minimum, preventing the network from achieving good accuracy. 
When the learning rate is appropriately chosen, the error smoothly decreases to a minimal value. 

Thanks to YOLO, it is now possible to quickly and accurately detect the location and type of defects, 
which is essential for a swift response to potential security risks. However, a significant amount of 
labeled data was required to train the neural network. Initially, the process of labeling defects in 
images was done manually. Later on, the Label Studio tool was utilized. With its assistance, it 
became feasible to swiftly create annotations for pictures of faulty pipes, which served as the 
foundation for training the neural network.  

One of the key benefits of using YOLOv8 is its built-in optimized architecture, which greatly 
simplifies the process of training and deploying a model. Unlike alternative frameworks such as 
Detectron2 or MMDetection, which require explicit definition of neural network layers and training 
parameters, YOLOv8 offers a ready-made, well-tested architecture that provides a balance between 
accuracy and speed. The Ultralytics library provides a convenient API that allows us to run training, 
validation, and inference in just a few lines of code, reducing the complexity of development and 
making it accessible even to users with minimal experience in machine learning. In addition, 
YOLOv8 includes automatic hyperparameter tuning, built-in data augmentation functions, and 
computational optimization, making it an ideal choice for object detection tasks (Figure 4). 

 
Fig. 4. YOLO object detection and convolutional neural network 

Another advantage of YOLOv8 is its high speed, achieved thanks to its single-stage architecture, 
which is critical when analyzing large amounts of data in real time. Using pre-trained weights and 
built-in methods for fine-tuning allows the model to be adapted to various datasets with minimal 
computational resources. These features make YOLOv8 the most effective solution for object 
detection, especially in conditions where ease of integration, performance, and detection quality 
are important. 

In this work, "YOLOv8" was used – the latest version of this model. Data preparation for training 
the YOLOv8n object detection model includes several stages. The first stage of data preparation is 
to collect and organize a set of images on which various objects are marked. The data is organized 
in a hierarchical folder structure, where each subfolder corresponds to a specific class of objects. 
All images are stored in a folder named "images". In the second stage, annotation tools such as 
"Label studio" are used to create annotation files in YOLO format. These files, usually with the 
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extension ".txt", are saved in the "labels" folder and contain information about the coordinates of 
the defect boundaries (x, y, width, height) on each image. The third stage involves dividing the 
dataset into three parts: training (train), validation (valid) and test (test). The ratio between these 
parts is usually 70% for the training set, 15% for the validation set and 15% for the test set [28]. 
The structure of the prepared dataset is shown in Figure 5. 

 
Fig. 5. Folder structure 

At the fourth stage, the configuration file is created. The YAML configuration file plays a key role in 
configuring and managing the parameters of the YOLOv8n model. This file, usually with the 
extension ".yaml", contains detailed information about the structure of the model, as well as about 
the training parameters and data. Next, the model object is created. This file contains the weights 
of a model that has been pre-trained on a large dataset such as COCO, which allows you to use this 
model as a starting point for further training. The final step is to train the model. 

4. Training a Neural Network to Detect Pipe Defects and Analyzing the Results 

The training of the YOLO neural network was performed using the ultralytics library. To begin, the 
YOLO class was imported from the library using the code 'from ultralytics import YOLO'. This 
allowed us to utilize YOLO's features in our research. Then, an instance of the YOLO class was 
created with the pre-trained YOLOv8x model stored in the file 'yolov8x.pt'. The line of code used 
was 'model = YOLO("yolov8x.pt")'. After this, we proceeded to train the model (see Figure 6).  

Starting the process of training the model using the 'train' method, we specified the path to the 
training data file, the number of training epochs, the image size, and the batch size. For example, 
the line of code: results = model.train('external_defects/crack/data.yaml', 250, 640, 16) starts 
training the model on the data from the 'external_defects/crack/data.yaml' file for 250 epochs, with 
an image size of 640 pixels and a batch size of 16. The results of the training are stored in the 
'results' variable. This allows us to analyze and evaluate the performance of the model. Thus, based 
on the generated training and learning algorithms, all 500 images were processed. At the same 
time, groups of human-recognized images were previously formed with reference to defects of a 
specific type. Let's further explore the process of training a neural network and see its results. 

During each iteration of training, the YOLO model processes images from the training dataset using 
a neural network. The images are analyzed and classified by the network, and features are 
extracted to determine the presence of objects. After analyzing the images, the model compares its 
predictions with actual image labels to calculate losses. These losses show how different the 
predictions are from the true values. The error is then propagated backwards through the network, 
where the weights and parameters are adjusted to minimize the error and improve predictions. 
This process is repeated multiple times during each epoch of training. An epoch ends when all 
weights in the network have been updated based on data from the training set. It is important to 
note that after each training iteration, the model's performance is evaluated on a separate 
validation dataset in order to monitor the learning process and prevent overfitting. Training stops 
when a certain stopping criterion is met, such as reaching a certain level of accuracy or completing 
a predetermined number of iterations. 
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Fig. 6. Neural network training and learning algorithms 

The model is trained using Python and the Ultralytics YOLOv8 library. The dataset is pre-labeled in 
the YOLO format, which includes object annotations in the form of bounding box coordinates and 
corresponding classes. We use data augmentation strategies to improve the model's robustness to 
various shooting conditions. The training code is provided in Appendix 2. During the training, 
hyperparameters such as the number of epochs, input image size, and mini-batch size were varied 
to optimize the detection quality. Using a GPU allowed us to speed up the training process and 
improve the convergence rate of the model. After training, the model is evaluated on a test dataset, 
where its accuracy (mAP) and defect detection completeness are analyzed. As a result of training 
the YOLOv8 model on a specialized dataset containing images of defects in steel oil and gas pipes, 
key metrics characterizing the detection accuracy and prediction quality were obtained. The 
training was carried out for 250 epochs, and the final learning rate was 0.00003584, which 
indicates gradual convergence of the model. The mean square error (MSE) on the training set was 
1.7973, and on the validation set - 2.3834. Such values indicate the presence of a certain gap 
between the training and validation samples, which may indicate slight overfitting of the model. 
The regression error, coinciding with the MSE, confirms the stability of the model in predicting the 
coordinates of the bounding boxes of objects. The prediction accuracy was assessed using the mAP 
(Mean Average Precision) metric. The average mAP50 value, which measures the accuracy of object 
detection with a 50% intersection over Union (IoU) tolerance, was 0.2076, and the more stringent 
mAP50-95 metric, which takes into account different IoU thresholds, was 0.0988. This indicates 
that the model has potential for improvement, especially in terms of defect localization accuracy. 
The total error of the model, calculated as 1 - mAP50-95, was 0.9012, which indicates the need for 
further optimization of the parameters or an increase in the amount of training data. In addition, 
the precision and recall metrics were calculated. The average precision value was 0.3325, which 
means that 33.25% of the predicted objects actually correspond to real defects. However, the recall 
is 0.3036, which indicates that the model detects only about 30.36% of all defects present in the 
data. Such a gap between precision and recall indicates a tendency for the model to miss defects, 
which may be due to insufficient information content of the dataset or the complex structure of the 
detected objects. 

Speaking about the results obtained, we will consistently focus on the various types of defects 
detected on the inner surface of the steel pipe. For example, the detection of bulge-type defects in 
pipes turned out to be insufficiently accurate. This was due, firstly, to the small number of available 
photographs containing defects of this type, which limited the number of examples on which the 
model could learn. Secondly, the quality of these photos turned out to be insufficient and this, in 
turn, could make it difficult for the neural network to recognize defects. Factors such as poor 
lighting, noise, distortion or blurring could have affected this. To improve the results of the study, 
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it is necessary to pay attention to the process of taking images and take measures to improve the 
quality and quantity of photographs with a bug type defect (Figure 7).  

  

  
Fig. 7. An example of training a neural network to recognize a bulge-type defects 

The overall performance of YOLOv8 in the proposed data set for the bulge defect is illustrated by 
graphs of accuracy, average accuracy, response and errors for the models in Figure 8. As can be 
seen from the graphs, the model reaches no more than 48% accuracy, and up to 85% response. 
According to mAP, very low indicators are obtained, which indicates a weak detection of this type 
of defects during training. 

 
Fig. 8. The loss function and metrics of the YOLOv8 model in determining Bulge-type defects in 

steel pipes. The first line shows the learning curves for loss of regression in the block, loss of 
class, accuracy, and response. The second line shows the validation curves for block regression 

loss, class loss, average accuracy: 50 and average accuracy: 50:95 

The results of training a neural network to detect a corrosion defect turned out to be significantly 
better than for a bulge defect. In general, a neural network can perform rather effective 
segmentation of defects of this type inside steel pipes. At the same time, the network made it 
possible to determine both areal corrosion, as well as pitting and stream corrosion. The learning 
outcomes are shown in Figure 9.  In terms of training efficiency, it can be noted that sorting losses 
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decreased from about 2.5 to 1.0. Classification losses showed good convergence from 5.0 to 1.0. 
Distribution Focal Loss (DFL) decreased from 2.5 to about 1.5. Accuracy reaches about 0.6, and 
recall time stabilizes at about 0.4. In terms of validation metrics, Val/box_loss stabilizes at 2.6-2.7, 
which is higher than in the erosion model, and Val/cls_loss drops to almost zero after early spikes. 
The final mAP50 is about 0.45, and mAP50-95 is about 0.15. 

  

  
Fig. 9. An example of training a neural network to recognize a bulge-type defects 

 
Fig. 10. The loss function and metrics of the YOLOv8 model in determining corrosion defects in 

steel pipes. The first line shows the learning curves for loss of regression in the block, loss of 
class, accuracy, and response. The second line shows the validation curves for block regression 

loss, class loss, average accuracy: 50 and average accuracy: 50:95 

Overall, the results show a relatively high selectivity for the images. The corrosion defect is 
segmented much more accurately than the bulge defect. Compared to the accuracy of recognition 
and the results of the learning process for the bulge defect, the corrosion defect is segmented more 
accurately. This can be seen from the clearer trends in the charts with a smaller spread of individual 
values. Similarly, the performance indicators for YOLOv8 on the corrosion defect are summarized 
in a series of graphs (Figure 10). In this case, the accuracy of the model is higher, reaching 88%, 
while the response is lower compared to the previous type of defect but still reaches 67%. Overall, 
this gives a good result, with an average precision of 49% according to the mAP metric. For a crack-
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type defect, very good image segmentation results were also obtained (Figure 11). At the same 
time, the neural network made it possible to identify both longitudinal and transverse cracks of 
various types, and to isolate a grid of cracks. With an increase in the size of the Dataset, 
segmentation accuracy is expected to increase. Summary data of the loss function and metrics for 
the YOLOv8 model on the crack defect is shown in Figure 12. The model achieves an accuracy of up 
to 98% with a response rate of up to 57%, but the heterogeneity in prediction and response results 
in a relatively low mean average precision (mAP) of around 42%. This may be due to the need for 
more training data. It should be noted that for the full implementation of the results in real 
conditions, it is necessary to unify the illumination of the survey areas, expand the database and 
increase the amount of data for training the neural network.  

  

  
Fig. 11. Example of training a neural network to recognize a crack-type defect 

For crack segmentation, the box loss (train/box_loss) shows a steady decrease from about 2.5 to 
1.0 over 250 epochs, indicating good bounding box prediction convergence. The classification loss 
(train/cls_loss) has significantly decreased from about 5.0 to less than 1.0. The DFL loss 
(train/dfl_loss) shows a similar decreasing trend from 2.5 to 1.2. The precision and recall metrics 
show an increasing trend, with precision reaching about 0.5 and recall about 0.4 by the end of 
training. Analyzing the validation metrics, we note that for the crack dataset, the validation loss 
shows an initial spike followed by stabilization. The Val/cls_loss and val/dfl_loss metrics decrease 
sharply at the beginning of training. The mAP50 metrics steadily increase to about 0.35, and the 
mAP50-95 metrics gradually improve to about 0.2. A neural network to recognize an erosion type 
defect is presented (Figure 13). The results of the erosion defect analysis are summarized in a series 
of graphs (Figure 14). In this case, the model's accuracy is high, reaching 87%. This is an 
improvement compared to the previous type of defect, with a response of 68%. This makes erosion 
the most accurately detected defect, based on the mAP metric. The value reached 65%, which is the 
best result among all the considered defects. Looking at the training metrics for erosion, we see 
that the loss has decreased from 2.5 to about 0.5, which shows better convergence than the crack 
model. The classification loss has decreased from 5.0 to about 0.5, and the accuracy has reached 
higher values (about 0.7) compared to the crack model. The recall has improved to about 0.5. The 
validation metrics show more stable loss curves after the initial jumps. Importantly, the final 
val/box_loss has a lower value (about 2.4) compared to the crack model. The Val/cls_loss value 
stabilizes at a level close to zero. We also note the higher mAP50 (about 0.5) and mAP50-95 (0.25) 
values compared to the crack model. 
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Fig. 12. The loss function and metrics of the YOLOv8 model in determining crack-type defects in 

steel pipes. The first line shows the learning curves for loss of regression in the block, loss of 
class, accuracy, and response. The second line shows the validation curves for block regression 

loss, class loss, average accuracy: 50 and average accuracy: 50:95 

 
Fig. 13. Training a neural network to recognize an erosion type defect 

The results obtained (Figures 8, 10, 12, and 14) indicate that, overall, neural networks are able to 
solve the tasks they are assigned. However, it is necessary to improve their accuracy and selectivity. 
It should be noted that the limited number of training data available negatively affects the model's 
performance [29]. Insufficient training examples make the model less capable of generalizing, 
which can result in low accuracy in defect recognition. Additionally, the quality of training data is 
also crucial [30]. Low-resolution or poorly lit photos of defects can make it difficult for the model 
to recognize them correctly. Based on the training results, we note that the erosion model 
demonstrates the best overall performance with the lowest final loss and the highest 
precision/recall and mapping scores. The crack detection model appears to be the most challenging 
due to its relatively high final loss values and low mAP scores. The corrosion model occupies an 
intermediate position between the other two models. 



Sergeyevich et al. / Research on Engineering Structures & Materials x(x) (xxxx) xx-xx 
 

15 

 
Fig. 14. The loss function and metrics of the YOLOv8 model in determining erosion-type defects 
in steel pipes. The first line shows the learning curves for loss of regression in the block, loss of 
class, accuracy, and response. The second line shows the validation curves for block regression 

loss, class loss, average accuracy: 50 and average accuracy: 50:95 

Table 1. Results of training the neural network to recognize in-pipe defects in steel oil and gas 
pipelines that are under operation.  

Type of 

defect 
Precision Recall 

F1-

metrics 
mAP50 

mAP50-

95 

Box 

Loss 

(train) 

Box 

Loss 

(val) 

Cls 

Loss 

(train) 

Cls 

Loss 

(val) 

Bulge ~0.0174 ~0.30 0.032 ~0.0068 ~0.002 ~2.46 ~3.11 ~3.1 ~3.9 

Crack ~0.50 ~0.40 0.444 ~0.35 ~0.20 ~1.0 ~2.4 ~0.8 ~3.0 

Erosion ~0.70 ~0.50 0.583 ~0.50 ~0.25 ~0.6 ~2.4 ~0.5 ~2.0 

Corrosion ~0.60 ~0.40 0.480 ~0.45 ~0.15 ~1.0 ~2.7 ~1.0 ~2.5 
 

All models display the expected training pattern: an initial high loss that decreases over time and 
evaluation scores that improve as training progresses. Performance metrics for the YOLO models 
include intersection over union (IoU), mAP, precision and recall, and F1 score. Summarize the 
results obtained for all types of defects in a single table (Table 1). As a result, a neural network was 
created that allows detecting and segmenting in-tube defects of the body surface in steel oil and gas 
pipelines that are under operation in the optical range. Based on this development, it will be 
possible to analyze both endoscopic examination data of steel pipes and probe-based examination 
data. Various defects are determined with different accuracy (the worst for buckles, the best for 
corrosion and erosion). 

It is important to note that most of the results of neural network training for defect recognition 
presented in scientific periodicals are based not on data obtained from real operating conditions of 
technical systems, but on pre-prepared samples in a laboratory. Of course, the results, given in 
Table 1, indicate a relatively low selectivity of defects by the neural network. At the same time, they 
are based not on artificial and prepared laboratory pipe samples, but on photo and video materials 
obtained in operated field oil and gas pipelines. Contamination of pipe walls, difficult shooting 
conditions affected the quality of the dataset, which significantly increased the complexity of the 
images. With an increase in the sample size, and re-training of the neural network on a wider base, 
as well as using other types of neural networks in the future, it may be possible to obtain higher 
accuracy and precision in defect detection. 
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5. Conclusions 

The conducted research establishes both the methodological framework and software basis for 
automating the in-line optical diagnostic process, with the potential to significantly reduce the cost 
of defect detection in steel pipes used in the oil and gas industry. The proposed solutions are 
applicable to optical inspection systems employing endoscopic equipment and robotic crawlers. 
The core of the approach is the application of convolutional neural networks (CNNs), specifically 
the YOLOv8 architecture, selected for its high detection speed and accuracy. From an applied 
perspective, the developed system has some selectivity in detecting defects on the inner surface of 
steel pipes in the optical spectrum.  

The detection of the Bulge defect yielded the poorest performance among all defect types 
evaluated. Based on the current stage of research, it can be concluded that the neural network 
model is not yet capable of reliably identifying this defect in in-pipe optical diagnostics of 
operational oil and gas pipelines. These results indicate that the model fails to both accurately 
distinguish bulges from other image features and to localize them when detected. The model 
demonstrates moderate performance in crack recognition, with a precision of ~0.50 and recall of 
~0.40, indicating a tendency toward false positives and a limited capacity to capture all relevant 
defects. The F1 score (~0.444) reflects a fair trade-off between precision and recall, suggesting 
foundational learning but insufficient reliability for deployment in safety-critical environments. 
Localization performance, as measured by mAP@50 (~0.35) and mAP@50–95 (~0.20), highlights 
challenges in accurately bounding crack regions, particularly under stricter IoU thresholds.  

Moderately good results were obtained in erosion defect detection, with notable strengths in 
classification accuracy during training but clear limitations in generalization and precise 
localization. A precision of approximately 0.70 indicates high specificity, suggesting that the model 
effectively minimizes false positives. However, the recall of ~0.50 reveals a substantial proportion 
of missed erosion instances, limiting its reliability in scenarios where defect omission carries safety 
implications. The F1 score (~0.583) reflects a balanced, though not optimal, trade-off between 
precision and recall. Localization performance, as shown by mAP@50 (~0.50) and mAP@50–95 
(~0.25), indicates acceptable detection under relaxed conditions but a drop in accuracy when 
stricter spatial alignment is required.  

In case of corrosion recognition, the model exhibits partial effectiveness. The precision score of 
0.60, indicates a moderate ability to correctly identify corrosion instances while maintaining a low 
false positive rate. However, the recall remains limited at ~0.40, reflecting the model's tendency to 
miss a significant proportion of true corrosion cases. The F1 score of ~0.48 highlights an imbalance 
between sensitivity and specificity. Localization performance under relaxed conditions is moderate 
(mAP@50 ≈ 0.45), but it declines sharply under stricter criteria (mAP@50–95 ≈ 0.15). For crack, 
erosion and corrosion defects detection, the difference between training and validation losses 
suggests possible overfitting. This point to the dataset being imbalanced. Field conditions and the 
limited number of images (at least 100 images per defect type) may cause such issues. We expect 
to obtain better results with the model as our dataset grows. 

The lower detection rates observed for certain types of defects can be attributed to their complex 
geometries, uneven illumination, and the absence of side-view imaging, and the limited amount of 
images. The primary limitations affecting the deployment of the developed methodological and 
software framework include the small physical size of the target defects, the sensitivity of detection 
performance to specific lighting configurations, the necessity of pre-inspection pipe cleaning to 
prepare the surface for analysis, and the current incompleteness of the defect dataset. The latter 
underscores the need to expand the database to encompass a broader range of defect types 
commonly encountered in oil and gas pipelines. From a methodological perspective, the findings of 
this study have led to the identification of several promising avenues for further development, 
which could significantly enhance the performance and applicability of the proposed neural 
network model for defect recognition in steel pipelines. To improve the accuracy and robustness 
of defect detection, future work should focus on expanding the image dataset and add the ability to 
recognize new defect types. 
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A key future task involves the development of a unified and scalable database of permissible defect 
thresholds tailored to various steel pipe diameters and wall thicknesses. This database should be 
integrated with software capable of recalculating defect dimensions based on imaging parameters 
and standardized pipe geometries. Importantly, this system must align with current regulatory and 
technical standards governing the production and operation of oil and gas pipelines. Although the 
current neural network model demonstrates relatively modest accuracy, its potential remains high 
due to its training on real-world data obtained from operational oil and gas systems—data that is 
inherently unstructured and noisy, and thus more representative of field conditions than data 
obtained in controlled laboratory settings. This alignment with practical operating environments 
gives the model significant value and relevance for industrial application. To further advance this 
work, additional research should explore the incorporation of alternative video acquisition 
techniques, such as multi-angle or 3D imaging, which could improve detection coverage and spatial 
resolution. Finally, future investigations should aim to extend defect recognition capabilities 
beyond the pipe surface to include welding joints, which are critical areas of structural 
vulnerability. 

Appendix 1. Table of abbreviations 

YOLO You Only Look Once 

ConvNet/CNN Convolutional Neural Network 
mAP  Mean Average Precision 
C2f  Cross Stage Partial with Fusion 

SPPF  Spatial Pyramid Pooling - Fast 
 PANet Path Aggregation Network 
train training 
valid validation 
yaml file type 

ultralytics YOLO Libraries 
ISO International standard organization 

GOST Russian State Standard 
OST Report  (Industrial) Russian Standard 

 

Appendix 2. Training code 
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