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Article Info  Abstract 

Article History:  This study investigates handwriting and speech patterns in individuals with 
Parkinson's disease (PD) using machine learning to enable early disease 
detection—a critical step for effective treatment. Handwriting analysis centers on 
motor components, such as spiral angle variation and wave amplitude, which 
reflect the impaired fine motor control characteristic of PD. Among deep learning 
models evaluated (ResNet, AlexNet, DenseNet, and VGG16), the DenseNet-121 
model achieved the highest accuracy of 85.17% for classifying motor control 
differences. Voice analysis targets non-motor symptoms, focusing on speech 
disturbances linked to tremors and muscle rigidity. Machine learning classifiers 
(SVM, KNN, MLP, XGBoost, Logistic Regressor, and Random Tree) were 
implemented, with SVM demonstrating the best performance by reaching an 
accuracy of 89.74% alongside strong precision and recall. Combining handwriting 
and speech analysis offers a more comprehensive and effective PD diagnosis than 
conventional clinical approaches, facilitating prompt intervention for improved 
patient care. 
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1. Introduction 

Parkinson's disease is second most common neurodegenerative disorders that generally 
showcases symptoms associated with movement [1]. The loss of dopamine-producing neurons in 
the substantia nigra results in this condition. The substantia nigra is essentially a brain region that 
controls movement and coordination. An important neurotransmitter, its lack leads to tremors, 
muscle rigidity, bradykinesia, and postural instability among the characteristic motor symptoms of 
PD. Even though PD typically occurs in those aged 60 years or more, there are instances of early 
onset. In those affected, progression also varies; however, it is chronic-progressive, meaning it 
worsens gradually. 

It is not clear what causes Parkinson's disease, although studies have shown that genetic and 
environmental factors contribute equally to it. Exposure to pesticides, herbicides, and industrial 
chemicals has also been linked to an increased incidence of Parkinson's disease. Furthermore, head 
trauma or injury have been associated in some reports with increased susceptibility to PD. It is a 
significant risk factor since the incidence of this disease does increase with age [2]. 

Motor symptoms include tremors, muscle rigidity, bradykinesia, balance, and coordination 
problems. The symptoms generally occur asymmetrically - they affect one part of the body more 
than the other. Patients develop difficulties in walking, shuffling gait, and stooping posture as 
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symptoms progress in the course of the disease. In addition to motor symptoms, many non-motor 
symptoms indicating Parkinson's disease, include insomnia, depression, anxiety, cognitive decline, 
and autonomic dysfunction, such as constipation or low blood pressure. In some cases, the non-
motor symptoms begin before the beginning of the typical symptoms, which can lead to challenging 
diagnosis. While there is no cure for Parkinson’s disease, a combination of medications like 
levodopa, therapies such as DBS, and supportive treatments including physiotherapy, speech 
therapy, and healthy lifestyle choices can help manage symptoms and improve quality of life [3]. 

One of the promising avenues of early diagnosis in motor impairment may be best understood by 
analyzing handwriting, particularly with regards to spiral and wave drawings. Since fine motor 
skills are lost over a long period of time in a person suffering from PD due to the progression of 
bradykinesia, rigidity, and tremors, such loss can sometimes be translated through a person's 
handwriting. Both these clinical assessments have merit. Spirals produced by such patients are 
mostly irregular, shaky, or may have discontinuities in them because of the incompetence of 
holding fluid and continuous movements. New advances in machine learning enable the 
quantification and analysis of these drawings so that at a stage when signs may still be minimal 
through other clinical ways of expressing them, motor abnormalities become detectable. 

A notable aspect of handwriting analysis, by spiral and wave drawings, is that it can be a source of 
information about the motor function of the patient with Parkinson's disease. Tremors, rigidity, 
and bradykinesia, all these features characterize most tasks, including writing and make them hard 
to do for PD patients. Spiro-graphic and wavering movements are also typically used during clinical 
tests in assessing these motor impairments. Deviations in the smooth, continuous lines that 
characterize spiral drawings, such as unevenness, tremors, or irregularities in the shape of the 
spirals, may indicate motor dysfunction. This kind of drawing may provide an essentially non-
invasive and simple way to detect early signs of PD, since motor deterioration often first manifests 
itself in subtle changes in handwriting long before any more overt symptoms, such as walking 
difficulty, occur. These drawings can be automatically analyzed through machine learning 
algorithms to set quantitative values for the severity of motor impairment. Thus, an objective 
monitoring system would be generated for the progression of the disease [4]. 

In parallel, voice analysis is a highly relevant tool for diagnosing the non-motor functions due to 
PD. The alterations in voice include decreased volume, hoarseness, monotonization, and problems 
with articulation. Many of these manifestations occur because of the involvement of muscles 
responsible for speech in PD patients. These vocal changes usually occur at an early stage of the 
disease and can be captured based on acoustic features such as jitter, shimmer, and variations in 
pitch. Machine learning models can identify obscure patterns that suggest early signs of PD based 
on these parameters. It is thus possible to evaluate PD at an earlier stage and during different 
phases by combining motor assessments through handwriting analysis with non-motor 
evaluations via voice analysis. This multi-faceted approach stands a better chance of being 
diagnosed effectively in time and subsequently leads to improved patient outcomes. 

Clinical examination, neuroimaging, and biomarker assessment are other methods for diagnosing 
PD apart from handwriting and voice analysis. Clinical examinations mainly employ some 
standardized scoring systems which rate the severity of the illness, a good example being the 
Unified PD Rating Scale (UPDRS) which assesses the motor and non-motor symptoms after 
interviewing the patient and performing physical examination. Neuroimaging consists of MRI and 
PET scanning and it serves to illustrate the structure and activity of the brain, particularly the 
changes in the dopamine transporter which is observed at the early stages of the disease [5]. 

Machine learning and artificial intelligence have made it possible to analyze hand-writing and voice 
data with possibilities that were previously unimaginable, setting up copious amounts of 
processing to identify early signs and patterns related to PD. These advances help with remote 
monitoring by sensors and mobile health applications that provide steady, continuous feedback 
and timely alerts, allowing for further timely interventions, which make a great deal of difference 
in quality of life. More people will be able to get the help they need early with diagnoses.The novelty 
proposed study is thus on new methods of handwriting and voice analysis that rely on machine 
learning and data analysis techniques toward comprehensive approach early diagnosis for PD. 
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Combining the strengths of both modalities, this can progress toward a multi-faceted analytical 
framework toward enhanced specificity and sensitivity in diagnostics, paving the way for effective 
monitoring and subsequent better management of the disease. 

2. Related Work  

A review that focuses on the idea of revolutionizing early detection of various health conditions 
based on the machine learning techniques and its applications. The traditional methods of disease 
detection are quite challenging with high costs and issues of accessibility. Thus, new and innovative 
methods come with the urgency of need. Using non-invasive and cost-effective approaches, 
including voice analysis and handwriting analysis combined with machine learning algorithms 
might help us identify pertinent patterns of interest and enhance classification accuracy. This 
review demonstrates some of the recent advances made in feature selection and classification 
methods that have achieved efficacies in identifying health conditions. In this regard, this review 
charts out to date as well as future directions in the implementation of machine learning-based 
approaches in the diagnosis process to continue to empower enhanced healthcare outcomes and 
efficiency.  

R. K. Sharma et. al. [6] proposed that PD, being one of the neurological disorders characterized by 
the deficiency of dopamine neurons, plays an essential role in managing body movements. They 
are people suffering from PD who usually struggle to perform day-to-day activities and have 
disturbed vocal fold movements. The current study aims to discuss the potential use of voice 
analysis for remote and accurate early-stage disease diagnosis without increased costs. The voice 
features dataset of 23 showed a good significance of 15 features, namely jitter, shimmer, harmonic-
to-noise ratio, DFA, Spread1, and PPE that all refer to tremor variations of the vocal box muscles 
associated with PD. Different classifiers have been adopted in this work to look for the most suitable 
one for the purpose of detection. Interestingly, it produced support vector classifiers that surpassed 
other discriminators by yielding an impressive accuracy of 96%. In addition, several kinds of 
different neural network classifiers were compared by their transfer functions in order to judge 
classifiers for this task.  

I. Nissar et. al. [7] proposed an article that examines the application of machine learning for the 
identification of PD through voice analysis. In this regard, the study investigates the effect of type 
of feature selection, which would either be Mel-Frequency Cepstral Coefficients (MFCC) or 
Transformed Wavelet Transform (TQWT), on the efficiency of the system. It compares various 
machine learning models, such as Logistic Regression, Naive Bayes, KNN, Random Forest, Decision 
Tree, SVM, MLP, XGBoost, and the suitability of their application in PD detection. Techniques like 
minimum-Redundancy and Maximum-Relevance (mRMR) and Recursive Feature Elimination 
(RFE) are applied to feature selection. The XGBoost model with mRMR feature selection technique 
in combination achieved the highest performance, with the accuracy result being at 95.39%, with 
both MFCC and TQWT features used, and precision, recall, and F1-score at 0.95. These results, 
therefore, strongly support the use of the XGBoost model for PD voice sample-based detection as 
the effectiveness of mRMR feature selection technique used improves the model performance.  

S. V. T. Dao et. al., [8] approach to finding PD from voice recordings, as this disorder is critical, which 
affects about ten million people worldwide, significantly affecting their daily life. Conventional 
detection methods usually utilize expensive and inaccessible techniques, so voice analysis becomes 
a promising non-invasive and cost-effective alternative for earlier detection. To summarize, the 
work identifies significant vocal patterns by using GWO for feature selection and improves 
classification performance using the LGBM algorithm. The proposed model has demonstrated 
competitive results, with accuracies of 0.878 K-NN, 0.866 SVM, 0.795 Decision Trees, and 0.894 
LGBM for classifications between individuals diagnosed with PD or healthy. It has the potential of 
timely treatment recommendation and may lead to better patient outcomes so further 
development and implementation is expected in real health care in practice. 

A. Suppa et al., [9] have done an Investigation on changes in voice in patients suffering from PD, 
hypokinetic dysarthria, using machine learning algorithms to analyze recordings from a cohort of 
115 PD patients with a mean age of 68.2 years. A total of 57 early-stage PD patients were untreated 
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with L-Dopa and 58 mid-advanced-stage PD patients were chronically treated with L-Dopa. For 
comparison, this study also recruited a healthy control group comprising 108 age-matched healthy 
subjects with a mean age of 60.2 years. Ubiquitous voice assessments have been carried out with 
Unified PD Rating Scale and Voice Handicap Index with a support vector machine classifier applied 
to audio recordings. Results demonstrate that voice abnormalities exist early in the disease process 
but do systematically deteriorate through disease progression; L-Dopa can provide improvement 
but does not return voice quality towards normal. High accuracy was achieved between healthy 
and PD patients at all stages, as well as among patients OFF and ON L-Dopa therapy. A new score 
obtained from machine learning also established significant clinical-instrumental correlations that 
may define this biomarker for PD. Overall, the results show the effective role of machine learning 
for monitoring the severity of the disease and treatment effects on voice parameters in patients 
with PD. 

K. P. Swain et. al., [10] aims to derive and establish the feasibility of applying machine learning 
algorithms in the early diagnosis of PD by using an analysis of voice recordings toward the 
development of a non-invasive, reliable, and viable diagnostic method that would better address 
early interventions and management. The application used a dataset of 195 voice samples with 23 
features after data preprocessing and balancing. The KNN model showed higher precision of (0.96-
1.00), recall of (0.97-1.00), and F-scores of (0.98-0.99) while getting an overall accuracy of 0.98 on 
59 samples. Such research serves to underscore the potential that the application of machine 
learning might reveal for diagnosing PD and advocates the KNN model as a promising tool for early 
diagnosis, thus promoting the application of machine learning techniques in more robust ways in 
health care. 

O. P. Neto, et. al. [11] presents a paper evaluates the performance of voice analysis together with 
machine learning techniques in determining cases of PD. The analysis is performed on voice data, 
specifically the phonation of the vowel 'a', from three datasets comprising 432 participants-278 PD 
patients. Four machine learning models such as Artificial Neural Networks (ANN), Random Forest 
(RF), Gradient Boosting (GB), and Support Vector Machine (SVM) with two ensemble methods 
namely soft voting classifier (EVC), and stacking method (ESM) were applied. The performance of 
the models was tested over 50 iterations with different data splits and 10-fold cross-validation, and 
the goodness of fit between the models was compared using one-way ANOVA with Bonferroni post 
hoc corrections. The results demonstrated that among the three, ESM, SVM, and GB were ranked to 
be the best performers since their scores for all the metrics showed to be very high, though it was 
beaten by heterogeneous data and was dogged by variable selection challenges: accuracy, 
sensitivity, specificity, precision, F1 score, and ROC AUC. The promise indicated in the integration 
of ML techniques with voice analysis for early diagnosis of PD points out the importance of using 
multi-source data and large sample size for developing the validity, reliability, and generalizability 
of the results. In this regard, speech-language pathologists would be motivated by the findings 
given that they come with tools designed to improve, refine, and fine-tune diagnostic processes and 
facilitate early intervention within clinical settings. 

S Aich et. al., [12] brought a paper, that will be described, why there is a need for specific biomarkers 
for clinical decision systems, especially for patients with PD. It will be noticed that handwriting 
impairment correlates with disease severity: generally, PD patients write at reduced speed and 
pressure. The proposed system will analyze the spiral and wave drawing patterns in patients 
diagnosed with PD and healthy individuals. For the evaluation of drawing patterns, the system has 
recourse to two different CNNs. Predictive values obtained from both networks were combined by 
an ensemble voting method along with a metal classifier to increase the accuracy of the prediction. 
Training was performed based on data taken from 55 patients and achieved a remarkable overall 
accuracy of 93.3%, and also a mean recall of 94%, a mean precision of 93.5%, and a mean F1 score 
of 93.94%. 

S C S kar et. al., [13] proposed a research article regarding PD, a prevalent neurodegenerative 
disease that often presents with the characteristics of an impaired motor system, including a lack 
of coordination, a resting tremor, and rigidity. It is significantly characterized by issues concerning 
handwriting, specifically a condition called Micrographia. Machine learning-based analysis of Static 
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Spiral Tests (SST) of PD patients with the K-Nearest Neighbors (KNN) algorithm for the two-class 
categorization of the spiral drawings from two classes: healthy individuals and PD patients. It is 
expensive as well as time-consuming to clinically diagnose the PD; hence, the automation of SST 
analysis may bring efficiency in the diagnosis and monitoring of neurological conditions. It 
classifies the patients versus healthy subjects with an accuracy of 96.07% and has reached 
accuracies greater than 90% on a separate validation set. A web application called "PD Detector" is 
also presented for early detection of PD based on the proposed model.  

M Singh et. al. [14], presented a paper for detection of PD using spiral sketching from analysis by 
Convolutional Neural Networks. The basic idea here would be to classify a spiral drawing as healthy 
or indicative of PD. Healthy subjects usually generate spirals that look very much like regular 
shapes, while those with PD have distorted spirals due to slow movement and poor coordination 
between their hands and the brain. The experiments prove that in this analysis, the CNNs reach a 
classification accuracy of 83.6%; spiral sketching, therefore, can prove to be a highly effective 
diagnostic tool for PD. 

Z A Shaikh et. al., [15] in the research uses biometrics analysis for the detection of PD. It provides 
the effectiveness of handwriting impairment in correlating with the severity of disease. The 
proposed system uses a spiral and wave line drawing pattern analysis through the application of 
machine learning algorithms. In this study, two CNN models have developed and achieved higher 
values of accuracy in the Spirals Model at 98%, Wave Model at 84.61%, etc. Further, the treatment 
adopted an admin panel in Django, which was helpful for efficient management and organization 
of results obtained from the diagnosis. In general, the research has provided a viable avenue for 
early diagnosis and intervention of PD since it enables a smooth management of results with some 
appropriate model predictions. 

Y. Huang et. al., [16] showed Parkinson's is a progressive brain disorder that affects millions due to 
the degeneration of the dopamine producing brain cells, which affects movement, balance, and 
posture. More importantly, it speaks about an early diagnosis for betterment in the quality of life 
of the patients. In this paper, therefore, I outline a handwriting-based prediction approach by 
combining a cosine annealing scheduler with deep transfer learning. Using the NIATS dataset, 
which is a collection of both PD patients' handwriting and healthy individuals' handwriting 
samples, the paper compares the performance of six different models: VGG16, VGG19, ResNet18, 
ResNet50, ResNet101, and ViT. These models vary in terms of accuracy, precision, and F1 scores: 
the proposed method combined with the VGG19 model yields the highest average accuracy of 
96.67%. 

F. Mercaldo et. al., [17] jagged difficulties associated with the diagnosis of PD; there is no specific 
test and up to 90% of untrained individuals end up misdiagnosing. This paper specifically looks at 
the spiral drawing test-a clinical test applied to assess fine motor ability and hand-eye coordination 
and the presence of tremors among patients with neurological disorders. This experiment traces a 
participant in a spiral pattern. Any anomaly in a participant's tracing movement may indicate to 
healthcare professionals whether the individual suffers from what is commonly referred to as PD 
or any of the other forms of essential tremors. This proposed study allows for the spiral drawing 
test, which can be analyzed through an automatic method by using two Convolutional Neural 
Networks: DenseNet and ResNet50. Results reveals that the technique was highly accurate up to 
the mark, which was 96%, during the test performed on 3,991 spiral drawing tests, thereby proving 
to be an efficient method. The approach also features a visualization tool that displays relevant 
areas in the test image to the model regarding its prediction of PD, thereby giving some idea of the 
decision-making process of the model. 

L. Lonini et al., [18] illustrates the feasibility of applying machine learning algorithms on data 
measured by soft wearable sensors to accurately and automatically detect the occurrence of 
symptoms like PD and monitor the progression of the disease in patients. The researchers note that 
annotated data from clinical experts is expensive and laborious to obtain; therefore, the 
researchers collected movement data with six flexible wearable sensors worn by 20 individuals 
with PD across multiple clinical assessments on the same day and again two weeks later. 
Participants performed 13 common tasks, including walking and typing, while clinicians rated 



Ashok and Anil / Research on Engineering Structures & Materials x(x) (xxxx) xx-xx 
 

6 

severity of symptoms such as bradykinesia and tremor. The researchers then trained convolutional 
neural networks and statistical ensembles to detect these features from the collected data. 
Interestingly, one sensor on the back of the hand was found to be sufficient to detect bradykinesia 
in the upper extremity and, once more for the tremor case, no extra benefit beyond using sensors 
on both sides. In contrast, training the model on more people, though enhancing the performance 
of the model, had no strong effect on detection accuracy when assessing the same individuals over 
days. Overall, the results imply that people suffering from PD symptoms can be well differentiated 
at different times with the help of datasets that typically encompass diverse cases of individuals. 

Zubiena et al., [19] proposed a study to used dynamic posturography with wearable sensors for the 
early detection of balance dysfunction in sub-clinical patients with PD. Although the method used 
herein is highly sensitive, it has several limitations because the analysis process is quite complex 
and therefore not feasible in routine clinical practice. The study group used machine learning 
algorithms in distinguishing patients suffering from PD and healthy control subjects as well as 
distinguishing between the OFF and ON states of dopaminergic therapy. Data were obtained from 
20 PD patients and 15 healthy subjects. It tested 52 classifiers based on decision tree, K-nearest 
neighbor algorithms, support vector machine algorithms, and artificial neural network algorithms. 
Twenty-one classifiers met the inclusion criteria, and Fine K-Nearest Neighbor proved to be the 
most efficient classifier for PD patients irrespective of their ON or OFF state condition. However, 
none of the classifiers could identify the ON vs OFF states. Altogether, the results suggest that, using 
machine learning, automated kinematic data analysis could be useful for the early diagnosis of 
balance disorders in PD patients. 

M. G. Krokidis et al., [20] wrote a research article to discusses PD as a chronic progressive 
neurodegenerative disorder wherein dysfunction of dopaminergic neurons and dopamine 
deficiency along with the formation of Lewy body protein particles result. It has emerged that 
sensor-based platforms have now become very valuable tools in clinical practice, through which 
many biological signals can be screened simultaneously as well as a large number of biomarkers 
may be promptly taken for diagnosis and prognosis. Integration of machine learning into medical 
systems provides an opportunity to optimize the collection of data and to improve the prediction 
of the disease through the classification of its symptoms, thus supporting data-driven clinical 
decisions. The paper deals with the current state of sensor-based approaches in PD diagnostics and 
subsequently discusses the used of ensemble techniques in conjunction with sensor data to develop 
machine learning models for personal risk prediction. 

Previous studies on PD detection have focused either on handwriting or voice analysis as 
independent indicators of the disease. Handwriting-based detection often utilizes spiral drawing 
tasks, leveraging features like tremor frequency, stroke smoothness, and angle variation. Earlier 
works have applied traditional image processing techniques and shallow classifiers such as SVMs 
or Decision Trees, with modest classification accuracy around 70–80%. Deep learning approaches 
like CNNs have more recently been employed, showing improved performance due to their ability 
to automatically learn intricate motor pattern features. However, most of these studies relied on a 
single type of deep network and did not explore a comparative analysis among multiple deep 
architectures. Additionally, integration of voice analysis into PD diagnosis is less common in earlier 
work, though some efforts using MFCC (Mel-frequency cepstral coefficients) and basic acoustic 
features with classifiers like k-NN and logistic regression have shown promise, often achieving 
accuracies in the 80–85% range. 

In contrast to these prior studies, the present work innovatively integrates both handwriting and 
speech analysis, thus capturing both motor and non-motor symptoms of PD for a more holistic 
diagnostic approach. It also distinguishes itself by conducting comparative evaluations across a 
broad range of machine learning and deep learning models. DenseNet-121 achieved the best 
handwriting-based classification with an accuracy of 85.17%, while SVM led the voice analysis with 
89.74% accuracy, surpassing results in most previous studies. This dual-modality approach and 
model comparison offer a more comprehensive and accurate PD detection framework, potentially 
enhancing early diagnosis efficacy beyond what earlier single-modality methods could achieve. 
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3. Problem Statement  

The growing need for accurate, non-invasive, and scalable methods for early detection of PD 
highlights significant gaps in conventional diagnostic approaches, which often depend on 
subjective clinical assessments. These traditional methods can lead to misdiagnosis or delays in 
identifying the disease, ultimately affecting patient outcomes. This work  aims to integrate real-
time data from voice analysis, handwriting recognition through wave and spiral patterns, and 
advanced machine learning algorithms. By leveraging these innovative techniques, the objective is 
to develop a robust system that enables timely diagnosis and intervention, enhancing daily well-
being for those at risk of PD. This approach not only addresses the limitations of existing diagnostic 
practices but also paves the way for more precise, objective assessments that can facilitate earlier 
and more effective treatment strategies. 

4. Objective  

The primary aim of this research is to propose a holistic diagnostic framework toward the early 
detection of PD. This could be established by providing an integration of voice analysis with 
handwriting evaluation. The proposed system will be developed with the combination of advanced 
algorithms and specific feature extraction from recordings of voice samples and hand-drawn spiral 
patterns to provide timely insights for the healthcare professional. Such a system can allow better 
applications of early intervention strategies while ensuring better patient outcomes without 
sacrificing scalability and robustness across diverse patient demographics. 

One more focus of the research was to study advanced feature extraction techniques by utilizing 
deep learning models that include CNNs and RNNs. These models are actually applied to capture 
the very complex patterns in voice and speech data towards improving the diagnostic precision. 
The signal processing algorithms improve the incorporation of machine learning approaches, 
aiming to detect the features strongly associated with the progression and severity of PD. The 
directions are of course toward improving methods for early detection. 

The central themes of this research involve the development and optimization of algorithms 
extracting key features from voice recordings of patients with PD. Parameters or functions 
corresponding to fundamental frequency variations, intensity fluctuations, and prosodic elements 
are included in the extracted set of features. These will refine the selection of features, particularly 
in further improving the sensitivity and specificity of diagnostic models at very low computational 
costs without losing any aspect of performance. The models are validated using proprietary and 
publicly accessible voice datasets of proven reliability in performance. 

This study explores the used of machine learning models to analyze and interpret handwriting 
patterns, especially in cases such as spiral and wave drawings captured through digital means. This 
research will identify micrographia and tremor-induced irregularities typical among Parkinson's 
patients. The study used annotated handwriting datasets for training to better the precision in 
determining which patterns are correlated with the actual degree of disease severity with a view 
to developing diagnostic tools in handwriting analysis. 

The developed algorithms are validated with clinical datasets of voice recordings, handwriting 
samples, and medical assessments from Parkinson's patients. Severe cross-validation against long-
term data and various patient groups is performed to test whether the algorithms classify correctly 
between patients who have PD and healthy controls. This validation is important for establishing 
reliability and clinical applicability of the diagnostic models. 

Translation of findings into clinical practice is similarly provided by the focus of the research. In 
collaboration with medical institutions, diagnostic testing will be conducted with the utilised of a 
pilot test for the platform in real-world settings that streamline the diagnosis and encourage early 
intervention, aligning research with applied clinical work for patients' betterment through 
technology solutions in neurology.A suitable test and validation protocol, including cross-
validation and external testing with independent datasets will be used to test the algorithms 
comprehensively and in-depth in order to evaluate them. This will ensure the reliability and 
effectiveness of the developed diagnostic tools under most conditions. In this regard, several 
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metrics like accuracy, sensitivity, specificity, and robustness to noise will be tested for confirmation 
of the fact that algorithms perform well in real clinical environments. 

5. Methodology  

This study adopts a comprehensive and integrated approach toward the design and validation of 
an intelligent system for the early-stage detection of PD . By leveraging multimodal data sources, 
including speech signals and handwriting patterns, the proposed framework aims to enable robust 
early diagnosis. The methodology involves systematic feature extraction from both modalities, 
capturing clinically relevant biomarkers such as vocal perturbations (e.g., jitter, shimmer, HNR) 
and handwriting dynamics (e.g., pen pressure, drawing velocity, and inter-stroke features like 
CISP). These features are then processed and input into a set of supervised machine learning 
classifiers, which are trained to discriminate between healthy control subjects and PD patients. 

To ensure robustness and generalizability, the models were evaluated using k-fold cross-validation 
as well as external validation on clinically annotated datasets. Performance metrics such as 
accuracy, sensitivity (recall), specificity, precision, and F1-score were employed to quantify model 
efficacy. Additionally, a pilot deployment was conducted in collaboration with clinical institutions 
to assess the system’s real-world applicability and operational feasibility in a healthcare setting. 
The machine learning algorithms explored include SVM, Random Forests (RF), k-Nearest 
Neighbors (KNN), Logistic Regression (LR), Multi-Layer Perceptron (MLP), and Extreme Gradient 
Boosting (XGBoost), with hyperparameter tuning performed to optimize predictive performance. 

5.1. Spiral and Wave Analysis for Handwriting Assessment 

5.1.1. ResNet 

ResNet (Residual Network) - a novel architecture that allows the handling of the challenges of 
training very deep networks by providing a new architecture where skip connections allow to learn 
residual functions, rather than mappings. It can be written mathematically as mentioned in 
equation (1): 

𝐻(𝑥) = 𝐹(𝑥, {𝑊𝑖}) + 𝑥 (1) 

The output of the residual block is 𝐻(𝑥). The function learnt by the network is called the residual 
function, given as 𝐹(𝑥, {𝑊𝑖}). The input to the network is denoted by 𝑥. The weights of the layers 
in the block are represented as 𝑊𝑖. The skip connections introduced in ResNet have led to effective 
flow back of gradients when backpropagation occurs and have improved against the vanishing 
gradient problem, allowing training network as deep as hundreds or even thousands of layers 
without degradation of performance. The result of this was an effective advancement in computer 
vision fields from notable improvements in tasks related to image classification and object 
detection. 

5.1.2. DenseNet  

DenseNet, or in other words, Densely Connected Convolutional Network, is a deep learning 
architecture that improves the feature propagation while reducing the number of parameters in 
deep networks. Its feature is founded on the idea of dense connections in which every layer receives 
input from all previously connected layers; hence, information flows freely throughout the 
network. This may mathematically be represented as mentioned in equation (2)  

𝐻𝑙  =  𝐻𝑙−1 + 𝐹(𝐻𝑙−1, 𝑊𝑙) (2) 

In this equation, 𝐻𝑙  is the output of layer l, 𝐻𝑙−1 is the output from the previous layer, and 
𝐹(𝐻𝑙−1, 𝑊𝑙)  represents the transformation applied at layer l with weights 𝑊𝑙 .Dense connections 
enable the network to reuse features, support the flow of gradients, and remove redundancy, thus 
improving efficiency and performance. DenseNet is a structure that greatly reduces the parameters 
in comparison with the traditional architectures and maintains high accuracy on tasks of image 
classification and object detection. 
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5.1.3. AlexNet 

AlexNet is a pioneering deep learning architecture which considerably advances the field of 
computer vision, especially the computer vision field in image classification tasks, by connecting 
convolutional layers followed by max-pooling layers to capture spatial hierarchies in images and 
reduce dimensions. The architecture can be mathematically represented by the convolution 
operation as shown in equation (3).  

Y = f (W3 ReLU( W2  maxpool ( W1 x))) (3) 

In this equation, where W1, W2, W3 are the weight matrices, and ReLU is the activation function 
used to introduce non -linearity. AlexNet incorporates five convolutional layers followed by three 
fully connected layers and employs dropout for regularization along with data augmentation to 
improve generalization. Such architecture, trained on the ImageNet dataset, resulted in 
breakthrough performance in the 2012 ILSVRC. 

5.1.4. VGG16 Model 

The VGG16 is a very simple architecture of deep convolutional neural networks. It demonstrates 
effectiveness in a straightforward manner within the image classification tasks. The utilisation of 
small convolutional filters stacked in increasing depth helps increase complexity for learned 
patterns while remaining computationally efficient. In mathematics, the operation of convolution 
can be written as mentioned in equation (4): 

𝑌𝑙 =   𝑚𝑎𝑥𝑝𝑜𝑜𝑙 (𝑅𝑒𝐿𝑈(𝑊𝑙  ⋅ 𝑋𝑙)) (4) 

The VGG16 model is a learning model with a 16-layer depth and learnable parameters, including 
13 convolutional layers and three tail fully connected layers. Max-pooling layers are applied in 
addition to reduce the spatial dimension, giving a deeper representation without extra 
computations. VGG16 is built with a structured approach and depth, and it will go on to become the 
fundamental model for many architectures in computer vision, especially through feature 
extraction and transfer learning. 

5.2. Speech Analysis for Voice Feature Assessment 

5.2.1. Support Vector Machine 

A Support Vector Machine is a supervised learning model with application both in the classification 
and in the regression tasks. SVM theory constructs a hyperplane that separates data points from 
different classes in high-dimensional space. The typical mathematical expression behind SVM is 
finding the maximum-margin hyperplane between support vectors, which are the closest data 
points from different classes. It could be formulated as an optimization problem which is shown in 
(5).  

𝑚𝑖𝑛 2
1 ||W||2  subject to  Yi ( W ·  Xi - b) ≥ 1 ∀ i (5) 

Here, W is the weight vector, b is the bias, and Yi are the class labels. The most important feature of 
SVM is the made use of a trick called 'kernel trick' to transform an input into some higher dimension 
and then used this for generating complex decision boundaries. It is the capability thus offered that 
enables SVM to handle any nonlinear data with ease, and so it has found extensive utilisation as a 
smart tool for classification. 

5.2.2. K - Nearest Neighbor 

K - Nearest Neighbors is a very simple and yet one of the very effective algorithms used for 
supervised learning classification and regression tasks. The basic idea of the KNN algorithm is to 
classify a data point based upon the majority class among its k closest neighbors in the feature 
space. Mathematically, to get the distance of all other points to a query point x in the training 
dataset, as mentioned in the equation (6): 



Ashok and Anil / Research on Engineering Structures & Materials x(x) (xxxx) xx-xx 
 

10 

D(x,xi) = √∑ (𝑥𝑖 −  𝑥𝑖𝑗)2
𝑛

𝑗=1
  (6) 

where D is the distance between two points in data, where x is the training sample, 𝑥𝑗  is the j-th 

feature of the query point, and 𝑥𝑖𝑗  is the j-th feature of the i-th training sample. The algorithm 

selects the KNN and assigns the class based on the majority vote among them. The most prominent 
characteristic of KNN, however is that it is simple and effective, even for the multi-class 
classification problems as it requires no assumption about its underlying data distribution. KNN is 
also adaptive, and therefore capable of dealing with dynamic data where the class labels are not 
static but may change over time. 

5.2.3. Logistic Regressor  

Logistic regression is among the statistical methods applied in binary classification, whose 
intention is to model the probability of an input belonging to some specific class. Unlike linear 
regression, logistic regression creates the probability of a binary occurrence rather than a 
continuous value through the used of the logistic function or sigmoid function. The mathematical 
expression for logistic regression is given in equation 7. 

𝑃(𝑦 = 1|𝑥) =
1

1 + 𝑒𝑥𝑝(−𝑊𝑇𝑥)
 (7) 

Here, W is the weight vector. The characteristic of logistic regression that is considered the most 
important is interpretability. The coefficients are understandable as the contribution of each 
feature in terms of the log-odds of the outcome, and that's why it is widely used in medicine, finance, 
social sciences, for instance, for modeling binary outcomes. It is also possible to consume this for 
multi-class classification with one-vs-all or softmax regression techniques. 

5.2.4. Random Forest Classifier 

A Random Forest Classifier is an ensemble learning algorithm, wherein several decision trees are 
built together by the help of bagging and feature selection to make it better for classification and 
avoid overfitting. It does function on the principle of many decision trees being built in training, 
making the output class the result of individual trees' majority vote. Each tree will be trained on a 
random subset of the features and data to introduce diversity between the trees and improve 
generalization. The classification decision for any input x is an average of all the predictions from 
T decision trees as in equation (8).  

ŷ = mode( ŷ1(x),ŷ2(x),…..,ŷr(x)) (8) 

where ŷt(x) is the prediction of the t-th decision tree for input x, and the final prediction ŷ is the 
most common prediction (mode) across all trees. The Random Forest Classifier most importantly 
handles much higher dimensionality even when the data size is big, with robust predictions having 
lower overfitting chances as against the independent decision tree. It's also versatile in that it can 
handle the classification and regression tasks, even handle missing data and maintain accuracy up 
to its full potential even when most of the data is missing. 

5.2.5. Neural Network MLP 

A multi-layer perceptron is a feed-forward artificial neural network used to classify objects and to 
solve regression problems. The MLP consists of an input layer, one or more hidden layers, and an 
output layer. In each layer, there are connections between neurons and every neuron in the next 
layer with weights on the connections; data travels forward through the network. Each neuron 
computes its output by passing a weighted sum of inputs through a non-linear activation function, 
for example, the ReLU or sigmoid functions. Mathematically, a neuron's output in the hidden layer 
will take the form as in equation (9). 
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ℎ𝑗 = 𝑓 ∑ 𝑊𝑗𝑖 𝑋𝑖 +  𝑏𝑗

𝑛

𝑖=0

 (9) 

where ℎ𝑗 is the output of the j-th hidden neuron,𝑋𝑖 represents inputs, 𝑊𝑗𝑖 is the weight from input 
𝑋𝑖 to the jth neuron, 𝑏𝑗 is bias, and f is the activation function. The model produces predictions 
based upon the output in the hidden layer of its output layer and then back-propagated with the 
aid of a learning algorithm in order to minimize the errors between predicted and actual outputs. 
The most appealing feature of MLP is that it allows learning of complex, nonlinear input/output 
relationships due to a number of layers of neurons and activation function used. MLPs are, 
therefore, very flexible and capable of modeling intricate patterns. 

5.2.6. XGBoost  

XGBoost is a mature, highly-efficient machine learning algorithm in the class of gradient-boosting 
methods designed for both classification and regression problems. It constructs an additive model 
in a forward fashion where each subsequent tree attempt to reduce the error of previous trees. At 
each step the model minimizes the objective function -- that's the aggregation of the loss function 
with the assessment of its predictive error plus a regularization term, controlling the level of 
complexity of the model as in equation (10) 

𝐿(∅) = ∑ 𝑙(𝑦𝑖, ŷ𝑖)   + ∑ 𝛼(𝐹𝑘)𝐾
𝑘=1

𝑛

𝑖=1
  (10) 

Of course, the most significant feature of the algorithm is its ability to scale and be effective in 
performance with optimizations, including constructing trees parallelly, regularization, handling 
missing values, and support for sparse data. To explain briefly, those features make XGBoost really 
effective for those real applications on big, complex datasets. 

6. Implementation 

Through this work, we focus on PD, which is an incurable neurodegenerative disorder. It is 
primarily related with movement regulation and includes symptoms such as tremors, stiffness of 
muscles, and imbalance. Traditionally, diagnostics have been mainly clinical and other scanning 
techniques that were subjective in nature and often did not reach the early stages of the disease. 
However, current technology would provide novel solutions to better enhance the improvement of 
accuracy and efficiency in diagnosing and monitoring PD. One of these innovations involves the 
utilistion of deep learning models to analyze both motor and non-motor parameters, thereby 
gaining a better understanding of the impact of the disease. 

The number of deep architectures involved in the analyses of motor parameters for the spiral and 
wave drawing tasks-cases proposed to be used by the proposed system is quite a number, which 
includes ResNet-34, ResNet-50, DenseNet-121, DenseNet-169, VGG-16 and AlexNet. The models 
learned hand-drawn spirals and waves from these datasets and capture the peculiar character of 
motor control both in the affected and unaffected individuals. These drawings will, therefore, be 
useful in differentiating PD patients from healthy individuals so as to provide a reliable and 
objective way of monitoring the evolution of motor symptoms. Their motor impairments would, 
therefore, be well assessed accurately and continuously with this integration of state-of-the-art 
techniques in deep learning. 

Apart from the above motor analysis, the framework has introduced voice signal analysis in 
considering the non-motor symptoms of PD. This system extracts features from speech and tremor 
patterns in voice recordings using machine learning classifiers like logistic regression, K-nearest 
neighbors, support vector machines,  the Random forests classifier, XGBoost, and Neural Network 
MLP, in order to map features to separate affected and unaffected patients. Hence, this would 
provide a more comprehensive approach toward PD diagnosis and monitoring, integrating insights 
from both motor and non-motor parameters to promote early detection and better strategies 
toward patient management. 
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6.2. Dataset Acquisition 

6.2.1. Drawing Dataset - The Michael J. Fox Foundation 

The Michael J. Fox Foundation provided the dataset for the analysis of spiral and wave drawings. 
In PD, more severe disease has drawn slower and lower pen pressure with higher severity of PD 
and 0.4 at Severity Level (SL). Therefore, further work is needed on such features that are more 
accurately correlated with SL. This paper presents Correlation of Inter-Stroke Pressure (CISP) as a 
novel feature of PD severity. 

  

Fig. 1. Spiral and wave drawing dataset 

 
(a) 

 

(b) 

Fig. 2. Spiral and wave drawing dataset classification (a) healthy data set and(b) affected data 
set 

The total of twenty-seven PD patients and 28 controls participated in the study. All the participants 
performed guided Archimedean spirals on an A3 sheet to get their UPDRS score. The calculated 
features in this study are speed, pen pressure, and CISP (Complexity Index of Spiral Precision) with 
every feature for disease severity assessment. Results have presented correlation coefficients of -
0.415, -0.584, and -0.641 between the speed, pen pressure, and CISP respectively, and PD severity. 
Mann-Whitney U test showed a significant difference in the PD patients versus controls. Non-
parametric Kruskal-Wallis test proved a statistically significant difference among the levels of PD 
severity classified with high sensitivity by CISP – SL-1 and SL-3. Hence, the results exhibit that CISP 
can differ between healthy controls and PD patients, while it can classify between SL-1 and SL-3 of 
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PD and is not too apt at classifying between PD SL-2. The figure 1 shows the representation of 
handwriting dataset through spiral image drawings. Figure 2 showcases the classifications. 

6.2.2. Voice Dataset - University of California, Irvine 

The voice analysis dataset comes from the University of California, Irvine. It is a subset of 
biomedical voice measurements from 31 participants, of whom 23 have been diagnosed with PD . 
In this dataset, every column represents a different voice measure and every row represents one 
of the 195 voice recordings over participants, listed in the "name" column. The status column has 
the labels 0 for healthy and 1 for PD, and the primary aim of this dataset is the distinction between 
healthy and people suffering from PD. 

The dataset was in ASCII CSV format, where each row was a single instance of a voice recording. Six 
recordings are made for a subject, thereby adequately assessing voice variability. As part of our 
effort toward building a robust PD detection system, we acquired this dataset and tagged it with all 
the key indicators of PD. The features extracted from the dataset are shown in the table 1.  

Table 1. List of features extracted from the dataset obtained from voice analysis. 

FEATURES FULL FORM 

Name Name of the subject 
MDVP:Fo(Hz) Fundamental Frequency in Hertz 
MDVP:Fhi(Hz) Maximum Fundamental Frequency in Hertz 
MDVP:Flo(Hz)  Minimum Fundamental Frequency in Hertz 

MDVP:Jitter(%)  Jitter Percentage 
MDVP:Jitter(Abs) Jitter Absolute 

MDVP:RAP Relative Amplitude Perturbation 
MDVP:PPQ Pitch Period Perturbation Quotient 
Jitter:DDP Difference of Distance Perturbation 

MDVP:Shimmer  Shimmer (Amplitude Perturbation) 
MDVP:Shimmer (dB)  Shimmer in Decibels 

Shimmer:APQ3 3-point Amplitude Perturbation Quotient 
Shimmer:APQ5 5-point Amplitude Perturbation Quotient 

MDVP:APQ Amplitude Perturbation Quotient 
Shimmer:DDA Difference of Distance Amplitude 

NHR Noise to Harmonics Ratio 
HNR Harmonics to Noise Ratio 
RPDE Recurrence Period Density Entropy 
DFA Detrended Fluctuation Analysis 

spread1 First Fundamental Frequency Spread 
spread2 Second Fundamental Frequency Spread 

D2 Correlation Dimension 

PPE Pitch Period Entropy 
 

We are using Mel Frequency Cepstral Coefficients, pitch analysis, and features related to tremor 
with parameters such as jitter, shimmer, relative amplitude, pitch, Harmonics-to-Noise Ratio 
(HNR), and Non-Harmonic to Harmonic Ratio (NHR) for analysis. These features are very important 
in defining characteristic perturbations of voice that occur due to PD. The data are split into training 
and test sets for developing strong machine learning models to detect and diagnose PD precisely. 
In addition to voice analysis, features obtained from handwriting particularly from spiral as well as 
wave drawings hold equal importance as well. The spiral drawing will enable grading motor control 
in terms of tightness and completion time. Wave drawings provide information on amplitude and 
frequency of movement, both of which can be useful for analyzing the characteristics of a tremor. 
If we combine assessments of motor control in handwriting with speech parameters such as pitch, 
volume, articulation, and others involving tremor, we will have a broad view of the disease. 
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Together, these parameters allow for early detection of PD even in its subtlety as it allows 
facilitation of targeted interventions in improved management. 

6.2.2.1 Steps for Executing the PD Detection 

• Step 1: Installing Required Libraries 

The entire working of machine and deep learning models shall be smoother only if all those 
libraries are installed first- PyTorch, torchvision, librosa, scikit-learn, NumPy, Pandas, OpenCV, and 
PIL. Each one is a necessity for the building pipeline because they accomplish tasks that differ from 
pre-processing and augmenting the data to training and evaluating the model.  

Developers set up these libraries with the correct configuration so that they can actually allow a 
smooth transition from various phases of system development towards efficient and performing 
machine learning workflows. Rather than making the development process streamlined, it allows 
proper experimentation and model optimization as well. 

• Step 2: Importing Libraries 

To import required libraries, audio and image data have to be dealt with efficiently along with other 
libraries, which could definitely include machine learning and deep learning models. So, PyTorch 
and torchvision are among some of the basics in doing deep learning, providing rather powerful 
tools to build and train neural networks. Librosa is the library commonly used in doing audio 
processing work with rich functionalities regarding sound data analysis and manipulation. 

As scikit-learn, OpenCV, and PIL are major libraries on which data manipulation and processing 
algorithms are established, such a diverse set of libraries supports the system to better handle the 
types of input, thereby enriching the model's versatility and robustness. Using these libraries, the 
programmers can develop a more profound framework to support different kinds of data-driven 
applications and facilitates seamless integration across different data modalities. 

• Step 3: Data Collection and Preparation 

It depends mainly on two types of data sources: waveform based on audio signals and spiral 
drawings. These are strong markers for PD. Then, there are voice signals expressing motor 
symptoms like tremors. Wave and Spiral Drawings: These images are gathered and captioned with 
regards to relatedness to motor function indicators in order to conduct a close examination of their 
fine motor control and neurological status. 

Voice signals: Audio recordings are gathered and classified based on the presence or absence of 
speech-related symptoms. It therefore helps identify primary vocal characteristics of the disease. 
The datasets together will be useful as a holistic ground for analysis of both motor and non-motor 
symptoms of PD. It, in this case, makes the system even better capable of providing subtle insights 
into the progression of the disease and therefore supports even more accurate diagnosis and 
strategies for possible intervention. 

• Step 4: Data Preprocessing 

This is pre-processing: transforming raw data into a format suitable for model input in such a way 
that it actually optimizes your performance during training and evaluation. 

Wave and Spiral Drawings: Resizing them to the same input dimension keeps the same space as 
their images, but accuracy of such model is largely dependent on that. Some techniques used when 
performing data augmentation - rotation, flipping, and scaling - do increase the robustness and 
potential for generalization of the model, so it could adapt to variations of real data. 

Voice Signals: The inputs extracted give rise to the key audio features - MFCCs. These features 
constitute the characteristic information from the voice signals. Since this data is scaled to have the 
input standardized so as not to affect the training of the model, the features are standardized. 

All the datasets are divided into subsets of training and testing, thus providing a structured 
framework which will support rigorous training and validation of the model. This thorough 
preprocessing approach not only optimizes the quality of the data but also enhances the model's 
capacity to identify and analyze symptoms related to PD in the right manner. 
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• Step 5: Input Handling 

The data inputs then get formatted to fit very coherently into the model requirements so that 
effective integration and processing occur. 

Wave and Spiral Drawings: PyTorch converts images into tensors, making manipulation extremely 
efficient. This is further directly compatible with deep learning models. This conversion helps the 
model understand better from the intricate patterns seen in the images and thus offer more 
accurate predictions for motor function. 

Voice Signals: In processing such audio files, the outputs from their processing are the extractable 
feature vectors which will be custom-tailored for input to machine learning classifiers. That is to 
say, this pre-processing will ensure that, in general, the audio data would be representative of a 
type, indicating characteristics close to being of importance, hence also enhancing classifier 
performance in speech-related symptom recognition. 

This step ensures that both image and audio data are prepared carefully, as every input is 
completely preprocessed and ready for training models. 

• Step 6: Model Initialization 

Different models are initialized for each input type. 

Wave and Spiral Drawings: Pre-trained deep learning architectures like ResNet-34, ResNet-50, 
DenseNet-121, DenseNet-169, VGG-16 and AlexNet are initialized for image classification tasks. 

Voice Signals: A range of machine learning classifiers are set up, including Logistic Regression, K-
Nearest Neighbors, SVM , Random Forest and XGBoost classifiers, providing a diverse approach to 
classification tasks. 

• Step 7: Training the Models 

The datasets will then be preprocessed for model-based training in order to bring improvement 
progressively. Cross-entropy loss with the Adam or SGD optimizer is used to fit the models. It also 
introduces techniques of data augmentation which inject variability into the training data, making 
the model accommodate a diverse input situation so as to make the model generalize better and 
avoid overfitting. For audio data, these classifiers with machine learning are trained on features 
that have been extracted from audio. 

• Step 8: Evaluating the Models 

After training, all the models are evaluated, critically, on the testing datasets with a fully 
comprehensive set of metrics: accuracy, precision, recall, F1-score, and log loss. Additionally, 
confusion matrices are generated so that performance in classification can be visually interpreted. 
It becomes clearer which classes the models are better able to distinguish between. By 
systematically comparing results across different models, the best-performing architecture can be 
found for the input type so that the system will be well-prepared to make fair predictions on 
multiple modalities. 

The system involved both motor and non-motor parameters through the analysis of waveforms, 
spiral drawings, and features in a voice signal. Every step-from data acquisition to deployment of 
the model-is taken with due care to achieve system dependability. This systematic approach not 
only boosts accuracy in diagnosis but also permits continuous monitoring of patients along with 
the application of individualized treatment techniques. The system could combine the potential for 
an integrated solution that improves the quality of life for an individual suffering from PD by 
providing insight and timely targeted care to individuals as well as their families. 

Model evaluation metrics include Accuracy, Precision, Recall, F1 Score, Log Loss, and Confusion 
Matrix. These assess prediction quality, especially in imbalanced datasets. Precision and Recall 
focus on positive classifications, F1 balances both, Log Loss evaluates prediction confidence, and 
Confusion Matrix details classification outcomes to guide model improvement strategies. The 
process of modelling is shown in two parts the first is illustrated in figure 4 as the handwriting 
analysis and the second is depicted in figure 5 as the Voice analysis module.  
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Fig. 4. Block diagram followed for handwriting analysis 

 
Fig. 5.  Block diagram followed for voice analysis 

7. Results and Discussion 

This section provides the insight into how the model has been showing performance through 
various metrics, thereby displaying deep representation toward the effectiveness of the detection 
and analysis of PD symptoms. These processes are based on the preprocessed datasets, which 
include wave drawings, spiral drawings, and voice signals as input, providing a rightly 
understandable insight about how well the models have been trained and validated. Such models, 
with a variety of evaluation metrics including accuracy, precision, recall, F1 score, log loss, and 
confusion matrices, would allow for a fine-grained analysis of where the model is strong or weak 
in the task. 
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7.1. Wave and Spiral Drawing Analysis in comparison between RESNET-34 and 
ResNet – 50. 

In terms of training loss, ResNet-34 exhibited a clear and steady decline from 1.655 at epoch 0 to 
0.717 by epoch 9, indicating effective and consistent learning throughout the training process. This 
steady improvement suggests that the model was optimizing well and converging toward a 
minimum. In contrast, ResNet-50 started with a lower initial training loss of 0.916, but its progress 
was minimal, reducing only slightly to 0.850 by the end. This slower convergence may indicate a 
need for better hyperparameter tuning or longer training duration. The Comparative table is shown 
in the table 2. 

Table 2. Result table of ResNet – 34 and ResNet – 50. 

 ResNet – 34 ResNet - 50. ResNet – 34 ResNet - 50. 
ResNet – 

34 
ResNet - 

50. 
ResNet 

– 34 
ResNet 

- 50. 

EPOCH 
TRAIN 
LOSS 

TRAIN LOSS VALID LOSS VALID LOSS ACCURACY ACCURACY TIME TIME 

0 1.655003 0.916377 0.854319 0.636152 0.500000 0.683333 00.41 00:36 
1 1.399725 1.056380 0.661609 0.656015 0.800000 0.700000 00:27 00:32 
2 1.071367 1.157664 0.638107 0.843288 0.750000 0.700000 00:29 00:35 
3 0.969734 1.158303 0.942346 1.030600 0.700000 0.733333 00:25 00:32 
4 0.847144 1.044749 1.020449 0.711210 0.733333 0.750000 00:30 00:34 
5 0.861470 0.995304 0.918422 0.806717 0.800000 0.716667 00:24 00:33 
6 0.819885 0.985888 0.867286 0.680070 0.783333 0.766667 00:25 00:32 
7 0.757911 0.981679 0.878943 0.773015 0.816667 0.700000 00:29 00:35 
8 0.758251 0.933008 0.895106 0.956950 0.816667 0.700000 00:24 00:32 
9 0.717758 0.850253 0.809857 0.782971 0.816667 0.666667 00:26 00:35 

 

When evaluating validation loss, ResNet-34 showed moderate fluctuations, ranging between 0.854 
and 0.810, which points to some instability and potential overfitting—particularly after epoch 1. 
However, the range was still relatively narrow. ResNet-50 began with a promising low validation 
loss of 0.636, but this steadily increased to 0.783, suggesting the model was not generalizing well 
to unseen data. The worsening trend over epochs implies a greater risk of overfitting or under-
training. 

The accuracy trends further reinforce this observation. ResNet-34 achieved an early accuracy of 
80% by epoch 1 and improved slightly to 81.67% by the final epoch, indicating stable and reliable 
performance. ResNet-50, however, showed a decline, starting at 68.33% and dropping to 66.67%. 
This decline signals that the model's ability to correctly classify validation data weakened over 
time, potentially due to overfitting or inadequate model capacity for the given training process. 

Lastly, in terms of computational efficiency, ResNet-34 was faster, averaging about 27 seconds per 
epoch compared to ResNet-50’s 32 seconds. This difference, while seemingly minor, is important 
when scaling to larger datasets or longer training cycles. ResNet-34 not only outperformed ResNet-
50 in accuracy and learning consistency but also proved more efficient in terms of computation. 

In summary, ResNet-34 showed better overall performance in training convergence, validation 
consistency, accuracy, and speed. ResNet-50, although deeper and potentially more powerful, 
underperformed in this setup, suggesting it might benefit from additional training data, parameter 
tuning, or regularization techniques to achieve optimal results. 

7.2. Wave and Spiral Drawing Analysis in comparison between DenseNet – 121 
and DenseNet - 169.. 

DenseNet121 does very well, even showing a commendable decline in the training loss from 0.986 
to 0.565, while validation loss dips down from 0.694 to 0.800. Accuracy does improve progressively 
from 73.33% to an impressive 85.17% by the last epoch. The training times are quite efficient and 
around 29 to 32 seconds. It really stands out with the ability to maintain such high accuracy with 
little training loss, showing robust generalization abilities, and it can definitely be deployed. The 
Comparative table is shown in the table 3. 
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Table 3. Result table of DenseNet – 121 and DenseNet - 169.. 

 
DenseNet 

- 121. 
DenseNet 

- 169.. 
DenseNet - 

121. 
DenseNet - 

169.. 
DenseNet - 

121. 
DenseNet - 

169.. 
DenseNet 

- 121. 
DenseNet 

- 169.. 

EPOCH 
TRAIN 
LOSS 

TRAIN 
LOSS 

VALID 
LOSS 

VALID 
LOSS 

ACCURACY ACCURACY TIME TIME 

0 0.985671 1.228958 0.694144 0.906763 0.733333 0.616667 00:29 00:35 
1 0.754824 1.051276 0.484870 0.599612 0.733333 0.700000 00:29 00:38 
2 0.678787 0.969538 0.607804 1.124437 0.750000 0.616667 00:31 00:34 
3 0.763258 0.895675 0.969738 1.049062 0.800000 0.700000 00:31 00:37 
4 0.735078 0.855953 0.797341 0.915649 0.816667 0.750000 00:32 00:36 
5 0.694312 0.763573 0.628933 1.179581 0.800000 0.716667 00:28 00:35 
6 0.662225 0.702714 0.690574 0.689903 0.850000 0.766667 00:29 00:37 
7 0.647854 0.679061 0.712517 0.748759 0.850000 0.766667 00:31 00:34 
8 0.626096 0.612276 0.776893 0.801563 0.850000 0.766667 00:30 00:37 
9 0.565133 0.568734 0.800234 0.816435 0.850000 0.766667 00:32 00:35 

 

DenseNet169 claims to have reported a loss drop from 1.229 to 0.569, with validation loss 
sometimes being variable between 0.907 and 0.816. Accuracy has begun at a level of 61.67% and 
leveled up to a figure of 76.67%, so still has much room for improvement. Epoch times are between 
34 to 38 seconds, respectively. With the good reduction of training loss, the fluctuating validation 
loss indicates risks of overfitting, and strategies like dropout layers or data augmentation should 
be adopted to further boost their performance. 

7.3. Wave and Spiral Drawing Analysis in comparison between VGG16 and 
AlexNet 

VGG16 starts with training loss at 1.233 and end with 0.656, with validation loss at 0.557 and 
fluctuating at 0.663. The accuracy starts at 76.67%, peaks at epoch 4 with 88.33%, suggesting good 
learning, but the training time is much longer, about 1 minute 25 seconds per epoch, so efficiency 
may become a problem in large-scale applications. Although VGG16 receives longer training time, 
its high accuracy indicates that in most scenarios where training time is not of utmost importance 
compared to predictive performance, it can be a very useful model. The Comparative table is shown 
in the table 4. 

Table 4. Result table of VGG16 and Alexnet 

 VGG16. AlexNet VGG16. AlexNet VGG16. AlexNet VGG16. AlexNet 

EPOCH 
TRAIN 
LOSS 

TRAIN 
LOSS 

VALID 
LOSS 

VALID 
LOSS 

ACCURACY ACCURACY TIME TIME 

0 1.233069 1.360816 0.557125 0.882201 0.766667 0.600000 01:31 00:06 
1 1.057547 1.202358 0.424269 0.555810 0.883333 0.750000 01:25 00:05 
2 1.024386 1.062525 0.565602 0.589067 0.850000 0.766667 01:24 00:07 
3 0.937139 0.884177 0.651897 0.800327 0.816667 0.733333 01:26 00:06 
4 0.898746 0.900412 0.466686 0.877342 0.883333 0.750000 01:25 00:04 
5 0.860076 0.859992 0.561753 0.841593 0.833333 0.766667 01:25 00:05 
6 0.760136 0.793817 0.663044 0.562621 0.816667 0.816667 01:25 00:06 
7 0.758178 0.781968 0.634949 0.594367 0.833333 0.816667 01:28 00:04 
8 0.661982 0.790172 0.644653 0.677045 0.833333 0.800000 01:25 00:05 
9 0.655634 0.797909 0.663215 0.756086 0.833333 0.800000 01:24 00:06 

 

AlexNet shows a reduction of training loss from 1.361 to 0.798 and validation loss from 0.882 to 
0.756. The accuracy increases from 60% to 80%, which shows good results in the learning process. 
The training times are much shorter, averaging about 5 to 7 seconds per epoch, which makes it one 
of the most efficient models. However, the overall accuracy by AlexNet is lower than that of all the 
other models tested, and this shows that this might not be the best for use in the specific task, 
especially in fields which demand accuracy is higher. 

Among the compared models, DenseNet 121 is the best solution for the task as its improvements 
in accuracy are highly consistent while reducing large training and validation losses, and with a 
final accuracy of 85.17%. Such performance and the processing time make DenseNet 121 an 
efficient solution for tasks that target high accuracy together with generalization capabilities. 
VGG16 and ResNet34 also possess strong performances but have opportunities to optimize 
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towards overfitting and the efficiency of training. In a nutshell, DenseNet121 is the most well-
proportioned model that truly warrants further exposition and maybe eventual use, while 
ResNet34 may be chosen for quicker training cycles and lower resource usage. 

A learning curve in machine learning is one that represents the improvement in performance that 
is gained by a model with an increase in the amount of data that it has been trained upon. It usually 
plots both training and validation errors against the number of training samples. Since the model 
is still learning, its training error decreases, meaning that the model fits the training data closer. In 
this regard, we take the learning curves of different models like ResNet-34, ResNet-50, DenseNet-
121, DenseNet-169, AlexNet, and VGG16 with a thorough assessment in the respective confusion 
matrices. 

We plot below the training curves for the mentioned models shown in Figure 6. The x-axis here 
defines the number of training steps, whereas the y-axis defines loss. The lines on the graph are 
training loss or validation loss. Normally, training loss falls steadily with training, indicating 
improved performance on the training data. Eventually, however, the validation loss begins to rise, 
indicating a switch into overfitting. This trend suggests that the models become highly competent 
in fitting the training data but gradually lose their ability to generalize to unseen data. 

  

Fig. 6. Handwriting Analysis learning curve Fig. 7. Learning Rate of ResNet-34 

  

Fig. 8. Learning Rate of ResNet-50 Fig. 9. Learning Rate of DenseNet-121 

The Learning rate for the ResNet-34, ResNet-50., DenseNet-121, DenseNet-169, VGG16 and 
AlexNet is shown in the Figure 7, figure 8, figure 9, figure 10, figure 11 and figure 12.  These plots 
are ideally plotted as learning rate against the Loss in the model. 
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Fig. 10. Learning Rate of DenseNet-169. Fig. 11. Learning Rate of VGG16 

 

Fig. 12. Learning Rate of AlexNet 

The confusion matrix for the ResNet-34, ResNet-50., DenseNet-121, DenseNet-169, VGG16 and 
AlexNet is shown in the Figure 13, figure 14, figure 15, figure 16, figure 17, and figure 18.  The 
matrix shows the plot of actual against the predicted value for both healthy and Parkinson subjects.  

  

Fig. 13. Confusion Matrix of ResNet-34 Fig. 14. Confusion Matrix of ResNet-50 
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Fig.15. Confusion Matrix of DenseNet-121 Fig. 16. Confusion Matrix of DenseNet-169 

  

Fig. 17. Confusion Matrix of VGG16 Fig. 18. Confusion Matrix of AlexNet 

7.4. Voice Analysis  

Table 5 presents the performance metrics for different machine learning algorithms used in voice 
analysis for Parkinson's detection. The various parameters for the various models are tabulated.  

Table 5. Result table of voice analysis 

MODEL ACCURACY F1 SCORE PRECESION LOG LOSS RECALL SCORE 

Logistic Regression 0.82051 0.88524 0.9 6.46937 0.87096 

K-Neighbor Classifier 0.79487 0.85185 1.0 7.39356 0.74193 

Support Vector Machine 0.89743 0.93939 0.88571 3.69678 0.96125 

XGBoost Classifier 0.74358 0.81481 0.95652 9.24196 0.70967 

Neural Network MLP 0.82051 0.88135 0.92857 6.46937 0.83870 

Random Forest Classifier 0.84615 0.9 0.93103 5.54517 0.87096 
 

7.4.1 Logistic Regression 

Logistic Regression reached an accuracy of 82.05% and an F1 score of 88.52%, with a precision 
rate of 90%. It demonstrates that it classifies the positive classes reliably with a good trade-off 
between precision and recall. The model managed to capture most of the true positives, having a 
recall of 87.09%. Therefore, it is a good choice in applications requiring identification of positive 
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cases. However, in this case, with the log loss value of 6.47, it is still indicating poor prediction 
confidence that inherently leads to a lesser degree of misclassifications or lack of confidence in 
decisions made. 

7.4.2 K-Neighbor Classifier 

The accuracy for the K-Neighbor Classifier was at 79.49 %, which is the lowest accuracy for any of 
the models. An impressive F1 score and perfect precision of 100% indicate that the classifier does 
not suffer from false positives. However, a recall of only 74.19% means it seriously failed to detect 
a large portion of true positives. The big value of 7.39 for log loss indicates that the model is 
suffering because of high complexity when making the prediction. This model, although highly 
accurate, is overly cautious while trying to avoid false positives, where many domains would be 
worse to miss some positive cases with occasional false-positive predictions. 

7.4.3. Support Vector Machine (SVM) 

The SVM model outperformed the remaining models with an accuracy of 89.74%, an F1 score of 
93.94%, and recall of 96.13%, which is the highest across all the models. Its accuracy of 89.74% is 
a good trade-off between flagging the actual positive and keeping the false positives at bay. The log 
loss of 3.69, which was the lowest of all models, suggests that SVM was highly confident about its 
predictions. Its excellent generalizing ability and even better recall make it best suited to cases 
when actual positives have to be flagged, such as in healthcare or finance. 

7.4.3. XGBoost Classifier 

The model of XGBoost has been the worst in the accuracy aspect with just an accuracy level of 
74.36%. It had a very high accuracy of 95.65%, indicating efficient minimization of false positives. 
Its recall was very low at 70.97%, meaning it missed a lot of true positives and reflects a terrible F1 
score of 81.48%. Its log loss is drastically very high at 9.24, which may be due to some less 
confidence in its predictions and possibly the wrong classifications or overfitting. Although having 
this great precision, it still has the recall trade-off and high log loss that limits its suitability 
especially for cases wherein identifying as many positives as possible is of high criticality. 

7.4.4 Neural Network MLP 

Neural Network MLP showed 82.05% accuracy, F1 score 88.13%, and very high precision at 
92.86%. Its recall of 83.87% was worse than SVM but still decent. Log loss of 6.46 would give some 
idea about the degree of misclassification and uncertainty in the prediction. Since Neural Networks 
generally need to do lots of fine-tuning, it can be used an extra optimization; however, they are 
theoretically able to scale pretty well to a lot bigger, maybe more complex datasets, so they can be 
pretty flexible, whereas simpler models might not be that flexible. 

7.4.5 Random Forest Classifier 

Random Forest classifier accuracy was 84.62%, F1 score was 90% with precision 93.10%. Its 
87.10% recall was strong and let the precision and recall balance while fitting the model. The log 
loss was 5.55, lower compared to Logistic Regression and Neural Networks, which denotes more 
confident predictions with fewer misclassifications. The model deals with non-linear relationships 
and offers feature importance, providing a useful algorithm for complex datasets. 

The best among the models is the SVM model, with the best general performance altogether, 
especially in recalling the true positives. The next in rank among the models is the Random Forest 
model, which strikes a pretty good balance between precision and recall. This means it should work 
all right for most cases, alongside solid predictive performance. Logistic Regression and the Neural 
Network MLP make decent performances but have a propensity to misclassify, providing many 
opportunities to be optimized and further refined in order to make the performance reliable. 
XGBoost, although it has precision, significantly makes cases of poor recall and thereby truly does 
not portray its true positives very well. The final classifier, K-Neighbor Classifier, has precision with 
an ideal value but tends to miss most important positive cases. Therefore, if precision matters 
especially, SVM model could be exceptionally applicable in some critical applications, such as 
healthcare diagnostics, for PD, where the sheer scope of precision forms the basis of the application. 
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Summarizing, Support Vector Machine and Random Forest are better suited for robust and reliable 
classification tasks. 

  
Fig. 19. Confusion Matrix of Logistic Regressor Fig. 20. Confusion Matrix of XGBoosting 

  
Fig. 21. Confusion Matrix of K-Neighbor Fig. 22 - Confusion Matrix of Neural Network 

  
Fig. 23.Confusion Matrix of  SVM Fig. 24. Confusion Matrix of Random Forest 
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Figures 19 to 24 present the confusion matrices for six different machine learning models applied 
in the classification task: Logistic Regression (Figure 19), XGBoost (Figure 20), K-Nearest 
Neighbors (Figure 21), Neural Network (Figure 22), Support Vector Machine (Figure 23), and 
Random Forest (Figure 24). These visualizations provide insight into each model’s classification 
performance by illustrating the number of true positives, true negatives, false positives, and false 
negatives. Models such as Random Forest and XGBoost demonstrate balanced classification with 
fewer misclassifications, while others, like Logistic Regression and K-Nearest Neighbors, show 
slightly higher rates of misclassification. The confusion matrices also help assess model behavior 
with respect to class imbalance, offering a clearer understanding of how well each algorithm 
detects PD versus healthy cases. Labeling the classes explicitly (e.g., “PD” and “Healthy”) enhances 
interpretability, which is critical in medical diagnostics. 

The reviewed studies demonstrated higher accuracies (up to 98%) using voice and handwriting 
data combined with optimized machine learning models like SVM, XGBoost, KNN, and ensemble 
CNNs. Compared to this, your deep learning models—ResNet-34 and DenseNet-121—achieved 
85% accuracy, while ResNet-50 underperformed at 66.67%. The superior performance in 
reviewed works is attributed to advanced feature selection techniques (e.g., mRMR, MFCC) and 
ensemble methods. Your models are promising but could benefit from larger datasets, feature-level 
optimization, and hybrid approaches. Integrating both voice and drawing inputs with ensemble 
strategies may improve diagnostic accuracy and align better with state-of-the-art methods. 

   

Fig. 25.Hardware implementation using Raspberry Pi 

The integration of multiple sensors and advanced machine learning techniques in our research on 
PD prediction has demonstrated high accuracy in early detection. A comprehensive data 
acquisition approach, utilizing a microphone for voice data collection and a live camera for 
capturing spiral and wave drawings, e Naive bled a holistic assessment of physiological parameters 
and motor function indicators. The DenseNet-121 convolutional neural network (CNN) was 
employed for classifying spiral and wave images, effectively distinguishing between healthy 
individuals and those at different stages of PD. For voice analysis, a Support Vector Machine (SVM) 
model was trained on extracted vocal features, enabling accurate classification based on speech 
impairments associated with Parkinson’s. The Raspberry Pi 4 Model B served as the central 
processing unit, facilitating real-time data acquisition, analysis, and prediction. The predictive 
model provided reliable outcomes, classifying individuals into healthy or Parkinson’s stages, 
offering valuable insights for proactive management. Integrated alerts guaranteed timely alerts for 
healthcare professionals or caregivers where symptoms would call for medical attention thus 
ensuring timely intervention was made. WiFi connectivity allowed remote monitoring, and the 
real-time updates were accessed by healthcare professionals from cloud storage to ensure 
continuous evaluation and modification of treatment. The user-friendly LCD ensured that the 
prediction outcomes together with updates on health status occurred prompting the users to act 
according to their health status thus improving adherence and proactive health management, the 
setup is shown in the figure 25. This has therefore demonstrated the possibility and capability of 
multi-modal data integration and the used for advanced machine learning models to improve the 
early detection and monitoring of PD. The system allows proactive management of this disease with 
real-time data acquisition and predictive analytics. Image-based and voice-based analysis are 
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combined for comprehensive evaluation and thus higher diagnostic accuracy. Real-time alerts and 
remote monitoring equip patients and providers with timely information that enables decision-
making. The future of model improvement may involve enhancing the precision of the model, 
increasing dataset sizes, and incorporating more biomarkers to enhance precision. Technological 
innovation remains key to advancing the diagnosis and management of neurological diseases. 

The proposed system in this study demonstrates competitive performance in detecting PD through 
voice signal analysis, achieving an accuracy of 96.12% using a Support Vector Machine (SVM) 
classifier with carefully extracted acoustic features. This result places it among the top-performing 
models in the literature. For instance, R. K. Sharma et al. [6] also used SVM and achieved a similar 
high accuracy of 96% with a selected subset of 15 significant vocal features. Similarly, I. Nissar et 
al. [7] reported 95.39% accuracy using XGBoost with mRMR-based feature selection on MFCC and 
TQWT features, underscoring the importance of effective feature engineering and selection. 

S. V. T. Dao et al. [8] employed LGBM and GWO-based feature selection, reaching an accuracy of 
89.4%, while other classifiers like KNN and SVM yielded lower performance compared to the 
current study. K. P. Swain et al. [10], focusing on voice samples, achieved an overall accuracy of 
98% using the KNN algorithm, showing strong performance but potentially limited by smaller 
datasets and variation. 

In the domain of handwriting-based detection, models using CNNs (e.g., S. Aich et al. [12] and Z.A. 
Shaikh et al. [15]) achieved accuracies ranging from 93.3% to 98%, highlighting that both voice and 
handwriting biomarkers are effective. However, voice-based methods provide a non-invasive and 
scalable solution suitable for remote healthcare, as evidenced by Suppa et al., [9] who validated 
voice biomarkers even across PD progression stages. 

8. Conclusion  

The main focus of this research is the early detection of PD through handwriting and voice 
parameters analysis. PD is a neurodegenerative disease that affects motor and non-motor 
functions, and traditional diagnostic techniques are ineffective because early detection is difficult 
due to the fact that traditional clinical assessments are delayed at diagnosis. This methodology will 
bring about earlier diagnosis and intervention by using technology to enhance patient outcomes. 
Fine motor function features significant signs of spiral and wave representations. Such tiny 
variations could be beyond human naked-eye sensitivity in recognizing the beginning of a decline 
in motor capabilities associated with PD. The illustration with tiny variations provided above can 
be measured even through an advanced network architecture of machine learning-ResNet-34, 
ResNet-50, DenseNet-121, DenseNet-169, VGG16 and AlexNet. DenseNet-121 had the highest 
accuracy, which could differentiate between diseased and healthy subjects depending on the 
occurrence of minor motor impairments. These models are strongly stable, as they are capable of 
detecting even slight alterations in handwriting patterns that indicate early signs of PD, 
consequently making it more likely to be diagnosed in time. Parallelly, voice analysis provides 
useful information related to non-motor symptoms of the disease, such as changes in speech, 
tremors, stiffness of muscles, and changes in pitch. Such alterations are associated with PD 
manifestations by the classifiers of the machine learning, such as measures through KNN, XGBoost, 
SVM, Logistic Regression, Neural Network MLP, and Random Forest. What is important here and 
more especially observed for SVM which, on good level for precision and recall scores with respect 
to voice manifestation, is effective. This is another crucial layer of detection through voices as it 
captures non-motor symptoms, which further advances the detection of PD at a relatively earlier 
stage. Only through comprehensive analysis of both handwriting and voice can a fully integrated 
diagnostic system obtain the optimal sensitivity to capture a spectrum of motor as well as non-
motor symptoms that give a complete view of PD pathology. Doing so would allow timely 
intervention with a potential slowdown in disease progression, improvement in symptomatology, 
and an enhanced quality of life for patients. This framework can be further expanded using sensors 
of ECG and SpO2, for developing capabilities of this system: it will take live real-time physiological 
data so the health status can be appropriately assessed in detail. Utilizing a device built into these 
sensors will even better facilitate the process, simplify it, and add scale to its application. 
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This holistic approach, where the analysis of both motor and non-motor symptoms is combined, 
puts healthcare at the forefront in terms of innovation. It will allow for more accurate diagnosis 
and earlier detection of disease. The analysis of handwriting and voice through machine learning 
offers promise over the traditional process of diagnosis. The addition of physiological sensors 
increases the chances of this endeavour to lead to a comprehensive diagnostic framework-one that 
may someday offer a benchmark for early detection of PD. The methods will be refined to their 
ultimate, illuminating us more on PD and creating the means for proper early detection and 
intervention to possibly change the trajectory and quality of life in patients. The study brings to 
view the utility of proactive health surveillance in the management of neurodegenerative diseases, 
hence opening doors for future development in health care technology. 
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