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Article Info  Abstract 

Article History: 
 Excessive sand in concrete undermines structural integrity by increasing porosity 

and reducing durability, necessitating non-destructive quality control methods. This 
study introduces a wavelet-based approach using discrete wavelet transform multi-
resolution analysis (DWT-MRA) to detect sand excess defects. Cylindrical specimens 
(16×32 cm) of reference concrete (350 kg/m³ cement) and sand-excess concrete 
(30% surplus sand) were analyzed via ultrasonic testing (Pundit PL-200), with 
signals processed in MATLAB. Results identified distinct patterns: reference concrete 
showed stable signals (70% in categories C1–C4), while sand-excess specimens 
exhibited anomalies (60% in C7–C10) linked to interfacial defects and porosity. Signal 
decomposition revealed longitudinal amplitude spikes and transverse attenuation in 
defective samples, correlated with wavelet coefficients. Recurring values (-
32.640/32.624 vs. 31/47) served as diagnostic markers, validated through 
redundancy analysis. The method’s computational efficiency, bypassing machine 
learning, enables real-time defect detection, offering a scalable, non-destructive 
solution for structural health monitoring and quality assurance in concrete 
production.  
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1. Introduction 

Concrete is a heterogeneous material composed of a mixture of aggregates, sand, and paste (cement, 
water). This material is a key element in our living environment, and due to its durability, mechanical 
performance, ease of manufacture, and use, it is widely utilized in the construction of various building 
structural elements in different geometric shapes. Rebai et al. [1]. As a result, concrete has become one 
of the most economically significant and extensively used materials globally. 

Research on concrete properties and non-destructive testing (NDT) methods has evolved significantly. 
Kovler and Roussel [2] comprehensively analyzed the physicochemical and mechanical properties of 
fresh and hardened concrete, emphasizing factors influencing workability, strength, and durability. 
Pedram et al. [3] experimentally evaluated heat transition mechanisms in concrete with subsurface 
defects using infrared thermography, demonstrating its efficacy in detecting voids and delaminations. 
Joshaghani and Shokrabadi [4] explored ground-penetrating radar (GPR) applications in concrete 
pavements, highlighting its utility for thickness measurement and rebar detection. Schabowicz [5] 
reviewed NDT techniques (ultrasonic, radiographic) for material characterization in civil engineering, 
stressing their role in quality assurance. Lin et al. [6] developed empirical models to predict ultrasonic 
pulse velocity (UPV) in concrete, correlating it with compressive strength and mix parameters. Kogbara 
et al. [7] assessed NDT methods for LNG containment concrete, identifying thermal and mechanical 
performance criteria for cryogenic environments. 
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Advances in signal processing and machine learning have enhanced defect detection. Ouahabi [8] 
introduced multiresolution analysis (MRA) frameworks for signal and image processing, laying the 
groundwork for wavelet-based applications. Arbaoui et al. [9] combined wavelet MRA with deep 
learning to detect and monitor concrete cracks, achieving high accuracy through hierarchical feature 
extraction. Guo et al. [10] reviewed wavelet analysis applications, emphasizing its advantages in 
denoising, feature extraction, and multi-scale data interpretation. Further, A hybrid deep learning 
system based on wavelets was proposed by Arbaoui et al. [11] for real-time crack monitoring and was 
validated through case studies focused on structural health monitoring. This system was developed 
following ultrasonic testing conducted on cylindrical specimens measuring 16×32 cm, prepared in 
accordance with current standards [12-14]. In the present study, MATLAB software [15] will be used 
to perform a detailed decomposition and analysis of ultrasonic signals, using the same type of 
specimens. 

Recent studies have advanced non-destructive testing and computational methods for material 
analysis. Hashmi et al. [16-17] proposed models using ultrasonic pulse velocity (UPV) and rebound 
hammer number (RHN) to estimate age-dependent compressive strength of low-calcium fly ash 
concrete, demonstrating UPV’s reliability over RHN for high fly ash content. Kang et al. [18] introduced 
a 3D multi-resolution CNN for super-resolution MRI reconstruction, leveraging structural similarities 
between T1w and T2w images to enhance edge details. Arbaoui et al. [19] combined wavelet-based 
multiresolution analysis with CNNs to detect concrete dosage defects using ultrasound signals. Luo et 
al. [20] developed a Mallat algorithm-based system for detecting broken wire rope strands in hanging 
baskets, utilizing wavelet denoising for stable signal analysis. Mandala et al. [21] optimized atrial 
fibrillation detection by evaluating Daubechies wavelet basis functions and decomposition levels in ECG 
signal processing. Machorro-Lopez et al. [22] correlated acoustic emission signals processed with 
wavelet transforms to structural damage stages in concrete beams. Hu et al. [23] integrated wavelet 
packet transform with GA-BPNN to classify concrete defects via ultrasonic signals, achieving 91.33% 
accuracy. Mousavi et al. [24] employed variational mode decomposition and machine learning to assess 
tree health using ultrasonic data, achieving 100% lab accuracy. 

Further research focuses on material composition and durability. Amriou et al. [25] analyzed gravel-
sand ratios in concrete, linking increased gravel content to higher strength and lower porosity. Borisiuk 
and Kochenkova [26] evaluated sand grades’ effects on sand concrete properties, emphasizing reduced 
voidness for improved structural performance. Lee [27] reviewed physicochemical mechanisms 
driving concrete degradation, highlighting water’s role in freeze-thaw cycles, chloride penetration, and 
corrosion. Sahni and Bashar [28] studied waste foundry sand as a natural sand substitute, noting 
reduced workability but comparable strength at ≤30% replacement. Jadhav et al. [29] compared river 
and crushed sand in M30 concrete, observing consistent strength gain with river sand despite initial 
lower workability. Advanced ultrasonic techniques will be developed to non-destructively quantify 
porosity gradients in functionally graded materials (FGMs), enabling real-time monitoring of 
microstructural evolution and enhancing predictive models for performance optimization in critical 
engineering applications. [30-32]. 

This study addresses this challenge by proposing a discrete wavelet transform (DWT)-based multi-
resolution analysis (MRA) framework to detect sand excess defects in concrete. Cylindrical specimens 
(16×32 cm) of reference (350 kg/m³ cement) and sand-excess (30% surplus sand) concrete were 
analyzed using ultrasonic testing (Pundit PL-200). Signals were decomposed via Daubechies wavelets 
in MATLAB, isolating defect-specific features through approximation and detail coefficients. Results 
demonstrate that sand-excess concrete exhibits 60% dominance in categories (C7–C10), longitudinal 
amplitude spikes, and transverse attenuation, correlating with porosity and interfacial defects. By 
enhancing sensitivity to compositional deviations, this methodology advances preemptive quality 
assurance, reducing reliance on destructive testing while aligning with industrial demands for 
sustainable, high-precision construction practices. 
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2. Materials and Methods 

The methodology of this study was structured into three phases to establish a comprehensive database 
for identifying concrete composition defects. First, cylindrical specimens (16 × 32 cm) were prepared 
using two concrete mixes: a standard formulation with 350 kg/m³ cement content and a defective mix 
incorporating a 30% excess sand content. Second, Non-Destructive Testing (NDT) was conducted using 
ultrasonic probes to acquire transverse and longitudinal signals, which were systematically recorded, 
categorized, and stored. Finally, the acquired signals were processed through wavelet-based multi-
resolution analysis (MRA) using MATLAB software to extract defect-specific features and enhance 
classification accuracy. 

Fig. 1 illustrates the methodological workflow encompassing specimen preparation, ultrasonic testing, 
signal acquisition, wavelet decomposition, and statistical analysis to detect sand excess defects in 
concrete. 

 

Fig. 1. Methodological workflow 

2.1 Preparation of Specimens 

Cylindrical concrete specimens were produced in accordance with current standards [12, 13] through 
five key stages: material selection and preparation, dosing and mixing, pouring, curing, and final 
grinding. The following constituents were utilized in the fabrication of test specimens: 

• Fine Sand "BOUSSAADA" (FSB); 
• Washed Crushed Sand 0/4 "SARL ETPHB TAMRAF" (WCS); 
• Crushed Gravel (CG) 3/8 "SARL MEZIANE"; 
• Crushed Gravel (CG) 8/15 "SARL MEZIANE"; 
• Crushed Gravel (CG) 15/25 "SARL MEZIANE"; 
• Cement "SEG Sour El-Ghozlane." 

The proportions of constituents were determined using the Faury method, achieving a 28-day 
compressive strength exceeding 25 MPa, as detailed in Table 1, where (FCC) indicates the Formulation 
of Control Concrete. 

Table 1. Proportions of concrete constituents for reference (FCC) and sand-excess (FCC + 30% S) 
mixes 

Constituent 
FCC             

(1 m³) 
FCC + 30% S 

(1 m³) 
FCC                    

(0.05 m³) 
FCC + 30% S          

(0.05 m³) 
WCS 0/4 (kg) 730 949 36 46.80 

FSB (kg) 130 130 7 7 
CG 3/8 (kg) 110 110 6 6 

CG 8/15 (kg) 455 455 23 23 
CG 15/25 (kg) 425 425 21 21 

Cement CPJ-CEM II 42.5 (kg) 350 350 17.50 17.50 
Mixing Water (L) 180 200 9 10 

Water/Cement Ratio 0.51 0.57 0.51 0.57 
 

Seven specimens were fabricated using control concrete dosed at 350 kg/m³ cement content, alongside 
seven specimens incorporating a 30% sand excess. All specimens were cast in galvanized metal molds 
(16 × 32 cm) with standardized vibration to ensure uniformity. Following demolding, the specimens 
were cured for 28 days under controlled conditions (20°C, 98% relative humidity). Post-curing, surface 
roughness was eliminated using a Deluxe Hi-Kenma TSURU-TSURU concrete grinder (Fig. 2) to achieve 
smooth, test-ready surfaces. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Fig. 2. The five stages involved in making and preparing test specimens . (a) selection and 
preparation, (b) dosing and mixing, (c) pouring, (d) curing, and (e) final grinding 

2.2 Preparation of Specimens 

In Non-destructive testing (NDT) was performed on the prepared 16 × 32 cm cylindrical specimens 
[14] using a "Pundit PL-200" ultrasonic device (Fig. 3). The system employs two transducers 
characterized by a P-wave pulse velocity with a maximum frequency of 54 kHz, operating at pulse 
speeds of 100–400 Vpp and a pulse echo range of 0.1–1200 μs. Signal acquisition was facilitated by a 7-
inch touchscreen (800 × 480 pixels) integrated with a dual-core processor and 8 GB internal memory, 
ensuring high-resolution waveform visualization. 

 

Fig. 3. Longitudinal ultrasonic measurement using the Pundit PL-200 device 
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The ultrasonic pulse velocity (UPV) method correlates with the material’s modulus of elasticity and 
density; however, its estimation of compressive strength remains approximate due to the absence of a 
universal physical relationship [15]. Key influencing factors include concrete age, aggregate-to-cement 
ratio, and moisture content. Higher UPV values indicate superior material quality, reflecting enhanced 
strength, homogeneity, and density. Transducers were positioned at transverse intervals of 4 cm along 
the specimen length (yielding 7 signals per specimen) and longitudinally at the specimen ends, centered 
within 4 cm and 8 cm diameter circles (yielding 3 signals). Testing was conducted on seven control 
specimens and seven specimens with a 30% sand excess. 

2.3 Signal Processing by Multiresolution Analysis Using Wavelets 

Multi-resolution analysis (MRA) can be conceptualized as a mathematical framework analogous to 
observing a signal at varying scales zooming in to resolve fine details and zooming out to capture 
broader structures [16–18]. Formally, MRA approximates a signal at multiple resolutions through 
orthogonal projections onto nested subspaces {Vj}, j∈Z. Each approximation at resolution j is governed 
by a discrete filter that dictates information loss between successive resolutions. A complementary 
family of subspaces {Wj}, j∈Z. is derived from {Vj}, where Wj represents the orthogonal complement of 
Vj in Vj−1: 

𝑉𝑗 − 1 =  𝑉𝑗 +  𝑊𝑗 𝑓𝑜𝑟 𝑗 ∈  𝑍 𝑤𝑖𝑡ℎ 𝑉𝑗 ⊥  𝑊𝑗                                (1) 

In contrast to {Vj} spaces which are spaces of approximations, {Wj } spaces are spaces of details, so the 
previous expression can mean that an element of the approximation space of level  (j − 1) is decomposed 
into the approximation of level (j) which is coarser, and the detail of level (j). The wavelet is a finite 
energy function Ψ:  

∫ 𝑡𝑝𝛹(𝑡)𝑑𝑡 = 0

𝑅

, ∀ 0 ≤ 𝑝 < 𝑛 (2) 

The continuous wavelet transforms of a signal X ∈ L2(R) at time "μ" and scale "s" is defined by: 

𝑊𝑋(𝑢, 𝑠) =< 𝑋, 𝛹𝑢,𝑠 >= ∫ 𝑋(𝑡)
1

√𝑠
𝛹∗ (

𝑡 − 𝑢

𝑠
) 𝑑𝑡  

+∞

−∞

 (3) 

Where Ψ∗ is the conjugate complex of Ψ. The discrete wavelet transform is then denoted:  

𝑑𝑥(𝑗, 𝑘) = 𝑊𝑥(𝑢 = 2−𝑗𝑘, 𝑠 = 2−𝑗), (𝑗, 𝑘) ∈  𝑍𝑥𝑍                                (4) 

 

Fig. 4. Schematic of multi-resolution analysis (MRA) illustrating the decomposition of a signal into 
approximation (Vj) and detail (Wj) subspaces 

The wavelet transform’s inherent redundancy is mitigated by constructing an orthonormal basis 
{ψj,k}(j,k)∈Z for L2(R). Signal decomposition into this basis involves iterative discrete convolutions 
with low-pass (h) and high-pass filters, followed by decimation (↓2) to retain alternate samples. This 
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process, implemented via the Mallat algorithm [19], computes approximation and detail coefficients 
through cascaded filtering and subsampling (Fig. 5). 

 

Fig. 5. Signal decomposition workflow using low-pass (h) and high-pass ( ) filters, with decimation 
(↓2) at each stage 

Daubechies wavelets [20], exemplified by the second-order (N=2) variant (Fig. 6). constitute a family 
of compactly supported orthogonal wavelets for their balance between localization and smoothness. 

 

Fig. 6. Daubechies wavelet (order N=2) used for discrete wavelet decomposition 

3. Results and Discussions 

3.1 Digital Processing of The Database 

The analysis of ultrasonic signal distributions between reference and sand-excess concrete reveals 
distinct patterns critical to defect identification. As illustrated in Fig. 7 reference concrete exhibits a 
pronounced dominance in signal categories C1–C5, which correspond to baseline amplitudes and noise-
free waveforms. This consistency aligns with the homogeneous microstructure and uniform density 
expected in properly proportioned concrete. In contrast, sand-excess concrete demonstrates a marked 
shift toward categories C6–C10, characterized by irregular waveforms and elevated amplitudes. These 
anomalies are attributed to increased porosity and interfacial defects arising from the disproportionate 
sand content, which disrupts aggregate-cement bonding and introduces microstructural heterogeneity. 
Further quantification of these trends is provided in Fig. 8, where reference concrete signals in 
categories C1–C4 constitute over 70% of total occurrences, reflecting stable ultrasonic wave 
propagation through a cohesive material matrix. Conversely, sand-excess concrete shows a 
predominance of categories C7–C10, contributing more than 60% of signals. This divergence 
underscores the sensitivity of ultrasonic testing to compositional deviations, as excess sand alters the 
material’s acoustic impedance and wave attenuation properties. 

The observed variability in signal behavior can be contextualized through wavelet analysis. The 
prominence of C6–C10 categories in sand-excess concrete correlates with high-frequency wavelet 
coefficients, which capture localized discontinuities such as voids and microcracks. In contrast, the 
dominance of C1–C5 categories in reference concrete corresponds to low-frequency approximations, 
indicative of bulk material integrity. This dichotomy validates the utility of multi-resolution analysis in 
isolating defect-related features from background noise. From a practical perspective, the categorical 
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shift from C1–C5 to C6–C10 serves as a robust diagnostic marker for sand-related defects. Automated 
quality control systems leveraging this criterion could flag batches exceeding a 20% contribution from 
C6–C10 signals, enabling real-time detection of formulation errors. Such an approach reduces reliance 
on destructive testing while enhancing the scalability of structural health monitoring. The values 
presented in Table 2 represent mathematical indices extracted from the ultrasonic signal and are 
specific to the Pundit PL-200 device. These indices were used as reference patterns, and their frequency 
of occurrence within the measured signal was calculated to assess their repetitiveness. 

 

Fig. 7. Distribution of signal value occurrences in reference concrete vs. sand-excess concrete 

 

Fig. 8. Percentage contribution of signal categories in reference concrete vs. sand-excess concrete 

Table 2.  Redundancy statistics for values in the signals studied 

CATYGORY Type of concrete Value 
Number of 

occurrences 
Percentage (%) 

CATYGORY1 
Reference concrete 32 624 6 020 6.90 

concrete + 30 % sand 47 1 838 2.11 

CATYGORY2 
Reference concrete -32 640 6 010 6.89 

concrete + 30 % sand 32 624 1 682 1.93 

CATYGORY3 
Reference concrete 47 1 794 2.06 

concrete + 30 % sand -32 640 1 656 1.90 

CATYGORY4 
Reference concrete 63 797 0.91 

concrete + 30 % sand 31 1 636 1.88 

CATYGORY5 
Reference concrete 15 381 0.44 

concrete + 30 % sand 63 760 0.87 

CATYGORY6 Reference concrete 79 153 0.18 
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3.2 Superposition of Ultrasonic Signals 

The ultrasonic signals acquired from reference concrete and sand-excess concrete (30% additional 
sand) were processed using MATLAB software. Amplitude values, extracted from the Proceq PL-Link 
database, were superimposed to compare longitudinal and transverse waveforms at identical 
measurement positions. Fig. 9 illustrates the superimposition of signals for both concrete types. A 
pronounced divergence is observed between the waveforms: 

• Longitudinal Signals (Fig. 9a): The reference concrete exhibits a stable, low-amplitude waveform, 
whereas the sand-excess concrete shows intermittent amplitude spikes and phase shifts. 

• Transverse Signals (Fig. 9b): The sand-excess concrete displays reduced signal coherence, with 
higher attenuation and irregular peaks compared to the reference concrete. 
 

 
(a) 

 
(b) 

Fig. 9. Superimposed ultrasonic signals (a) Longitudinal comparison showing amplitude spikes in 
sand-excess concrete (30% sand), (b) Transverse comparison highlighting signal attenuation in 

sand-excess concrete (30% sand) 

The distinct signal behavior arises from microstructural disparities induced by 30% excess sand. In 
sand-excess concrete, the overabundance of fine particles disrupts the aggregate-cement matrix, 

concrete + 30 % sand 15 576 0.66 

CATYGORY7 
Reference concrete 0 103 0.12 

concrete + 30 % sand 79 222 0.25 

CATYGORY8 
Reference concrete 191 54 0.06 

concrete + 30 % sand 0 215 0.25 

CATYGORY9 
Reference concrete 111 53 0.06 

concrete + 30 % sand -64 145 0.17 

CATYGORY10 
Reference concrete 398 52 0.06 

concrete + 30 % sand 127 139 0.16 
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increasing porosity and creating interfacial voids. These defects scatter ultrasonic waves, manifesting 
as amplitude spikes (Fig. 9a) and attenuated waveforms (Fig. 9b). Conversely, the homogeneous 
microstructure of reference concrete facilitates consistent wave propagation, yielding stable signals. 
The longitudinal signal anomalies (Fig. 9a)) correlate with high-frequency wavelet coefficients, 
capturing localized voids, while transverse signal attenuation (Fig. 9b) aligns with energy dissipation 
due to reduced material density.  

3.3 Signal Decomposition via Wavelet Analysis 

Using the "wavelet toolbox" interface of the "MATLAB" calculation code, we decomposed the signals by 
using the discrete wavelet transform "DWT" in 04 levels, in this case the second-order Daubechies 
wavelet, which enabled us to analyse the signals obtained at different scales (resolution). The results of 
this decomposition are the detail and approximation coefficients, with graphical representations of 
these coefficients until we obtain the smoothest version of our original signal. This "DWT" transform 
also enables us to denoise signals characterised by a high level of noise, in order to improve accuracy 
during information extraction. Analysis of ultrasonic signals decomposed using the Discrete Wavelet 
Transform (DWT) revealed significant differences between the reference concrete and the concrete 
with a 30% excess of sand, in both propagation directions (longitudinal and transverse). A detailed 
interpretation of each decomposition figure is given below: 

 
Fig. 10. Longitudinal signal approximation and detail coefficients for reference concrete 

 
Fig. 11. Transverse signal detail and approximation coefficients for reference concrete 
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This figure (Fig. 10) shows a clear signal with a regular and well-defined waveform. The detail 
coefficients from the DWT, especially at levels 1 and 2, are concentrated around the central part of the 
signal (Time ≈ 200–350 μs), indicating good transmission of ultrasonic energy. The relatively high 
amplitude and coherent structure suggest that the material is homogeneous and dense, with no major 
internal disturbances. Compared to the previous figure, In the figure above (Fig. 11), the signal appears 
slightly more attenuated, which is expected in the transverse direction. However, the waveform 
remains regular, and the extracted details are well localized, although less intense than in the 
longitudinal case. The energy is mostly concentrated in the lower detail levels, confirming that the 
material is healthy, but the transverse direction causes more wave dispersion. 

 

Fig. 12. Longitudinal signal approximation and detail coefficients for sand-excess concrete (30% 
sand) 

 

Fig. 13. Transverse signal approximation and detail coefficients for sand-excess concrete (30% 
sand) 

This graphical representation (Fig. 12) shows a noticeable decrease in signal amplitude and a more 
irregular waveform. The detail coefficients are more spread out, especially from levels 1 to 3. The 
energy is distributed over a larger portion of the signal, reflecting unstable propagation and the 
presence of micro-defects. These observations are typical of a heterogeneous concrete, where the 
excess sand results in poor compaction and multiple interfaces that disturb wave travel. 
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This illustration (Fig. 13) shows the most pronounced effect of the defect. The signal is strongly 
attenuated from the beginning, with an asymmetric envelope and lower frequency content. The DWT 
coefficient distribution shows energy concentrated in a narrow time range (Time ≈ 100–200 μs), 
followed by a general weakening. This indicates strong energy absorption due to internal heterogeneity 
and significant scattering. This response is characteristic of a disorganized and porous structure. These 
observations confirm that excess sand significantly degrades ultrasonic wave transmission, and that 
this degradation is both visually and quantitatively detectable using the Discrete Wavelet Transform. 
Each figure clearly demonstrates the ability of this method to reveal the internal structure of concrete, 
highlighting differences in behavior depending on the propagation direction and the condition of the 
material. 

3.4 Comparative Analysis with Existing Methods 

The proposed methodology is contextualized within the broader landscape of wavelet-based signal 
processing techniques, with key distinctions highlighted against prior studies: 

Machorro-Lopez et al. [21] employed continuous wavelet transforms (CWT) with Gaussian wavelets to 
analyze acoustic emission (AE) signals from concrete beams under flexural loading. Their approach 
focused on post-processing waveform data to compute wavelet energy (WE) for damage detection, 
identifying the Gaussian wavelet as optimal for capturing fracture-related features. In contrast, the 
present study utilizes discrete wavelet transforms (DWT) with Daubechies wavelets, 
emphasizing compositional defects rather than mechanical damage. By directly comparing 
decomposition coefficients between reference and sand-excess concrete, this work bypasses the need 
for energy-based metrics, offering a granular resolution of material heterogeneity. 

Hu et al. [22] integrated wavelet packet transforms (WPT) with a hybrid genetic algorithm-
backpropagation neural network (GA-BPNN) to classify concrete defects. While their method enhances 
anomaly detection accuracy through machine learning, it requires extensive training datasets and 
computational resources. This study, conversely, relies on coefficient-based statistical analysis, 
enabling defect identification without supervised learning, thus reducing complexity and improving 
scalability for real-time quality control. 

Mousavi et al. [23] applied variational mode decomposition (VMD) to ultrasonic signals from wood 
samples, targeting physical defects such as voids and decay. Although their work shares a similar non-
destructive testing framework, the focus diverges significantly: this research addresses material 
composition flaws (sand excess) rather than structural voids. The use of DWT here provides a more 
interpretable decomposition for quantifying constituent-related anomalies, which are less visually 
apparent than physical discontinuities. 

• Methodological Distinction: Unlike CWT/WPT-based studies [21–22], this work leverages DWT’s 
multi-resolution capabilities to isolate compositional defects through coefficient analysis, 
avoiding reliance on energy thresholds or machine learning. 

• Application Scope: Expands ultrasonic testing beyond physical defect detection [23] to diagnose 
formulation errors, a critical advancement for preemptive quality assurance in concrete 
production. 

• Practical Efficiency: The coefficient-driven approach reduces computational overhead compared 
to hybrid ML methods [22], aligning with industrial needs for rapid, on-site assessments. 

4. Conclusions 

This study establishes a wavelet-based framework for non-destructive identification of sand excess 
defects in concrete, leveraging multi-resolution analysis (MRA) to isolate compositional anomalies. Key 
findings demonstrate that ultrasonic signal redundancy and distribution patterns serve as robust 
indicators of material integrity: 

• Signal Characterization: The reference concrete exhibited a recurrence of dominant index values 
(-32, 640, 32, 624), with approximately 70% concentrated within categories C1–C4, indicating a 
homogeneous microstructure. In contrast, the sand-rich concrete showed repeated values (31, 
47), with around 60% falling within categories C7–C10. This distribution is attributed to 
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increased porosity and interfacial defects resulting from the breakdown of the aggregate–cement 
bond. 

• Wavelet Decomposition: Discrete wavelet transform (DWT) with Daubechies wavelets 
distinguished defects through approximation coefficients (bulk properties) and detail 
coefficients (localized voids). Longitudinal signal superimposition revealed amplitude spikes, 
while transverse analysis highlighted attenuation, correlating with microstructural 
heterogeneity. 

• Methodological Innovation: The coefficient-driven approach eliminates dependency on machine 
learning, reducing computational complexity and enabling real-time defect detection without 
extensive training datasets. 

Diverging from prior studies focused on physical defects, this work targets formulation errors, 
advancing ultrasonic testing for preemptive quality control. The integration of MRA enhances 
sensitivity to subtle compositional deviations, offering a scalable alternative to destructive methods. 

Future research should expand the signal database to encompass diverse defect types (aggregate 
deficiencies, water-cement ratio imbalances) and integrate adaptive algorithms for automated, real-
time anomaly classification. Such advancements will further minimize manual intervention, aligning 
with industrial demands for efficient, high-precision structural. 
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