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1. Introduction

Optimization problems in the real world have become increasingly complex, requiring more
efficient solving methods [1]. The Particle Swarm Optimization algorithm has captured a surge of
interest among researchers, it starts with a population of particles exploring the search space, these
particles can process and analyze information while retaining memory of the best position
encountered, and the algorithm combines knowledge and experiences of the swarm to converge
towards the optimal solution [2]. This cooperative approach enables the particles to capitalize on
the wisdom of the swarm. The PSO algorithm has proven to be effective and discovering solutions
to various optimization problems in the real- world [3], it has demonstrated successful application
in various engineering fields involved in mechanical engineering [4], biomedical image registration
[5], communication networks [6], and flexible job-shop scheduling [7]. Although PSO is known for
its simplicity and fast convergence rate, it's not without its limitations. Researchers have identified
two notable shortcomings: premature convergence too early in the search process and Poor global
search ability, which may struggle to explore optimal solutions and fall into local optimal in a larger
search space. However, the researchers have responded by addressing these challenges. Various
enhancements of PSO have been proposed and developed over the years, these modifications aim
to overcome the deficiencies of the original algorithm and improve its overall performance, and it
can be classified into several distinct strategies:

The Parameter adaptation on PSO has become the most appealing in research works, as for the
time-varying acceleration coefficients introduced by Ratnaweera and Halgamuge aim to adjust the
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acceleration coefficients over time to reduce the cognitive component and increase the social
component, particles are encouraged to explore the search space focusing on the population’s bets
position [8], time-varying inertia weights proposed by Yang & al which have been developed by
dynamically adjusting the influence of the velocity and position of particles updates throughout the
optimization process [9], adaptive inertial weight proposed by Shi and Eberhart [10].

Population Topology Structure on PSO is a strategy to enhance the PSO Algorithms, each particle
evaluates the information based on all other particles. However, the population size is considered
challenging to determine a suitable size due to increased computation costs and slower
convergence with a larger population while a smaller population may struggle to a local optimal, in
this case, the researchers have explored the concept of dividing the population into multiple
subgroups by investigating different topology structures. Yu & al proposed a surrogate-assisted
hierarchical particle swarm optimizer [11], Zhang and al proposed an enhancing comprehensive
learning particle swarm optimization with local optima topology [12], Zhang & al proposed a
terminal crossover and steering-based particle swarm optimization algorithm with disturbance
[13].

Novel learning strategies, Comprehensive learning particle swarm optimizer for global
optimization of multimodal functions developed by Liang & al, CLPSO has demonstrated improved
convergence speed and high-quality solution, it aims to improve exploration and exploitation
capabilities from different areas of the search space. This approach has found applications in
various domains, including engineering, data mining, and optimization of machine learning models
[14]. Zhan and al presented an orthogonal learning strategy for PSO [15]. A social learning PSO
presented by Zhang et al [16].

Hybridization-based PSO algorithm refers to a class of optimization strategies that combines
Particle Swarm Optimization (PSO) with other computational algorithms such as local search
algorithms, evolutionary algorithms, or machine learning methods to enhance the performance and
capabilities of the basic PSO Algorithm. Hybrid PSO Algorithms can handle complex optimization
problems more effectively. Angeline proposed an evolutionary selection operator [17], a hybrid
firefly and particle swarm optimization algorithm for computationally expensive numerical
problems presented by Aydilek [18]. Jindal and Bedi proposed an improved hybrid ant particle
algorithm for reducing travel time in vanets [19].

Recent studies have emphasized the role of optimization in advancing both structural and design
engineering. For instance, Muthusamy and Patil (2023) demonstrated that applying optimization
techniques to nano-reinforced concrete composites significantly enhances their mechanical
properties, underlining the benefits of material-level optimization in structural applications [20].
In the field of design methodology, Guo, Allen, and Mistree (2024) examined optimization versus
satisficing strategies in engineering design, providing valuable insights into managing multi-
objective and uncertain design problems [21].

This work aims to contribute a novel enhancement of the PSO hybrid with the learning strategy
approach and the levy flight distribution treated for design optimization problems.

2. TVETPSO Algorithm

The TVETPSO has been recently developed as a new hybrid algorithm that incorporates the swarm
features with human learning allowing the population to learn & develop their skills using the
human approach for good exploration and exploitation by simulating multiple mathematical
modeling techniques, mitigating their weaknesses. This hybridization-based optimization process
is capable of navigating complex, multimodal landscapes where traditional algorithms might
struggle which is particularly robust in engineering design in a complex problem that requires
precision in the mechanical field to enhance the quality solution against the local optima in the
search space [22].
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2.1. PSO Algorithm Overview

PSO is a population-based optimization algorithm inspired by social behaviour in birds and fish. It
operates using a swarm of particles, each representing a potential solution to an optimization
problem. Each particle adjusts its position in the solution space based on its own experience and
the experience of neighbour particles [2]. These Particles are initialized with random positions and
velocities within the search space. Each particle's velocity is updated based on its own best-known
position and the best-known position of its neighbors:

V,‘-I: WV§1+c1 randl,‘-j*(Pbest?-X?) +czrand2,‘-1*(Gbest§1-X?) (1)

Where Pbestidis the best position of ith particle of the dth dimension, Gbest§Jl is the global best
position of ith particle of the dth dimension, c; and c, are the acceleration coefficients. W is the

inertia weight and randlid and rande1 are two uniform random numbers defined in dth dimension
in the range [0, 1]. The new position of the particle is updated as:

Xi=xi+V? @

In this hybrid approach, the standard PSO method is enhanced by introducing three different
strategies for updating the positions of particles, which can be respectively chosen based on certain
criteria.

2.2. TVET Algorithm Overview

TVET algorithm is a relatively recent metaheuristic optimization algorithm inspired by the Human
Learning process in educational environments that mimics how candidates learn from instructors
and each other, making it particularly effective for solving complex optimization problems.

The TVET algorithm consists of three main phases: the Theory Education Phase, the Practical
Education Phase, and the Improving Individual Skills Phase. These phases simulate the process of
education and training in a classroom environment [23].

2.2.1 Theory Education Phase

Theoretical Knowledge Transfer: The instructor imparts knowledge to the candidates (other
solutions) to improve their fitness. This is established by adjusting the candidates' positions
towards the instructors' position using a predefined step size. The update for a candidate learner
can be mathematically expressed as:

Xnew?zX,d+r. (Id-SXfI) (3)

Where Xnewis the updated position of ith particle of the dth dimension, r is a uniform random in
the range [0, 1], I4 is the instructor of the member’s candidate of the dth dimension and S is a
random number from the set [1, 2].

2.2.2 Practical Education Phase

Workshop Training: In this phase, candidates interact with each other to enhance their knowledge.
Each candidate attempts to improve their position based on the performance of others. A typical
update for a candidate in this phase is represented as:

t
Xnew?: L;+r. 7,( 14- X,d) (4)
Where t denotes the actual generation and T is the generation’s number.

2.2.3 Improving Individual Skills Phase

Self-Improvement: The candidate makes a small change by performing their own experience &
learning. A typical update for a learner in this phase is represented as:
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Xnew!=X0+(1 - 2.9, %t””d] 5)

Where lby and uby represent the lower and upper boundaries.
2.2.4 Computation Complexity of TVETPSO

The initialization step for an optimization problem has a complexity of O(Pn) where P is the number
of population members and N is the number of decision variables. Each iteration, which includes
updates during both the PSO and TVET phases, incurs a complexity of O(4PnT) with T representing
the maximum number of iterations. Thus, the overall complexity of the TVETPSO algorithm is
O(Pn(1+4T)).

Table 1. Pseudo-code of TVETPSO Algorithm

TVETPSO Algorithm

Define Optimization Problem: Objective function, Constraint functions and variables
Input parameter settings: Population, Dimension, Iterations, and PSO Coefficients...
Initiate population, velocity & function evaluation.

Update Gbest & Pbest.

Fori=1:T
For j=1:N
Using equation (1) to update velocity.

Using equation (2) to update Position.

Update Pbest & Gbest based on improved fitness.

Set the Gbest as an Instructor of the ith population.

Phase 1: Calculate the new position by equation (3)

Update the new position for improved fitness.

Phase 2: Calculate new position by equation (4)

Update the new position for improved fitness.

Phase 3: Calculate new position by equation (5)

Update the new position for improved fitness.

End
Storage of the Instructor.

End
Output

3. Levy Flight

Levy flights are intriguing stochastic processes that have been observed in various natural systems,
including animal foraging patterns and the movement of particles in complex environments. These
processes are characterized by their erratic trajectories, which can sometimes lead to significant
distances being covered in a short time. The concept of the Levy distribution, developed by the
French mathematician Paul Lévy in the 1930s, plays a crucial role in understanding these
movements. Recent applications of Levy flight principles have emerged in optimization techniques,
such as algorithms designed for solving complex problems in logistics to machine learning [24].

In optimization contexts, Levy flight has become a valuable tool. Algorithms that incorporate this
method, such as those inspired by natural phenomena like cuckoo breeding behaviours, benefit
from enhanced exploration capabilities. By enabling occasional large leaps in the search space, Levy
flight helps avoid local optima, thereby improving the likelihood of finding a global solution. This is
particularly useful in complex landscapes where traditional search methods might struggle. Due to
the intricate characteristics of the Levy distribution, researchers often rely on the Mantegna
algorithm for efficient simulation. The size of each step taken during a Levy flight can be calculated
using the formula:

. U
Flightg;,. = —1/ (6)
lv[7Y
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In this equation, y=1.5 is a defining parameter of the Levy distribution, while y and v are random
variables derived from a normal distribution, represented as:

- 2
{u N(o, T4 %
v~N(0,12)
Here, 7,, and 7, are defined by:
r'(l+y)sin (my/2) i

T Ay 22072 8)
T, =1
Consequently, the effective step size for particles can be expressed as:
PSsize = p X Flightsiz, (9)

4. Enhanced TVETPSO Algorithm with Levy Flight Distribution: LF_TVETPSO

In this study, we present a novel enhancement to the TVETPSO algorithm by integrating Levy flight
into the self-improvement phase, aiming to improve the algorithm's ability to exploit particle
experiences and facilitate more effective learning processes. Traditional TVETPSO relies on
standard movement strategies, which can sometimes limit exploration and lead to local optima. By
incorporating Levy flight, characterized by occasional large jumps and frequent smaller steps, our
approach mimics natural foraging behaviors, allowing for a dynamic exploration of the solution
space. This enhancement offers several advantages: it improves exploration by enabling particles
to make substantial leaps to escape local optima, facilitates better utilization of past experiences by
encouraging particles to refine their search strategies based on promising regions, and promotes
dynamic learning where particles adapt their movement patterns based on accumulated
knowledge. Additionally, this integration balances exploration and exploitation, creating a more
robust optimization process. Overall, our enhancement to TVETPSO represents a significant
advancement in particle swarm optimization methodologies, leading to improved performance and
opening new research avenues in optimization techniques applicable across various fields, from
engineering to machine learning.

by-1b
Xnew?=x4+(1 - 2.r). (ud—td) + PSsize (10)

Table 2. Pseudo-code of: TVETPSO algorithm

LF_TVETPSO Algorithm

Define Optimization Problem: Objective function, Constraint functions and variables
Input parameter settings: Population, Dimension, Iterations, and PSO Coefficients...
Initiate population, velocity & function evaluation.

Update Gbest & Pbest.

Fori=1:T
For j=1:N
Using equation (1) to update velocity.

Using equation (2) to update Position.

Update Pbest & Gbest based on improved fitness.

Set the Gbest as an Instructor of the ith population.

Phase 1: Calculate the new position by equation (3).

Update the new position for improved fitness.

Phase 2: Calculate new position by equation (4).

Update the new position for improved fitness.

Flight e = ——

vl
PSsize = p X Flights;ze
Phase 3: Calculate new position by equation:
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Xnewd=X%+(1 - 2.r). w + PSgize
Update the new position for improved fitness.
End
Storage the Instructor.

End
Output

5. Numerical Analysis and Comparison
5.1 Benchmark Functions

In this section, we conduct comparative experiments to evaluate our proposed LF_TVETPSO,
alongside several other configurations, including the TVETPSO algorithm, the basic TEVT
algorithm, and PSO. These experiments are performed on unimodal and multimodal benchmark
functions in a 30-dimensional space. For the experiments, the population size is set to 50
individuals, and the algorithms are allowed to run for 2000 iterations. The algorithms are
implemented in MATLAB and executed on a system with an Intel Core i7 processor running at 2.90
GHz. The system has 4 physical cores, 8 logical processors, and is equipped with 16 GB of RAM.

5.2 Results and Discussion

The performance of the proposed optimization algorithm LF_TVETPSO along with other
algorithms; TVETPSO, TVET, and PSO was evaluated on 12 benchmark functions, each representing
different optimization problems. The algorithms were compared based on statistical measures,
including the best, mean, worst, and standard deviation of the objective values. A detailed analysis
of the results reveals significant differences in the performance of these algorithms across various
benchmark functions. Overall, the LF_TVETPSO algorithm demonstrated superior performance
across most functions, consistently providing the best results for both the best and mean objective
values. This indicates that the LF_TVETPSO algorithm is highly effective in finding optimal solutions
within the search space. The TVETPSO algorithm emerged as a strong contender, often providing
consistent results with low standard deviation, making it a more reliable option than TVET and
PSO. For example, in F2 and F4, TVETPSO performed well with minimal variation in the results,
demonstrating its robustness. However, it did not always outperform LF_TVETPSO in terms of the
best objective value, as LF_TVETPSO typically achieved optimal solutions. In contrast, the TVET
algorithm showed poor performance across most functions, particularly in terms of stability. It
exhibited high variability, as evidenced by its very large standard deviations, which indicates that
it struggled to find good solutions consistently. While the TVET algorithm did perform better on
some functions, such as F5, where it reached a significantly lower best value, its high variance (e.g.,
Std for F5) renders it less reliable for practical applications. On the other hand, PSO exhibited a
mixed performance. While it showed stability on several functions, it did not achieve the same level
of accuracy as LF_TVETPSO in most cases. For instance, in F1 and F2, PSO performance was slightly
worse than TVETPSO, and it struggled to match the optimality achieved by LF_TVETPSO.

In terms of worst values, TVET performed poorly, with some instances of extremely high worst
values (e.g., F1), highlighting its instability. The analysis also highlighted that LF_TVETPSO
consistently provided the lowest worst values which is particularly suited for problems where
global optimality is crucial, especially for continuous objective functions (e.g., F1, F2, and F3).
TVETPSO, with its smaller standard deviation, showed more consistent results across all functions.
However, it was still outperformed by LF_TVETPSO in terms of optimality, offering consistently
good performance without the large variances observed in TVET and PSO. The analysis of the
convergence behavior highlights that LF_TVETPSO consistently demonstrated the best
convergence behavior, approaching the optimal solution across all functions. This rapid
convergence, combined with its ability to maintain stability in its objective values, makes
LF_TVETPSO the most suitable choice for problems where both optimality and fast convergence
are crucial. In summary, LF_TVETPSO is the best-performing algorithm across most of the
benchmark functions, achieving superior optimality. TVETPSO is a strong competitor, especially
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when consistency is prioritized, while TVET and PSO show weaknesses in stability and
convergence.

Table 3. Benchmark functions

Type Name Benchmark Functions Search Range fmin
Sphere (F1) fi(x)= Y2, %2, [-100,100]P 0
Schwefel 2.22
(F2) £, ()= 221 Ix;] + TT24 Ixil, [-10,10]° 0
Schwefel 1.2 Sy
chwefel 1. D
(F3) £, (x)= Z in [-100, 100]
i=1 j=1
SCh""(eng 2.21 f;(x)=max(|x|) ,i=1,2,..,D [—100,100]P 0
D
Rosenbrock _ 242 2 _ D
Unimodal (F5) fS(X)_Z 100% (e x7) + (1) [~10,10] 0
=
Step (F6) £, (x)= Z 100 (x5 1-x2) 2+ (1-%,)? [=10, 10]P 0
=
Quartic (F7) f,(x)= Z ix*+random [0,1] [-1.28,1.28]P 0
i
Rastrigin (F8) fa(x)= Z [x2-10 cos(2mx;) +10] [-5.12,5.12]P 0
i=1
1
fo(x)=-20 -0.2 |=¥P x2]-
Ackley (F9) 9(x)=-20 exp ( (b2t X ) [-32,32]° 0
exp(T2; cos2mx;) +20+e,
Griewank __1 D o2 1D X D
(F10) f1o(X)—4000 21 Xi - i=1\/—i+1' [-600, 600] 0
D-1
T . 2 5
fll(x)=5 10 sin”(my, )+ Z(yi-l) [1+10sin?(:
. i1
Penalized1 | >P, u(x;,10,100,4),where yi=1+0.25(xi+1), [~50,50]P 0
(F11) k(x-a)™, x>a
u(x;,a,k,m)= 0, -asx;<a
k(-x;-a)™,x;<-a
D
Multimodal f1o(x)=0.1[ sin 3y, + Z(yi-l)z [1+sin®(3my,
i=1 b
Penalized 2  +(X,-1)?[1+ sinz(ZnyD) 11+ Z u(x;,10,100,4) (~50,50]P 0
(F12) =1 '

where
k(x;-a)™, x;>a
yi=1+0.25(xi+1),(xi,a,k,m)= 0, -asx;<a
k(-x;-a)™ x;<-a
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Table 4. Statistical Results on Benchmark Functions for 30-D

Benchmark Statistics ~ LF_TVETPSO TVETPSO PSO TVET
Functions

Best 0 0.001337248  0.001629439 0.00238084
Mean 0 0.00162635 2000.00686 0.002666359
F1 Worst 0 0.001875768  10000.00032 0.002953222
Std 0 0.00019579 4472.132297 0.000270805
Best 1.3946E-205 0.015149279  20.00415664 0.020526395
Mean 4.3539E-203 0.016147028  38.00205737 0.021866472
F2 Worst 1.3464E-202 0.016946148  50.00043276 0.023409264
Std 0 0.000836006  13.03648617 0.001186268
Best 0 0.000190805  6256.753985 0.005162815
Mean 0 0.000338658  8246.741513 0.006342233
F3 Worst 0 0.000539546  10936.18582 0.007721469
Std 0 0.00012778 2408.281279 0.000980763
Best 3.6578E-206 0.015166071  3.244514278 0.018335134
Mean 6.7901E-203 0.016582498  4.100603733 0.020411718
F4 Worst 1.7391E-202 0.01816344 4.622138865 0.021474328
Std 0 0.001125214  0.569124304 0.001281094
Best 9.499501437 27.3016577 36.94097885 27.77304531
Mean 11.0526833 27.4030115 364.655996 27.84780643

F5 Worst 14.03659589 27.59000568  1020.253114 27.921559
Std 1.766692996 0.109391857 3942630169 0.058047578
Best 2.37275E-31 0.000148122  0.002409307 0.044862035
Mean 9.17877E-22 0.006875711  0.021803873 0.061123303
F6 Worst 4.58938E-21 0.012313232  0.066649544 0.114352154
Std 2.05244E-21 0.006154542  0.026339094 0.029810594
Best 3.17275E-05 2.60452E-05  0.011445317 2.78137E-06
Mean 6.32971E-05 8.94719E-05  1.089195571 6.02673E-06
F7 Worst 0.000101789 0.000160996  2.701960776 8.39017E-06
Std 2.59144E-05 5.54262E-05 1.46812863 2.60906E-06
Best 0 0.000670282  114.1657152 0.001220756
Mean 0 7364846508  163.8488413 23.16191342
F8 Worst 0 18.9080737 209.3922034 59.54711588
Std 0 10.08961327  41.91674238 31.73530702
Best 4.44089E-15 0.009500604  0.026829572 0.011896258
Mean 11.94236415 0.01009854 5.867713731 0.012817086
F9 Worst 19.93811644 0.010429866  14.72110139 0.013964903
Std 10.90187094 0.000370673  7.964028929 0.000821668
Best 0 0.002826306  0.034432158 0.003386444
Mean 0 0.007835158  18.30369424 0.009818895
F10 Worst 0 0.016502169  90.94503065 0.015055563
Std 0 0.006640445  40.60794429 0.005599352
Best 1.7803E-32 1.74137E-11  0.000341553 0.004328196

Mean 0.020733804 7.9426E-10 0.02276477 0.00529677
F11 Worst 0.10366902 2.92922E-09  0.090874565 0.007358588
Std 0.046362195 1.21889E-09 0.03864991 0.001191502

Best 7.94278E-30 456818E-11  0.006277228 0.11670952
Mean 0.158088011 746563E-08  0.025187377 0.158921356
F12 Worst 0.549076372 3.59808E-07  0.042455793 0.208057787
Std 0.2257989 1.59442E-07  0.015043878 0.033016445
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6. Engineering Design Problems

The engineering design problems enable the evaluation of the algorithm’s performance and
develop efficient solutions for a wide range of complexities. In this section, we have chosen three
constraint design applications; Cantilever design problem, Tree bar truss design problem, and Gear
Train design problem to validate the proposed algorithm and assess its effectiveness in handling
constraint [25]. These problems are often standard in the engineering optimization field with
appropriate measures such as the convergence rate and the efficiency of the solutions across
varying problem complexities. We conducted experiments using:

Number of populations: 500
Number of iterations: 2000

c_1 and c_2 are between 2 and 2.99
w: between 0.4 and 0.99

6.1 Cantilever Beam Design Problem

The cantilever beam design problem is a constrained optimization problem, as shown in Fig 2. This
problem is defined by five hollow blocks which are rigid by one end while the other end is left free
which is applied by a vertical force. This design optimization aims to minimize the weight of the
cantilever. The mathematical expression is given by the equations below:

Minimize
f(x) =0.0624(x; + x5 + x5 + x4 + x5) (1)
Subject to:

61 37 19 7 1
9 = F+ Ftz+ 3+ 3-1=<0 (12)
Xy Xz X3 Xz Xg

The design variables have bounded as follows: 0.01 < x; <100, i=1, 2,3,4,5

X

Fig. 1. Cantilever beam design

6.1.1 Results and Discussion for Cantilever Beam Study

The results show good optimum solutions of the design variables for the LF-TVETPSO, TVETPSO,
and PSO basic algorithms, as presented in Table 5. The outcomes demonstrate that the LF-TVETPSO
algorithm effectively addresses the cantilever beam problem by minimizing its weight.

Table 5. Design Variables of Cantilever Beam Design Problem

Design Variables LF-TVETPSO TVETPSO ];)e?sci)c
x1 6.0231 6.0230 6.0085
x2 5.3202 5.3056 5.3078
x3 4.4794 4.4880 4.4982
x4 3.5038 3.5057 3.5026
x5 2.1473 2.1514 2.1566
f 1.34 1.34 1.34
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6.2 Tree Bar Truss Design Problem

This optimization problem is an optimal design to minimize the volume of the three-bar truss
structure subject to stress constraints shown in Fig 2. The mathematical formulation is described
below. Consider Design Variables: X= [x, x,] =[Al, A2]

Minimize
fx) = (2vV2 %, + x,)1 (13)
Subject to:
g1(x) = %P— c<0 (14)
g2(x) = — 2 p_s<o0 (15)

V2x2 + 2x1x,

xX)=—=——P—-0<0 (16)
93 \/ExZ + X1
The design variables are bounded as follows: 0.05 < x4, x,< 2

Where: P= 2KN/cm2, 0 = 2KN/cm2, 1= 100cm

Fig. 2. Tree Bar Truss design problem

6.2.1 Results and Discussion for Tree Bar Truss Study

We conducted a numerical analysis between the LF-TVETPSO algorithm, TVETPSO and PSO Basic.
The results are presented in Table 6 indicating that LF-TVETPSO achieved optimal solutions
demonstrating the effectiveness of LF-TVETPSO in addressing this constraint problem.

Table 6. Design Variables of Tree bar Truss Design Problem

Design LE-TVETPSO TVETPSO PsO
Variables Basic
x1 0.7888 0.7888 0.7887
X2 0.4080 0.4080 0.4083
f 263.8958 263.8959 263.8958

6.3 Gear Train Design Problem

This structural issue is commonly identified as an unconstrained optimization problem. As
demonstrated in Fig. 3, the core challenge revolves around determining the appropriate gear ratio
within the minimized map. The design variables A, B, C, and D are crucial to solving this

10
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optimization problem [20]. The mathematical model representing this problem is given by
equation [16]:
Consider X = [X1,X2,X3,%X4] = [na,np,nc,Np]
Minimize
1 X)X3 2 (16)
f&)= (531 * 3 x,’

Variable range 12 < Xq,X2,X3,%4 < 60

Fig. 3. Gear Train structure design

6.3.1 Results and Discussion for Gear Train Study

The optimization result was successfully obtained by using LF-TVETPSO, delivering excellent
outcomes as presented in Table VI. The results highlight the efficiency of LF-TVETPSO in addressing
the Gear Train design optimization.

Table 9. Design Variables of Gear Train Design Problem

Design Variables LF-TVETPSO TVETPSO PSO
x1 12.0167 12.1067 32.3002
x2 37.3837 18.1457 12.0000
x3 53.6627 58.5048 50.8193
x4 58.0220 26.0259 52.8632
f 0 1.0446e-24 8.0026e-19

7. Conclusion

Based on the results obtained in this study, we propose an enhanced optimization approach that
integrates the Levy flight strategy into the TVETPSO algorithm. The LF_TVETPSO algorithm itself is
inspired by human learning behavior, allowing particles to improve their positions through a
guided learning process. By incorporating the Levy flight mechanism, the algorithm achieves a
more effective balance between exploration and exploitation, which is critical for avoiding local
optima and enhancing the overall convergence speed. This integration enables the algorithm to
explore the search space more thoroughly while still refining promising solutions efficiently,
leading to improved optimization outcomes.

The performance of the proposed approach was evaluated using a set of well-established
benchmark functions, which serve as standard tests for optimization algorithms. The results
indicate that the LF_TVETPSO algorithm, augmented with Levy flight, consistently delivers accurate
and robust solutions across diverse problem types. In addition to synthetic benchmarks, the
algorithm has also been applied to practical design optimization problems within the field of
mechanical engineering; Cantilever design problem, Tree bar truss design problem, and Gear Train
design problem demonstrating its ability to handle complex, real-world application effectively.
These results highlight not only the reliability and efficiency of the proposed approach but also its
versatility in addressing a wide range of optimization challenges.
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Looking forward, further refinements of the LF_TVETPSO algorithm are planned to enhance its
performance even further. Potential improvements include adaptive parameter tuning,
hybridization with other optimization strategies, and the incorporation of problem-specific
metaheuristic optimization to tailor the algorithm to specialized applications in Mechanical
Structures. By continuing to refine and expand the capabilities of the proposed method, we aim to
establish it as a powerful and practical tool for solving complex engineering optimization problems.
Overall, the integration of human-inspired learning mechanisms with Levy flight strategies
represents a promising direction for advancing optimization techniques and addressing
increasingly challenging design and engineering problems.
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