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1. Introduction 

Optimization problems in the real world have become increasingly complex, requiring more 
efficient solving methods [1]. The Particle Swarm Optimization algorithm has captured a surge of 
interest among researchers, it starts with a population of particles exploring the search space, these 
particles can process and analyze information while retaining memory of the best position 
encountered, and the algorithm combines knowledge and experiences of the swarm to converge 
towards the optimal solution [2]. This cooperative approach enables the particles to capitalize on 
the wisdom of the swarm. The PSO algorithm has proven to be effective and discovering solutions 
to various optimization problems in the real- world [3], it has demonstrated successful application 
in various engineering fields involved in mechanical engineering [4], biomedical image registration 
[5], communication networks [6], and flexible job-shop scheduling [7]. Although PSO is known for 
its simplicity and fast convergence rate, it’s not without its limitations. Researchers have identified 
two notable shortcomings: premature convergence too early in the search process and Poor global 
search ability, which may struggle to explore optimal solutions and fall into local optimal in a larger 
search space. However, the researchers have responded by addressing these challenges. Various 
enhancements of PSO have been proposed and developed over the years, these modifications aim 
to overcome the deficiencies of the original algorithm and improve its overall performance, and it 
can be classified into several distinct strategies: 

The Parameter adaptation on PSO has become the most appealing in research works, as for the 
time-varying acceleration coefficients introduced by Ratnaweera and Halgamuge aim to adjust the 
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acceleration coefficients over time to reduce the cognitive component and increase the social 
component, particles are encouraged to explore the search space focusing on the population’s bets 
position [8], time-varying inertia weights proposed by Yang & al which have been developed by 
dynamically adjusting the influence of the velocity and position of particles updates throughout the 
optimization process [9], adaptive inertial weight proposed by Shi and Eberhart [10]. 

Population Topology Structure on PSO is a strategy to enhance the PSO Algorithms, each particle 
evaluates the information based on all other particles. However, the population size is considered 
challenging to determine a suitable size due to increased computation costs and slower 
convergence with a larger population while a smaller population may struggle to a local optimal, in 
this case, the researchers have explored the concept of dividing the population into multiple 
subgroups by investigating different topology structures. Yu & al proposed a surrogate-assisted 
hierarchical particle swarm optimizer [11], Zhang and al proposed an enhancing comprehensive 
learning particle swarm optimization with local optima topology [12], Zhang & al proposed a 
terminal crossover and steering-based particle swarm optimization algorithm with disturbance 
[13].  

Novel learning strategies, Comprehensive learning particle swarm optimizer for global 
optimization of multimodal functions developed by Liang & al, CLPSO has demonstrated improved 
convergence speed and high-quality solution, it aims to improve exploration and exploitation 
capabilities from different areas of the search space. This approach has found applications in 
various domains, including engineering, data mining, and optimization of machine learning models 
[14].  Zhan and al presented an orthogonal learning strategy for PSO [15]. A social learning PSO 
presented by Zhang et al [16]. 

Hybridization-based PSO algorithm refers to a class of optimization strategies that combines 
Particle Swarm Optimization (PSO) with other computational algorithms such as local search 
algorithms, evolutionary algorithms, or machine learning methods to enhance the performance and 
capabilities of the basic PSO Algorithm. Hybrid PSO Algorithms can handle complex optimization 
problems more effectively. Angeline proposed an evolutionary selection operator [17], a hybrid 
firefly and particle swarm optimization algorithm for computationally expensive numerical 
problems presented by Aydilek [18]. Jindal and Bedi proposed an improved hybrid ant particle 
algorithm for reducing travel time in vanets [19]. 

Recent studies have emphasized the role of optimization in advancing both structural and design 
engineering. For instance, Muthusamy and Patil (2023) demonstrated that applying optimization 
techniques to nano-reinforced concrete composites significantly enhances their mechanical 
properties, underlining the benefits of material-level optimization in structural applications [20]. 
In the field of design methodology, Guo, Allen, and Mistree (2024) examined optimization versus 
satisficing strategies in engineering design, providing valuable insights into managing multi-
objective and uncertain design problems [21].  

This work aims to contribute a novel enhancement of the PSO hybrid with the learning strategy 
approach and the levy flight distribution treated for design optimization problems. 

2. TVETPSO Algorithm 

The TVETPSO has been recently developed as a new hybrid algorithm that incorporates the swarm 
features with human learning allowing the population to learn & develop their skills using the 
human approach for good exploration and exploitation by simulating multiple mathematical 
modeling techniques, mitigating their weaknesses. This hybridization-based optimization process 
is capable of navigating complex, multimodal landscapes where traditional algorithms might 
struggle which is particularly robust in engineering design in a complex problem that requires 
precision in the mechanical field to enhance the quality solution against the local optima in the 
search space [22]. 
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2.1. PSO Algorithm Overview 

PSO is a population-based optimization algorithm inspired by social behaviour in birds and fish. It 
operates using a swarm of particles, each representing a potential solution to an optimization 
problem. Each particle adjusts its position in the solution space based on its own experience and 
the experience of neighbour particles [2]. These Particles are initialized with random positions and 
velocities within the search space. Each particle's velocity is updated based on its own best-known 
position and the best-known position of its neighbors: 

Vi
d= wVi

d+c1rand1i
d*(Pbesti

d-Xi
d)+c2rand2i

d*(Gbesti
d-Xi

d) (1) 

Where Pbesti
dis the best position of ith particle of the dth dimension, Gbesti

d is the global best 
position of ith particle of the dth dimension, c1 and c2 are the acceleration coefficients. W is the 

inertia weight and rand1i
d and rand2i

d are two uniform random numbers defined in dth dimension 
in the range [0, 1]. The new position of the particle is updated as: 

Xi
d=Xi

d+Vi
d (2) 

In this hybrid approach, the standard PSO method is enhanced by introducing three different 
strategies for updating the positions of particles, which can be respectively chosen based on certain 
criteria. 

2.2. TVET Algorithm Overview 

TVET algorithm is a relatively recent metaheuristic optimization algorithm inspired by the Human 
Learning process in educational environments that mimics how candidates learn from instructors 
and each other, making it particularly effective for solving complex optimization problems. 

The TVET algorithm consists of three main phases: the Theory Education Phase, the Practical 
Education Phase, and the Improving Individual Skills Phase. These phases simulate the process of 
education and training in a classroom environment [23]. 

2.2.1 Theory Education Phase 

Theoretical Knowledge Transfer: The instructor imparts knowledge to the candidates (other 
solutions) to improve their fitness. This is established by adjusting the candidates' positions 
towards the instructors' position using a predefined step size. The update for a candidate learner 
can be mathematically expressed as: 

Xnewi
d=Xi

d+r.(Id-SXi
d) (3) 

Where Xnew𝑖
𝑑is the updated position of ith particle of the dth dimension, r is a uniform random in 

the range [0, 1], Id is the instructor of the member’s candidate of the dth dimension and S is a 
random number from the set [1, 2]. 

2.2.2 Practical Education Phase 

Workshop Training: In this phase, candidates interact with each other to enhance their knowledge. 
Each candidate attempts to improve their position based on the performance of others. A typical 
update for a candidate in this phase is represented as:  

Xnewi
d= Id+r.

t

T
( Id- Xi

d) (4) 

Where t denotes the actual generation and T is the generation’s number.  

2.2.3 Improving Individual Skills Phase 

Self-Improvement: The candidate makes a small change by performing their own experience & 
learning. A typical update for a learner in this phase is represented as: 
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Xnewi
d=Xi

d+(1 - 2.r). 
(ubd-lbd)

t
 (5) 

Where lbd and ubd represent the lower and upper boundaries. 

2.2.4 Computation Complexity of TVETPSO 

The initialization step for an optimization problem has a complexity of O(Pn) where P is the number 
of population members and N is the number of decision variables. Each iteration, which includes 
updates during both the PSO and TVET phases, incurs a complexity of O(4PnT) with T representing 
the maximum number of iterations. Thus, the overall complexity of the TVETPSO algorithm is 
O(Pn(1+4T)). 

Table 1. Pseudo-code of TVETPSO Algorithm 

TVETPSO Algorithm 

Define Optimization Problem: Objective function, Constraint functions and variables 
Input parameter settings: Population, Dimension, Iterations, and PSO Coefficients… 

Initiate population, velocity & function evaluation. 
Update Gbest & Pbest. 

For i=1:T 
For j=1:N 

Using equation (1) to update velocity. 
Using equation (2) to update Position. 

Update Pbest & Gbest based on improved fitness. 
Set the Gbest as an Instructor of the ith population. 
Phase 1: Calculate the new position by equation (3) 

Update the new position for improved fitness. 
Phase 2: Calculate new position by equation (4) 
Update the new position for improved fitness. 

Phase 3: Calculate new position by equation (5) 
Update the new position for improved fitness. 

End 
Storage of the Instructor. 

End 
Output 

3.  Levy Flight  

Levy flights are intriguing stochastic processes that have been observed in various natural systems, 
including animal foraging patterns and the movement of particles in complex environments. These 
processes are characterized by their erratic trajectories, which can sometimes lead to significant 
distances being covered in a short time. The concept of the Levy distribution, developed by the 
French mathematician Paul Lévy in the 1930s, plays a crucial role in understanding these 
movements. Recent applications of Levy flight principles have emerged in optimization techniques, 
such as algorithms designed for solving complex problems in logistics to machine learning [24]. 

In optimization contexts, Levy flight has become a valuable tool. Algorithms that incorporate this 
method, such as those inspired by natural phenomena like cuckoo breeding behaviours, benefit 
from enhanced exploration capabilities. By enabling occasional large leaps in the search space, Levy 
flight helps avoid local optima, thereby improving the likelihood of finding a global solution. This is 
particularly useful in complex landscapes where traditional search methods might struggle. Due to 
the intricate characteristics of the Levy distribution, researchers often rely on the Mantegna 
algorithm for efficient simulation. The size of each step taken during a Levy flight can be calculated 
using the formula:  

𝐹𝑙𝑖𝑔ℎ𝑡𝑠𝑖𝑧𝑒 =
𝜇

|𝜈|
1
𝛾⁄

 (6) 
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In this equation, γ=1.5 is a defining parameter of the Levy distribution, while 𝜇 and 𝜈 are random 
variables derived from a normal distribution, represented as: 

{
𝜇~𝑁(0, 𝜏𝜇

2)

𝜈~𝑁(0, 𝜏𝑣
2)

 (7) 

Here, 𝜏𝑢 and 𝜏𝜐 are defined by: 

{
𝜏𝑢 = {

𝛤(1 + 𝛾)𝑠𝑖𝑛⁡(𝜋𝛾/2)

𝛤(1 + 𝛾/2)𝛾2(𝛾−1)/2
}1/𝛾

𝜏𝜐 = 1

 (8) 

Consequently, the effective step size for particles can be expressed as: 

𝑃𝑆𝑠𝑖𝑧𝑒 = 𝜌 × 𝐹𝑙𝑖𝑔ℎ𝑡𝑠𝑖𝑧𝑒 (9) 

4. Enhanced TVETPSO Algorithm with Levy Flight Distribution: LF_TVETPSO 

In this study, we present a novel enhancement to the TVETPSO algorithm by integrating Levy flight 
into the self-improvement phase, aiming to improve the algorithm's ability to exploit particle 
experiences and facilitate more effective learning processes. Traditional TVETPSO relies on 
standard movement strategies, which can sometimes limit exploration and lead to local optima. By 
incorporating Levy flight, characterized by occasional large jumps and frequent smaller steps, our 
approach mimics natural foraging behaviors, allowing for a dynamic exploration of the solution 
space. This enhancement offers several advantages: it improves exploration by enabling particles 
to make substantial leaps to escape local optima, facilitates better utilization of past experiences by 
encouraging particles to refine their search strategies based on promising regions, and promotes 
dynamic learning where particles adapt their movement patterns based on accumulated 
knowledge. Additionally, this integration balances exploration and exploitation, creating a more 
robust optimization process. Overall, our enhancement to TVETPSO represents a significant 
advancement in particle swarm optimization methodologies, leading to improved performance and 
opening new research avenues in optimization techniques applicable across various fields, from 
engineering to machine learning. 

Xnewi
d=Xi

d+(1 - 2.r). 
(ubd-lbd)

t
+⁡𝑃𝑆𝑠𝑖𝑧𝑒 (10) 

Table 2. Pseudo-code of: TVETPSO algorithm 

LF_TVETPSO Algorithm 
Define Optimization Problem: Objective function, Constraint functions and variables 
Input parameter settings: Population, Dimension, Iterations, and PSO Coefficients… 

Initiate population, velocity & function evaluation. 
Update Gbest & Pbest. 

For i=1:T 
For j=1:N 

Using equation (1) to update velocity. 
Using equation (2) to update Position. 

Update Pbest & Gbest based on improved fitness. 
Set the Gbest as an Instructor of the ith population. 
Phase 1: Calculate the new position by equation (3). 

Update the new position for improved fitness. 
Phase 2: Calculate new position by equation (4). 

Update the new position for improved fitness. 

𝐹𝑙𝑖𝑔ℎ𝑡𝑠𝑖𝑧𝑒 =
𝜇

|𝜈|
1
𝛾⁄

 

𝑃𝑆size = ρ × 𝐹𝑙𝑖𝑔ℎ𝑡𝑠𝑖𝑧𝑒  
Phase 3: Calculate new position by equation:  
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5. Numerical Analysis and Comparison 

5.1 Benchmark Functions 

In this section, we conduct comparative experiments to evaluate our proposed LF_TVETPSO, 
alongside several other configurations, including the TVETPSO algorithm, the basic TEVT 
algorithm, and PSO. These experiments are performed on unimodal and multimodal benchmark 
functions in a 30-dimensional space. For the experiments, the population size is set to 50 
individuals, and the algorithms are allowed to run for 2000 iterations. The algorithms are 
implemented in MATLAB and executed on a system with an Intel Core i7 processor running at 2.90 
GHz. The system has 4 physical cores, 8 logical processors, and is equipped with 16 GB of RAM. 

5.2 Results and Discussion 

The performance of the proposed optimization algorithm LF_TVETPSO along with other 
algorithms; TVETPSO, TVET, and PSO was evaluated on 12 benchmark functions, each representing 
different optimization problems. The algorithms were compared based on statistical measures, 
including the best, mean, worst, and standard deviation of the objective values. A detailed analysis 
of the results reveals significant differences in the performance of these algorithms across various 
benchmark functions. Overall, the LF_TVETPSO algorithm demonstrated superior performance 
across most functions, consistently providing the best results for both the best and mean objective 
values. This indicates that the LF_TVETPSO algorithm is highly effective in finding optimal solutions 
within the search space. The TVETPSO algorithm emerged as a strong contender, often providing 
consistent results with low standard deviation, making it a more reliable option than TVET and 
PSO. For example, in F2 and F4, TVETPSO performed well with minimal variation in the results, 
demonstrating its robustness. However, it did not always outperform LF_TVETPSO in terms of the 
best objective value, as LF_TVETPSO typically achieved optimal solutions. In contrast, the TVET 
algorithm showed poor performance across most functions, particularly in terms of stability. It 
exhibited high variability, as evidenced by its very large standard deviations, which indicates that 
it struggled to find good solutions consistently. While the TVET algorithm did perform better on 
some functions, such as F5, where it reached a significantly lower best value, its high variance (e.g., 
Std for F5) renders it less reliable for practical applications. On the other hand, PSO exhibited a 
mixed performance. While it showed stability on several functions, it did not achieve the same level 
of accuracy as LF_TVETPSO in most cases. For instance, in F1 and F2, PSO performance was slightly 
worse than TVETPSO, and it struggled to match the optimality achieved by LF_TVETPSO.  

In terms of worst values, TVET performed poorly, with some instances of extremely high worst 
values (e.g., F1), highlighting its instability. The analysis also highlighted that LF_TVETPSO 
consistently provided the lowest worst values which is particularly suited for problems where 
global optimality is crucial, especially for continuous objective functions (e.g., F1, F2, and F3). 
TVETPSO, with its smaller standard deviation, showed more consistent results across all functions. 
However, it was still outperformed by LF_TVETPSO in terms of optimality, offering consistently 
good performance without the large variances observed in TVET and PSO. The analysis of the 
convergence behavior highlights that LF_TVETPSO consistently demonstrated the best 
convergence behavior, approaching the optimal solution across all functions. This rapid 
convergence, combined with its ability to maintain stability in its objective values, makes 
LF_TVETPSO the most suitable choice for problems where both optimality and fast convergence 
are crucial. In summary, LF_TVETPSO is the best-performing algorithm across most of the 
benchmark functions, achieving superior optimality. TVETPSO is a strong competitor, especially 

Xnewi
d=Xi

d+(1 - 2.r). 
(ubd-lbd)

t
+⁡𝑃𝑆size 

Update the new position for improved fitness. 
End 

Storage the Instructor. 
End 

Output 
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when consistency is prioritized, while TVET and PSO show weaknesses in stability and 
convergence.  

Table 3. Benchmark functions 

Type Name Benchmark Functions Search Range 𝒇𝒎𝒊𝒏 

 
 
 
 

Unimodal 

Sphere (F1) f1(x)= ∑ xi
2D

i=1 , [−100, 100]D 0 
Schwefel 2.22 

(F2) 
f4(x)=∑ |xi|

D
i=1 + ∏ |xi|

D
i=1 , [−10, 10]D 0 

Schwefel 1.2 
(F3) f2(x)= ∑(∑ xj

i

j=1

)

D

i=1

2

 [−100, 100]D  

Schwefel 2.21 
(F4) 

f3(x)= max(|x
i
|) ,i=1,2,…,D [−100, 100]D 0 

Rosenbrock 
(F5) 

f5(x)=∑100×(xi+1-xi
2)

2
+(1-xi)

2

D

i=1

 [−10, 10]D 0 

Step (F6) f6(x)=∑100×(xi+1-xi
2)

2
+(1-xi)

2

D

i=1

 [−10, 10]D 0 

Quartic (F7) f7(x)=∑ ixi
4+random

D

i=1

[0,1] [−1.28, 1.28]D 0 

 
 
 
 
 
 
 
 

Multimodal 

Rastrigin (F8) f8(x)= ∑ [xi
2-10 cos(2πxi)+10]

D

i=1

 [−5.12, 5.12]D 0 

Ackley (F9) 
f9(x)= -20 exp(-0.2√

1

D
∑ xi

2D
i=1 ) -

exp(∑ cos2πxi
D
i=1 )+20+e, 

[−32,32]D 0 

Griewank 
(F10) 

f10(x)=
1

4000
∑ xi

2D
i=1 -∏

xi

√i

D
i=1 +1, [−600, 600]D 0 

Penalized 1 
(F11) 

f11(x)=
π

D
{10 sin2(πy

i
)+∑(y

i
-1)

2
∙[1+10 sin2(πy

i+1
)]+(y

D
-1)

2
D-1

i=1

} 

+∑ u(xi,10,100,4),where y
i
=1+0.25(xi+1)D

i=1 , 

u(xi,a,k,m)={
k(xi-a)

m, xi>a
0,  -a≤xi≤a

k(-xi-a)
m,xi<-a

 

[−50,50]D 0 

Penalized 2 
(F12) 

f12(x)=0.1[ sin2 π3y
i
+∑(y

i
-1)

2
D

i=1

⋅[1+ sin2(3πy
i+1
)] 

+(xn-1)2[1+ sin2(2πy
D
) ]]+∑u(xi,10,100,4)

D

i=1

 

where 

y
i
=1+0.25(xi+1),(xi,a,k,m)={

k(xi-a)
m, xi>a

0,   -a≤xi≤a

k(-xi-a)
m,xi<-a

 

[−50,50]D 0 
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Table 4.  Statistical Results on Benchmark Functions for 30-D 

Benchmark 
Functions 

Statistics LF_TVETPSO TVETPSO PSO TVET 

 
F1 

Best 0 0.001337248 0.001629439 0.00238084 

Mean 0 0.00162635 2000.00686 0.002666359 

Worst 0 0.001875768 10000.00032 0.002953222 

Std 0 0.00019579 4472.132297 0.000270805 

 
F2 

Best 1.3946E-205 0.015149279 20.00415664 0.020526395 

Mean 4.3539E-203 0.016147028 38.00205737 0.021866472 

Worst 1.3464E-202 0.016946148 50.00043276 0.023409264 

Std 0 0.000836006 13.03648617 0.001186268 

 
F3 

Best 0 0.000190805 6256.753985 0.005162815 

Mean 0 0.000338658 8246.741513 0.006342233 

Worst 0 0.000539546 10936.18582 0.007721469 

Std 0 0.00012778 2408.281279 0.000980763 

 
F4 

Best 3.6578E-206 0.015166071 3.244514278 0.018335134 

Mean 6.7901E-203 0.016582498 4.100603733 0.020411718 

Worst 1.7391E-202 0.01816344 4.622138865 0.021474328 

Std 0 0.001125214 0.569124304 0.001281094 

 
F5 

Best 9.499501437 27.3016577 36.94097885 27.77304531 

Mean 11.0526833 27.4030115 364.655996 27.84780643 

Worst 14.03659589 27.59000568 1020.253114 27.921559 

Std 1.766692996 0.109391857 394.2630169 0.058047578 

 
F6 

Best 2.37275E-31 0.000148122 0.002409307 0.044862035 

Mean 9.17877E-22 0.006875711 0.021803873 0.061123303 

Worst 4.58938E-21 0.012313232 0.066649544 0.114352154 

Std 2.05244E-21 0.006154542 0.026339094 0.029810594 

 
F7 

Best 3.17275E-05 2.60452E-05 0.011445317 2.78137E-06 

Mean 6.32971E-05 8.94719E-05 1.089195571 6.02673E-06 

Worst 0.000101789 0.000160996 2.701960776 8.39017E-06 

Std 2.59144E-05 5.54262E-05 1.46812863 2.60906E-06 

 
F8 

Best 0 0.000670282 114.1657152 0.001220756 

Mean 0 7.364846508 163.8488413 23.16191342 

Worst 0 18.9080737 209.3922034 59.54711588 

Std 0 10.08961327 41.91674238 31.73530702 

 
F9 

Best 4.44089E-15 0.009500604 0.026829572 0.011896258 

Mean 11.94236415 0.01009854 5.867713731 0.012817086 

Worst 19.93811644 0.010429866 14.72110139 0.013964903 

Std 10.90187094 0.000370673 7.964028929 0.000821668 

 
F10 

Best 0 0.002826306 0.034432158 0.003386444 

Mean 0 0.007835158 18.30369424 0.009818895 

Worst 0 0.016502169 90.94503065 0.015055563 

Std 0 0.006640445 40.60794429 0.005599352 

 
F11 

Best 1.7803E-32 1.74137E-11 0.000341553 0.004328196 

Mean 0.020733804 7.9426E-10 0.02276477 0.00529677 

Worst 0.10366902 2.92922E-09 0.090874565 0.007358588 

Std 0.046362195 1.21889E-09 0.03864991 0.001191502 

 
F12 

Best 7.94278E-30 4.56818E-11 0.006277228 0.11670952 

Mean 0.158088011 7.46563E-08 0.025187377 0.158921356 

Worst 0.549076372 3.59808E-07 0.042455793 0.208057787 

Std 0.2257989 1.59442E-07 0.015043878 0.033016445 
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6. Engineering Design Problems 

The engineering design problems enable the evaluation of the algorithm’s performance and 
develop efficient solutions for a wide range of complexities. In this section, we have chosen three 
constraint design applications; Cantilever design problem, Tree bar truss design problem, and Gear 
Train design problem to validate the proposed algorithm and assess its effectiveness in handling 
constraint [25]. These problems are often standard in the engineering optimization field with 
appropriate measures such as the convergence rate and the efficiency of the solutions across 
varying problem complexities. We conducted experiments using: 

• Number of populations: 500 
• Number of iterations: 2000 
• c_1 and c_2 are between 2 and 2.99 
• w: between 0.4 and 0.99 

6.1 Cantilever Beam Design Problem 

The cantilever beam design problem is a constrained optimization problem, as shown in Fig 2. This 
problem is defined by five hollow blocks which are rigid by one end while the other end is left free 
which is applied by a vertical force. This design optimization aims to minimize the weight of the 
cantilever. The mathematical expression is given by the equations below:  

Minimize 

𝑓(𝑥) = 0.0624(⁡𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5)⁡ (11) 

Subject to: 

𝑔(𝑥) = ⁡
61

𝑥1
3 +

37

𝑥2
3 +

19

𝑥3
3 +

7

𝑥4
3 +

1

𝑥5
3 − 1 ≤ 0⁡ (12) 

The design variables have bounded as follows: 0.01 ≤ 𝑥𝑖  ≤ 100, i=1, 2,3,4,5 

 

Fig. 1. Cantilever beam design 

6.1.1 Results and Discussion for Cantilever Beam Study 

The results show good optimum solutions of the design variables for the LF-TVETPSO, TVETPSO, 
and PSO basic algorithms, as presented in Table 5. The outcomes demonstrate that the LF-TVETPSO 
algorithm effectively addresses the cantilever beam problem by minimizing its weight.  

Table 5. Design Variables of Cantilever Beam Design Problem 

Design Variables LF-TVETPSO TVETPSO 
PSO 

Basic 
x1 6.0231 6.0230 6.0085 
x2 5.3202 5.3056 5.3078 
x3 4.4794 4.4880 4.4982 
x4 3.5038 3.5057 3.5026 
x5 2.1473 2.1514 2.1566 
f 1.34 1.34 1.34 
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6.2 Tree Bar Truss Design Problem 

This optimization problem is an optimal design to minimize the volume of the three-bar truss 
structure subject to stress constraints shown in Fig 2. The mathematical formulation is described 
below. Consider Design Variables: X= [𝑥1, 𝑥2]⁡⁡= [A1, A2]   

Minimize 

𝑓(𝑥) = (2√2⁡𝑥1 +⁡𝑥2)𝑙 (13) 

Subject to: 

𝑔1(𝑥) = ⁡
√2⁡𝑥1 + 𝑥2

√2𝑥1
2 + 2𝑥1𝑥2

𝑃 − ⁡𝜎 ≤ 0 (14) 

𝑔2(𝑥) = ⁡
𝑥2

√2𝑥1
2 + 2𝑥1𝑥2

𝑃 − ⁡𝜎 ≤ 0 (15) 

𝑔3(𝑥) = ⁡
1

√2𝑥2 + 𝑥1
𝑃 − ⁡𝜎 ≤ 0 (16) 

The design variables are bounded as follows:  0.05 ≤ 𝑥1, 𝑥2≤ 2 

Where: P= 2KN/cm2,⁡σ = 2KN/cm2, l= 100cm   

 

Fig. 2. Tree Bar Truss design problem 

 6.2.1 Results and Discussion for Tree Bar Truss Study 

We conducted a numerical analysis between the LF-TVETPSO algorithm, TVETPSO and PSO Basic. 
The results are presented in Table 6 indicating that LF-TVETPSO achieved optimal solutions 
demonstrating the effectiveness of LF-TVETPSO in addressing this constraint problem.  

Table 6. Design Variables of Tree bar Truss Design Problem 

Design 
Variables 

LF-TVETPSO TVETPSO 
PSO 

Basic 

x1 0.7888 0.7888 0.7887 
x2 0.4080 0.4080 0.4083 
f 263.8958 263.8959 263.8958 

 

6.3 Gear Train Design Problem 

This structural issue is commonly identified as an unconstrained optimization problem. As 
demonstrated in Fig. 3, the core challenge revolves around determining the appropriate gear ratio 
within the minimized map. The design variables A, B, C, and D are crucial to solving this 
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optimization problem [20]. The mathematical model representing this problem is given by 
equation [16]: 

Consider         X = [x1,x2,x3,x4] = [nA,nB,nC,nD] 

Minimize   

f(x) = (
1

6.931
+

x2x3

x1x4
)

2

 (16) 

Variable range        12 ≤ x1,x2,x3,x4 ≤ 60   

 

Fig. 3. Gear Train structure design 

6.3.1 Results and Discussion for Gear Train Study 

The optimization result was successfully obtained by using LF-TVETPSO, delivering excellent 
outcomes as presented in Table VI. The results highlight the efficiency of LF-TVETPSO in addressing 
the Gear Train design optimization. 

Table 9. Design Variables of Gear Train Design Problem 

Design Variables LF-TVETPSO TVETPSO PSO 

x1 12.0167 12.1067 32.3002 
x2 37.3837 18.1457 12.0000 
x3 53.6627 58.5048 50.8193 
x4 58.0220 26.0259 52.8632 
f 0 1.0446e-24 8.0026e-19 

 

7. Conclusion 

Based on the results obtained in this study, we propose an enhanced optimization approach that 
integrates the Levy flight strategy into the TVETPSO algorithm. The LF_TVETPSO algorithm itself is 
inspired by human learning behavior, allowing particles to improve their positions through a 
guided learning process. By incorporating the Levy flight mechanism, the algorithm achieves a 
more effective balance between exploration and exploitation, which is critical for avoiding local 
optima and enhancing the overall convergence speed. This integration enables the algorithm to 
explore the search space more thoroughly while still refining promising solutions efficiently, 
leading to improved optimization outcomes. 

The performance of the proposed approach was evaluated using a set of well-established 
benchmark functions, which serve as standard tests for optimization algorithms. The results 
indicate that the LF_TVETPSO algorithm, augmented with Levy flight, consistently delivers accurate 
and robust solutions across diverse problem types. In addition to synthetic benchmarks, the 
algorithm has also been applied to practical design optimization problems within the field of 
mechanical engineering; Cantilever design problem, Tree bar truss design problem, and Gear Train 
design problem demonstrating its ability to handle complex, real-world application effectively. 
These results highlight not only the reliability and efficiency of the proposed approach but also its 
versatility in addressing a wide range of optimization challenges. 
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Looking forward, further refinements of the LF_TVETPSO algorithm are planned to enhance its 
performance even further. Potential improvements include adaptive parameter tuning, 
hybridization with other optimization strategies, and the incorporation of problem-specific 
metaheuristic optimization to tailor the algorithm to specialized applications in Mechanical 
Structures. By continuing to refine and expand the capabilities of the proposed method, we aim to 
establish it as a powerful and practical tool for solving complex engineering optimization problems. 
Overall, the integration of human-inspired learning mechanisms with Levy flight strategies 
represents a promising direction for advancing optimization techniques and addressing 
increasingly challenging design and engineering problems. 
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